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A deep learning approach 
to automatic gingivitis 
screening based on classification 
and localization in RGB photos
Wen Li1,5, Yuan Liang2,5, Xuan Zhang3, Chao Liu4, Lei He2, Leiying Miao1,5* & Weibin Sun3,5*

Routine dental visit is the most common approach to detect the gingivitis. However, such diagnosis 
can sometimes be unavailable due to the limited medical resources in certain areas and costly for 
low-income populations. This study proposes to screen the existence of gingivitis and its irritants, i.e., 
dental calculus and soft deposits, from oral photos with a novel Multi-Task Learning convolutional 
neural network (CNN) model. The study can be meaningful for promoting the public dental health, 
since it sheds light on a cost-effective and ubiquitous solution for the early detection of dental issues. 
With 625 patients included in this study, the classification Area Under the Curve (AUC) for detecting 
gingivitis, dental calculus and soft deposits were 87.11%, 80.11%, and 78.57%, respectively; 
Meanwhile, according to our experiments, the model can also localize the three types of findings 
on oral photos with moderate accuracy, which enables the model to explain the screen results. By 
comparing to general-purpose CNNs, we showed our model significantly outperformed on both 
classification and localization tasks, which indicates the effectiveness of Multi-Task Learning on dental 
disease detection. In all, the study shows the potential of deep learning for enabling the screening of 
dental diseases among large populations.

Gingivitis is the chronic infection of oral gum that has been affecting the public health worldwide, whose main 
manifestations are redness, bleeding, and bad breath. The latest epidemiological survey on oral health showed 
that 87.4% of adults aged 35–44 years suffers from the resultant gingival bleeding1. The development of gingivitis 
is a continuous progress, with dental calculus and soft mucinous deposits being the main irritants2. Soft depos-
its is a visible bacterial mass on teeth, while dental calculus is a mineralized soft deposit that further destroys 
the periodontal tissues by constantly adsorbing calcium compounds from saliva. The awareness of gingivitis 
and its irritants can be helpful for individuals to stall and control the progress of gingivitis with corresponding 
interventions, as well as getting timely treatment to avoid tooth loss. Currently, routine dental visit is the most 
effective way for such detection. However, the dental diagnosis is not always available due to the limited medi-
cal resources in some regions. Also, it can add economic burdens for individuals of low-income, which might 
prevent them from routine dental visits3. Therefore, there has been a need for cost-effective solutions that can 
screen for gingivitis and its irritants, i.e., dental calculus and soft deposits, among large populations. Motivated 
by the need, this study sheds light on the development of computer-assisted systems that utilizes widely available 
oral photos for the purpose of dental health screening.

In specific, ur work employs deep learning (DL) algorithms for highly efficient and accurate disease detection4. 
Currently, DL has been widely used to detect health issues from imagery captured with cameras or smartphones 
for everyday users as a supplement to clinical visits5,6. Indeed, BiliScreen achieved the automatic live disorder 
detection by capturing Jaundice color changes7; Vardell introduced a skin disease diagnosis system with skin 
photos as a source of input8; and Mariakakis et al. developed the fast traumatic brain injury detection by training 
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a model taken pupil images as input9. Despite those works, the use of DL models for screening oral conditions 
is still much under-explored.

There also exists continuous efforts for enabling the automatic dental diagnosis with DL algorithms. For exam-
ple, Joachim Krois10 applied CNNs to detect periodontal bone loss (PBL) on panoramic dental radiographs, while 
Casalegno et al. performed caries segmentation from Near-Infrared-Light Transillumination (NILT) images11. 
Jae-Hong Lee evaluate the efficacy of deep CNN algorithms for detection and diagnosis of dental caries on peri-
apical radiographs12. Yu et al. also evaluated the performance of CNNs for the skeletal classification with lateral 
cephalometry13. Different from the previous work, our task takes imageries as input, which can be less standard 
in distribution comparing to the medical imaging.

In this work, we initialize the study of applying DL on oral photos for screening gingivitis, dental calculus, and 
soft deposits. We formulated the task as mixture of dental condition classification and localization by considering 
the nature of the conditions, and developed a Multi-Task Learning to solve the two different types of tasks with 
an integrated model. We proved the effectiveness of our model by comparing with general-purpose CNNs and 
carrying out ablation tests. With the designed system, we expect to bring up the discussion for integrating deep 
learning into tools for improving public dental health.

Materials and methods
In this section, we first introduce the data collecting protocols and the resultant dataset for the data-driven 
study, followed by the description of data annotation process. Next, we illustrate the problem formulation for 
the detection of gingivitis (and its irritants), as well as the proposed DL model architecture. Details on the model 
implementation and training are then provided. Finally, we describe the metrics and statistical analysis methods 
we applied for validating and justifying our model.

Acquisition of data.  A total of 3932 oral photos were captured from 625 patients admitted at Department 
of Periodontics, orthodontics and endodontics, Nanjing Stomatological Hospital, Nanjing University, between 
January 2018 and December 2019. All the photos were captured by postgraduate dental students and dentists, 
and the patient’s ages cover a range from 14 to 60. The project was approved by the Ethical Review Board at 
Nanjing University (approval 2019NL-065(KS)). The methods were conducted in accordance with the approved 
guidelines, written informed consent was obtained from each participant. For children under the age of 18, the 
written informed consent was obtained from their parents/guardians. To approximate the image quality in the 
practical scenario, the photos were collected with various equipments which include iPhone 8, iPhone 7, Sam-
sung Galaxy s8, and Canon 6D. No specific in- or exclusion criteria about images, e.g. lighting and resolution, 
was applied. Three dental diseases were considered in this study: gingivitis, dental calculus, and soft deposit. 
Among the dataset, 3175 photos show gingivitis, 921 show dental calculus, and 746 images show soft deposits. 
Note that each photo can show none, one or more types of conditions. All photos were pseudonymized and no 
other image processing steps are performed.

We split the data into training, validation and testing subsets by randomly splitting the patients into three 
independent groups. All photos of each patient only existed in one of the three subsets. Table 1 shows the patient 
and photo split. Table 2 shows the distribution of photos with positive findings among the dataset and different 
subsets.

Ground truth annotations.  We collected the reference annotations of the three dental conditions for all 
the photos from three board-certified dentists. In specific, the dataset was evenly split and assigned to the three 
dentists. Each image was independently labeled by one of the dentists with the given clinical report using the 
labeling software LabelBox (Labelbox, Inc, CA). For gingivitis and dental calculus, we collected the annotations 

Table 1.   Numbers of patients and images assigned to training, validation, and testing subsets.

Training Validation Testing Total

Patients 344 (55.04%) 94 (15.04%) 187 (29.92) 625 (100%)

Images 2138 (54.37%) 608 (15.46%) 1186 (30.16%) 3932 (100%)

Table 2.   Distribution of images with positive findings among training, validation, and testing subsets for each 
type of diagnosis. The data shows the numbers of images with positive findings, as well as their proportions 
within all the images of a category.

Gingivitis Dental calculus Soft deposit

Training 1726 (80.73%) 514 (24.04%) 424 (19.83)

Validation 469 (77.14%) 175 (28.78%) 116 (19.08%)

Testing 980 (82.63%) 232 (19.56%) 206 (17.37%)

Total 3175 (80.75%) 921 (23.42%) 746 (18.97%)
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of bounding boxes for indicating the localizations of diseases. Note that since there can be no well-defined 
boundaries for diseases in some cases, we followed a common approach14 by instructing the dentists to focus on 
the correctness of box centers. Meanwhile, for soft deposit, we only collected image-level classification labels, 
since such condition mostly appears all over cavities and its localizations are labor-costly to label.

Problem formulation and model architecture.  We formulated the problem as a mixture of object 
localization and image classification. In specific, we developed a CNN with Multi-task Learning (MTL)15,16 for 
solving both tasks with a unified model in order to increase the model’s generalization17 and compactness. Fig-
ure 1 shows the overall architecture of our MTL model, which takes oral images (Fig. 1a) as input, and out-
puts both diagnosis and locations of the detected conditions (Fig. 1e). The model is consisted of three subnets: 
(i) FNet (feature extraction subnet), (ii) LNet (localization subnet) and (iii) CNet (classification subnet). FNet 
(Fig. 1b) extracts deep features of the input image through a stack of convolutional layers, and was trained to be 
discriminative for both localization and classification tasks. Meanwhile, LNet (Fig. 1c) regresses over the feature 
maps derived from FNet for a set of location vectors, where each vector y encodes one bounding box by its coor-
dinates, height, width, and probability for gingivitis and dental calculus. Similar with Liu et al.18, the proposed 
bounding boxes are aligned to nearest ground-truth boxes during training to approximate localizations, and 
are filtered with Non-maximum Suppression (NMS)19 during inference to reduce overlapped findings. CNet 
(Fig. 1d) performs fully connected operations over the extracted feature maps for a length 1 vector as outputs, 
whose value represented the probability for the existence of soft deposits. By optimizing the whole model con-
sisted of FNet, CNet and LNet end-to-end, we enforce the FNet to learn representations that are effective for both 
classification and localization. Such constraint can possibly improve the generalization of the representations 
and reduce the model overfitting.

To help users comprehensively understand the diagnosis results, we aim to highlight the spatial locations 
of the detected dental conditions. For gingivitis and dental calculus, the bounding boxes from the model can 
already localize the ROIs. However, for soft deposit, the model only produces classification results since their 
ground-truth location maps are labor costly to annotate. Thus, gradient-based class activation maps20 was used 
to reason the areas of the images that are most indicative to the classification.

Figure 1e (Fig. 1 were created with Matplotlib v3.2.1 (https://​matpl​otlib.​org/) shows an example result from 
our system. The detected gingivitis and dental calculus are pinpointed with boxes, and soft deposits are hinted 
with a heat-map, where a higher temperature indicates the stronger relevance of a region. The whole model can 
be optimized end-to-end during training, and can produce both the classification and localization results in a 
single run during inference.

Implementation and training strategy.  To train the model, we defined the loss as an equally weighted 
sum of smooth L1 loss for bounding box regression, and cross entropy loss for classification21. We employed 
intensive augmentations to input images22, which includes random shifts, crops, rotations, scaling, and color 
channel shifts (random changes of hue, saturation, and exposure). Such augmentations is targeted to increase 
the robustness of the model for in-the-wild application. Moreover, we employed transfer learning by initializing 
our FeatNet from VGG-1623 that pre-trained on large-scale image recognition tasks for speeding up the training 
process24.

The CNN model was developed using the PyTorch framework. The model was trained using a mini batch 
size of 16 per GPU on three Nvidia 1080 Ti GPUs. Validation set was used to determine the early stopping of 

Figure 1.   Overview of the model architecture. The model consists of three subnets: (b) FNet of feature 
extraction, (c) LNet for bounding box-based localization, and (d) CNet for classifying the existence of 
conditions. Given an (a) oral cavity image as input, (e) the model outputs both the probabilities for diagnosis, 
as well as the locations of the detections with heat-maps and bounding boxes. The numbers at model building 
blocks mark for channel dimensions. Gingivitis, dental calculus, and soft deposits are represented as GI, CA, and 
SD, respectively.

https://matplotlib.org/
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the training process. Parameter updates were calculated using the Adam algorithm, with the learning rate set to 
1e−4 and decay rate set to 5e−4.

Evaluation metrics and statistical analysis.  We evaluated the model from two aspects: (i) classification 
performance for telling the existence of a condition, and (ii) localization performance for indicating regions on 
images that related to a diagnosis.

In terms of the classification performance, we utilized the Receiver Operating Characteristic (ROC) curve, 
which shows the true-positive rate (TPR), or sensitivity, against its false-positive rate (FPR), or 1 − specificity, 
as a function of varying discrimination thresholds. The ROC curve illustrates the diagnostic ability of binary 
classifier. For gingivitis and dental calculus, we took the highest probability of the detected bounding boxes as 
the classification probability of an image; meanwhile for soft deposit the classification model output is taken 
as the probability. To compare between different models, Area Under the Curve (AUC) was used as a numeric 
measurement of class separability, where a higher value indicates the better model performance.

In terms of localization performance, we utilized the Free-Response ROC (FROC) curve, a commonly used 
graphic measurement for medical anomaly detection25–29. In the FROC paradigm, a model is free to mark as 
many clinically suspicious regions; a mark is true positive if it is sufficiently close to an actual anomaly, otherwise 
it is scrod a a location-wise false positive. FROC measures the location-wise TPR against the average number 
of false-positive (FP) locations per image as a function of varying thresholds for box probabilities. Moreover, 
by following the practice of van Ginneken24, a predicted box was taken as a hit if its center falls into the range 
of a ground-truth box. To conveniently compare different models numerically, we followed Setio28 and van 
Ginneken24 to define a Localization Performance Metric (LPM) as the average sensitivity at the false positive 
numbers per image of 1/2, 1, 2, and 3.

In terms of measuring the quality of soft deposit localization, we followed Selvaraju20 by collecting agreement 
ratings from three board-certified dentists for each localization heat-map of testing images. Specifically, we show 
dentists images that were detected with soft deposits together with the localization heat-maps that visualized 
as in Fig. 1e. Then a rating is given on a scale from 1 (strongly disagree) to 5 (strongly agree) by evaluating if a 
heat-map demonstrates the regions of the condition according to dentists’ opinions.

Results
Tables 3 and 4 show the classification and localization performance of different models, respectively. Compared 
to the general-purpose classification CNNs (VGG-1621 and Residual-5027) and localization CNNs (SSD 20), 
our model has the advantage of handling both types of tasks. The model achieved classification AUC (95% CI) 
of 87.11 (82.27 to 91.49) for gingivitis, 80.11% (CI 75.99% to 84.45%) for dental calculus, and 78.57% (CI 74.32% 
to 82.78%) for soft deposits; meanwhile the model performed at LPM (95% CI) of 58.19% (56.15% to 60.20%) 
and 49.39% (44.40% to 54.69%) for localizing gingivitis and dental calculus, respectively. All the scores were 
highest scores among different methods, suggesting the effectiveness of the proposed system. Additionally, we 

Table 3.   Summary of classification performance of different models. classification AUC (in percentage), 
sensitivity (Sens.), specificity (Specif.) are measured for gingivitis (GI), dental calculus (DC), and soft deposits 
(SD).

GI AUC (95% CI)/% GI sens. GI specif. DC AUC (95% CI)/% DC sens. DC specif. SD AUC (95% CI)/% SD sens. SD specif.

VGG-16 77.55 (73.97 to 79.05) 0.682 0.620 74.17 (72.71 to 76.75) 0.645 0.572 72.07 (69.76 to 76.34) 0.679 0.605

Residual-50 83.80 (80.69 to 86.37) 0.755 0.628 78.22 (75.91 to 82.02) 0.780 0.567 71.49 (67.86 to 75.98) 0.641 0.586

FNet + CNet 84.28 (80.94 to 87.11) 0.802 0.578 76.78 (74.50 to 79.47) 0.745 0.615 69.75 (68.29 to 71.57) 0.740 0.480

Ours (high-sensitivity 
operation point) 87.11 (82.27 to 91.49) 0.878 0.639 80.11 (75.99 to 84.45) 0.778 0.655 78.57 (74.32 to 82.78) 0.787 0.590

Ours (high- specificity 
operation point) 87.11 (82.27 to 91.49) 0.601 0.839 80.11 (75.99 to 84.45) 0.542 0.836 78.57 (74.32 to 82.78) 0.565 0.800

Table 4.   Summary of localization performance of different models. detection FAUC (in percentage), 
bounding-box-wise sensitivity (Sens.), average false positives (Avg. False Positives) are measured for gingivitis 
(GI) and dental calculus (DC).

GI FAUC (95% 
CI)/% GI sens.

GI avg. false 
positives

DC FAUC (95% 
CI)/% DC sens.

DC avg. false 
positives

SSD 44.19
(41.19 to 47.08) 0.422 1.280 36.23

(32.93 to 37.89) 0.375 1.721

FNet + LNet 56.93 (56.05 to 59.42) 0.565 1.340 43.87 (41.26 to 48.33) 0.392 1.150

Ours (high-sensitivity 
operation point) 58.19 (56.15 to 60.20) 0.666 1.522 49.39 (44.40 to 54.69) 0.456 1.330

Ours (high-specificity 
operation point) 58.19 (56.15 to 60.20) 0.432 0.585 49.39 (44.40 to 54.69) 0.380 0.260
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conducted an ablation test comparing the performance of our model (FeatNet + ClassNet + LocateNet) with its 
subnets that trained solely for classification (FeatureNet + classNet) or localization (FeatureNet + locateNet). The 
results show that our model outperformed in all metrics, with AUC boosts ranging from 1.20 to 8.82%, and LPM 
boosts ranging from 1.26 to 5.52%. The results confirm the advantage of handling multiple tasks simultaneously 
with joint optimization.

The ROC and FROC curves for each diagnosis are detailed in Fig. 2a,b. The designed operating points 
of the model are shown with black diamonds and red dots. Two types of operating points were designed by 
following30,31: the high-specificity operating point with a higher discrimination threshold that aims for reducing 
false positives, and the high-sensitivity operating point with a lower discrimination threshold for keeping the 
missing rate low. The model achieved the mean specificities of 83.87%, 83.61%, and 79.98% under the high-
specificity operating points, meanwhile the mean sensitivities of 87.83%, 77.79%, and 78.68% under the high-
sensitivity operating points, both for gingivitis, dental calculus, and soft deposit, respectively. For localization 
performance, the model achieved the mean box-wise sensitivities of 66.57% and 45.61% for gingivitis and dental 
calculus, respectively, at the high-sensitivity operating point. Moreover, Fig. 2c shows the dentists’ ratings on 
the attention-based localization for soft deposits. While the attention-based method has been widely applied to 
interpret CNNs32,33, it lacks formal evaluations of location-indicating accuracy for the dental diagnosis purpose. 
According to the experiment, our model achieved scores with a median of 3.00, mean of 2.81, and standard devia-
tion of 1.02, on a scale from 1 to 5. Based on the scorers’ feedback, the following two factors can lead to the lower 
localization scores. First, different from bounding boxes that pinpointing the exact locations, the heat-maps can 
only circle out areas with larger ranges. Second, the model attention can often localize only part of the related 
regions. This can be explained as the model does not count on all regions for reaching a classification results20,32.

Figure 3 (Fig. 3 were created with Matplotlib v3.2.1 (https://​matpl​otlib.​org/).​depic​ts selected results obtained 
on the testing images for a qualitative overview of our model’s performance. Ground-truth annotations, heat-
map predictions and bounding box predictions are shown in the left, middle, and right column. We can clearly 
see that the model can accurately tell the existence of dental conditions with acceptable accuracy of localization. 
By looking into the outputs, we found that the over-exposure, under-exposure and incorrect focus of photos 
can lead to wrong predictions.

Discussion and future work
Previous studies have explored predicting gum health with self-reported questionnaires34,35. Their results have 
shown that several self-reported measures and risk factors are strongly related to the presence of gum diseases. 
Different from those works, we aim to predict gingivitis as well as its irritants as early indicators from oral 
photos by learning their common appearance patterns. Such visual signals can be of more direct reflection of 
dental diseases than questionnaire feedbacks. Moreover, the method is promising since oral photos can be col-
lected with smartphones, which have become increasingly low-cost and ubiquitous recently. Our work pioneers 
to examine the approach by designing, training and validating a deep learning model for the task. Built based 
on the detection results of deep learning, future systems can be developed to show targeted health-enhancing 
activities, proper hygiene routines, and clinical treatments to users, which will be meaningful for promoting the 
public dental health.

Considering that the users of such system can have limited knowledge about dental health, our model shows 
not only the existences of dental conditions but also their localizations. The localization can help users better 
understand the screening results, and help gain trust of users to a system with the increased explainability36. 
We formulated the localization of gingivitis and dental calculus as bounding box regression by considering the 
appearance of the conditions and saving labour cost. For soft deposits, we formulated the task as image-wise 
classification, and reasoned its locations with model attentions.

To improve the system efficiency, we employed Multi-Task Learning, such that both types of tasks, i.e. clas-
sification and localization, can be solved with one integrated CNN model. Moreover, our experiments indicated 
that our model also outperformed the state-of-the-art CNNs that carried out single type of task in accuracy, 
mainly because the co-optimization of multiple tasks increases the model generalization. We further confirmed 
this with ablation tests, where the model with MTL showed significant accuracy improvements comparing to 

Figure 2.   Quantitative analysis of the results of our model. (a) Receiver operating characteristic curves for 
predicting the existence of conditions. (b) Free-Response receiver operating characteristic curves for localizing 
conditions. (c) Distribution of dentists’ ratings on the localization for soft deposits. Gingivitis, dental calculus, 
and soft deposits are represented as GI, DC, and SD, Respectively.

https://matplotlib.org/).depicts
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Figure 3.   Examples of detection results on the testing data. Left: ground-truth annotations. Middle: Predicted 
locations of soft deposits represented with heat-map. Right: predicted locations of gingivitis and dental calculus 
represented with green and blue boxes, respectively.
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its subnets that trained for classification or localization solely. We believe the findings can help with the CNN 
design for other dental diagnosis with multiple goals.

Our work still exhibits several shortcomings, and we discuss the possible solutions for future researches. First, 
our dataset is limited in the sense that the photos were collected from a single organization, and currently it 
only covered age range from 14 to 60. We have the plan to further enrich the dataset for a wider age range from 
multiple sites globally. Second, our model achieved a relative low accuracy on soft deposit for the localization 
task, partially due to the lack of spatial annotations as the guidance for training supervision. Instead of collecting 
pixel-wise segmentation maps, which can be extremely labour costly, we advocate that future studies could apply 
recently proposed weakly-supervised learning to train with low-quality spatial annotations, e.g. partial labels 
over images to indicate several typical areas of diseases37. Moreover, the model could also benefit from semi-
supervised learning by augmenting a part of dataset with pixel-wise labels38,39, while the other part only comes 
with image-wise labels. Third, the algorithm can also be complementary with the traditional questionnaire-based 
detections for higher reliability and accuracy. The current model cannot utilize data modality other than images 
for diagnosis. Encoding40 and fusing of medical history and self-reported symptoms of a patient into CNNs could 
be promising to improve the model accuracy41.

Conclusion
In this study, a deep learning model for the detection of gingivitis, dental calculus, and soft deposits from 
oral photos was proposed. We formulated the model with Multi-Task Learning, which effectively improves its 
compactness and accuracy. We evaluated our model for both classification and localization tasks. Based on the 
results, we show deep learning is promising for enabling the cost-effective screening of dental diseases among 
large populations from oral photos, which can captured with smartphones and other commonly available devices. 
Built upon the deep learning model, systems can be developed to provide user-specific health-enhancing activi-
ties according to one’s dental conditions, which can be promising to improve the public dental health. Our work 
also discusses the possible improvements of data quantity and model architectures.

Data availability
The data used in current study were collected from Medical School of Nanjing University and is available only 
for the granted research. However, the data can be made available if requested within data protection and regu-
lation guideline.
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