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Development of the metanephric kidney is strongly dependent on complex signaling
pathways and cell–cell communication between at least four major progenitor cell
populations (ureteric bud, nephron, stromal, and endothelial progenitors) in the
nephrogenic zone. In recent years, the improvement of human-PSC-derived kidney
organoids has opened new avenues of research on kidney development, physiology,
and diseases. Moreover, the kidney organoids provide a three-dimensional (3D) in vitro
model for the study of cell-cell and cell-matrix interactions in the developing kidney.
In vitro re-creation of a higher-order and vascularized kidney with all of its complexity is
a challenging issue; however, some progress has been made in the past decade. This
review focuses on major signaling pathways and transcription factors that have been
identified which coordinate cell fate determination required for kidney development.
We discuss how an extensive knowledge of these complex biological mechanisms
translated into the dish, thus allowed the establishment of 3D human-PSC-derived
kidney organoids.
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Abbreviations: 3D, three-dimensional; AIM, anterior intermediate mesoderm; AP1, activator protein 1; BMP, bone
morphogenetic protein; CITED1, Cbp/p300-interacting transactivator 1; CM, cap mesenchyme; DKK1, Dickkopf-1; ECM,
extracellular matrix; Ecm1, extracellular matrix 1; EC, endothelial cells; EMX, empty spiracles homolog; EPC, endothelial
progenitor cells; ERK, extracellular signal-regulated kinase; Eya1, eyes absent 1; FGF, fibroblast growth factor; FOXD1,
forkhead/winged helix transcription factor; FSS, fluid shear stress; GATA, trans-acting T-cell-specific transcription factor;
Gas1, growth arrest-specific 1; GDNF, glial cell-derived neurotrophic factor; GFRα1, glial cell line derived neurotrophic factor
family receptor α1; Hox, homeobox; hPSCs, human pluripotent stem cells; IM, intermediate mesoderm; Kdr/VEGFR2/Flk1,
kinase insert domain protein receptor; LHX1, LIM-class homeodomain 1; LTL, lotus tetragonolobus lectin; MCAM,
melanoma cell adhesion molecule (CD146); MET, mesenchymal-epithelial-transition; MM, metanephric mesenchyme;
MSCs, mesenchymal stem cells; NPCs, nephron progenitor cells; Odd1 or Osr1, odd skipped related 1; PAX, paired box
protein; PBX1, Pre-B-cell leukemia transcription factor 1; PDGFRβ, Platelet-derived growth factor receptor beta; PECAM-
1/CD31, Platelet/endothelial cell adhesion molecule-1; PIM, posterior intermediate mesoderm; PI3K, Phosphoinositide
3-kinase; PTA, pre-tubular aggregate; RA, retinoic acid; RAR, retinoic acid receptor; RBP-J, recombination signal binding
protein for immunoglobulin kappa J region; RV, renal vesicle; SALL1, spalt like transcription factor 1; SCF, stem cell factor;
SFRP, secreted frizzled-related proteins; SIX2, sine oculis-related homeobox 2; TGFβ, transforming growth factor beta; UB,
ureteric bud; UBPCs, ureteric bud progenitor cells; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial
growth factor receptor; WT1, Wilm’s tumor; WNT, wingless-type mouse mammary tumor virus integration site.
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INTRODUCTION

The mammalian kidney is one of the most complex organs in
the body. The kidney is the major homeostatic organ necessary
for pH and electrolyte regulation, and maintenance of overall
fluid balance. In addition to these excretory functions, the
kidney produces several hormones and humoral factors such as
renin, erythropoietin, calcitriol (1,25-dihydroxycholecalciferol)
and prostaglandins (Santoro et al., 2015). Kidney function
depends on nephrons, the structural and filtration unit of
the kidney, that are composed of more than 20 different
specialized cells (Al-Awqati and Oliver, 2002). In the human
kidney, nephrons are generated only during nephrogenesis
and de novo nephron formation continues until 36 weeks
of gestation (Romagnani et al., 2013; Ahmadi et al., 2019a).
In vitro re-creation of these complex structural units of the
kidney is a challenging issue; however, there has been some
success in the past decade. A defined culture system drives the
differentiation of human pluripotent stem cells (hPSCs) into
kidney organoids by recapitulating the developmental processes.
Generation of human PSCs-derived kidney organoids depends
on cell–cell communication between multiple distinct progenitor
populations that lie adjacent to each other (Morizane et al., 2015;
Garreta et al., 2019; Homan et al., 2019). This review focuses
on major signaling pathways and transcription factors that
coordinate cell fate determination of renal progenitor cells. We
intend to discuss the ways in which cell communications between
nephron progenitor cells (NPCs), ureteric bud progenitor cells
(UBPCs), endothelial and stromal cells during organogenesis
lead to a fully patterned and vascularized kidney tissue, and
how a deep knowledge of these biological mechanisms translated
into the dish, thus allowed the establishment of PSCs-derived
kidney organoids.

SPATIAL ORGANIZATION AND EARLY
PATTERNING OF THE KIDNEY-FORMING
MESODERM

During organogenesis, the intermediate mesoderm (IM) gives
rise to three types of excretory organs: pronephros, mesonephros,
and metanephros. The metanephric kidney remains for the
period after birth and forms the definitive mature organ.
Metanephros differentiates as the result of interaction between
the metanephric mesenchyme (MM), which is derived from the
most posterior intermediate mesoderm (PIM), and the ureteric
bud (UB) lineage that includes the collecting system that is
derived from a more anterior IM (Taguchi et al., 2014; Takasato
and Little, 2015). PIM have a multi-potent precursor population
that give rise to nephron segments and interstitial stromal
cells. The signals that specify the early kidney field along the
body axes have received more attention. Several transcriptional
regulators such as homeobox (Hox) paralogs, LIM1 (LIM-class
homeodomain1), odd skipped related 1 (OSR1), PAX2/8 (Paired
box protein 2/8), and eyes absent 1 (EYA1) have been shown
to play major roles in early patterning and specification of the
developing kidney (Figure 1) (Bouchard et al., 2002). These

events lead to the formation of multiple distinct renal progenitor
populations within the nephrogenic niche.

The Homeobox (Hox) Genes
The Hox genes have an important role in anterior-posterior
patterning of the body. From these, 28 of the 39 Hox genes
are expressed in the developing kidney (Patterson and Potter,
2004). Given that the Hox proteins have intrinsically weak
DNA-binding affinity, their interaction with cofactors is critical
for target selectivity (Gong et al., 2007). Thus, interaction of
Hox genes with regulatory partners such as Pax2, Eya1, and
SMADs [Caenorhabditis elegans SMA (“small” worm phenotype)
and Drosophila MAD (“Mothers Against Decapentaplegic”)] is
necessary for kidney mesoderm specification (Gong et al., 2007;
Preger-Ben Noon et al., 2009). Hoxb4 plays key roles in the
establishment of the kidney morphogenetic field anterior border
(Preger-Ben Noon et al., 2009) and nephric duct specification
(Attia et al., 2012). Retinoic acid (RA) signaling in the anterior
IM stimulate the expression of Hoxb4. Hoxb4 confers competence
on IM cells to respond to inductive signals from neighboring
tissues. Cooperation of Hoxb4 with SMADs induces expressions
of Lim1 and Pax2 in IM cells (Preger-Ben Noon et al.,
2009). Another Hox gene, HoxB7, is expressed from the early
stages in the nephric duct to terminal differentiation of UB
derivatives, including the ureter, pelvis, calyces, and collecting
ducts (Argao et al., 1995; Srinivas et al., 1999). However, the
direct downstream targets of Hoxb7 in these cells is unknown.
Hoxa11 and Hoxd11 expressions are restricted to the PIM,
which develops into MM. Hoxd11 is expressed in both cap
mesenchyme (CM) and cortical stroma (Mugford et al., 2008a),
and activates several metanephric specific markers, including
sine oculis-related homeobox 2 (SIX2) (Mugford et al., 2008a),
glial cell-derived neurotrophic factor (GDNF), forkhead/winged
helix transcription factor (FOXD1) (Patterson et al., 2001), and
pre-B-cell leukemia transcription factor 1 (PBX1) (Moens and
Selleri, 2006). Hox11 function is required for generation of
NPCs, stromal progenitor cells, and induction of UB branching
morphogenesis. Studies have shown that Hox11 paralogs interact
with Pax2 and Eya1 to induce transcription of direct downstream
targets such as SIX2 and GDNF (Wellik et al., 2002; Gong
et al., 2007). Therefore, the spatiotemporal pattern of Hox11
expression indicates that it has a key role in MM patterning.
The results of a study have shown that although Hox10 and
Hox11 expression patterns mostly overlap, Hox10 displays
additional expression in the FOXD1-expressing cortical stromal
cells. Hox10 has an essential role in appropriate integration
and further differentiation of stromal progenitor cells in the
developing metanephric kidney (Yallowitz et al., 2011).

LIM-Class Homeodomain 1 (Lim1)
LIM-class homeodomain 1 (Lim1) is a transcription factor
encoded by the LHX1 gene in humans. Lim1 is an early marker
for kidney organogenesis. This gene is a direct downstream
target for the RA signaling pathway to IM specification and
patterning (Osafune et al., 2002; Cartry et al., 2006; Wingert et al.,
2007). During renal development, Lim1 is expressed in different

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 March 2020 | Volume 8 | Article 183

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00183 March 21, 2020 Time: 9:8 # 3

Khoshdel Rad et al. Cellular and Molecular Mechanisms of Kidney Development

FIGURE 1 | Major genetic markers involved in kidney development. The cell fate decision of renal cells are coordinately controlled with different genetic markers
during nephrogenesis. AIM, anterior intermediate mesoderm; AQP, aquaporin; BMP, bone morphogenetic protein; Brn1, Bruno-like1; CALB1, calbindin; CD,
Collecting duct; CM, cap mesenchyme; CSB, comma-shaped body; EMX, empty spiracles homolog; Eya1, eyes absent 1; FGF, fibroblast growth factor; FOXi1,
forkhead box protein i1; FRS2α, fibroblast growth factor receptor substrate 2α; GATA, trans-acting T-cell-specific transcription factor; GDNF, glial cell–derived
neurotrophic factor; GFRα1, glial cell line derived neurotrophic factor family receptor α1; Jag1, Jagged 1; HOX, homeobox; IM, intermediate mesoderm; Kdr, kinase
insert domain protein receptor; LHX1, LIM-class homeodomain 1; LTL, lotus tetragonolobus lectin; MM, metanephric mesenchyme; NPCs, nephron progenitor cells;
NPHS1, nephrosis 1; Osr1, odd skipped related 1; PAX, paired box protein; PI3K, phosphoinositide 3-kinases; PIM, posterior intermediate mesoderm; PTA,
pre-tubular aggregate; RV, renal vesicle; SIX2, sine oculis-related homeobox 2; SLC2614, solute carrier 2614; SSB, S-shaped body; SYNPO, synaptopodin; TGFβ,
transforming growth factor beta; UB, ureteric bud; UMOD, uromodulin; WNT, wingless-type mouse mammary tumor virus integration site; WD, Wolffian duct.

stages - the IM; nephric duct; pro- and mesonephros; UB; pre-
tubular aggregates (PTA); comma- and S-shaped bodies; and
podocytes. Its expression pattern suggests that Lim1 has distinct
functions in several steps of kidney organogenesis. To this end,
Lim1 affects expression of several key genes and regulates cell
fate specification. According to research, Lim1 regulates its own
expression and the expressions of Pax2, E-cadherin, WNT9b, and
Ret in the nephric duct, thereby influencing early specification of
the IM, nephric duct elongation, and UB outgrowth (Tsang et al.,
2000; Kobayashi et al., 2005; Pedersen et al., 2005). This cell fate-
specifying transcription factor regulates the patterning of renal
vesicles (RV) by transcriptional activation of Brn1 (Bruno-like1)
and EphA4 (Chen et al., 2006).

Odd Skipped Related 1 (Odd1 or Osr1)
OSR1 is a zinc-finger DNA-binding protein that is broadly
expressed in the IM and MM (James, 2006). OSR1 is one of the
earliest genetic markers that is expressed in the MM and UB
lineages. OSR1 is specifically required for establishment of the
MM. Early OSR1 expressing cells are a multi-potent precursor
population that give rise to nephron and interstitial mesenchyme
progenitors (Mugford et al., 2008b). In the nephrogenic lineage,

OSR1 expression is downregulated from the RV stage (Xu
et al., 2014). OSR1 regulates the expressions of several key
genes (LHX1, PAX2, EYA1, SIX2, GDNF, Cbp/p300-interacting
transactivator 1 [CITED1], and Spalt like transcription factor
1 [SALL1]) in the nephrogenic mesenchyme (James, 2006;
Xu et al., 2014, 2016). OSR1 interacts synergistically with
other factors such as Wilm’s tumor (WT1) and SIX2 to
regulate MM specification and NPC pool maintenance (Xu
et al., 2014, 2016). OSR1-dependent transcriptional activation of
LHX1 might regulate expression of foot process and podocyte
junction-associated genes that result in podocyte differentiation
(Tomar et al., 2014).

Paired Box Proteins (PAX2/8)
The paired box proteins (PAX2/8) transcription factors are earlier
genetic markers expressed in the IM. RA signaling and low
levels of bone morphogenetic protein (BMP) signaling from
neighboring tissues induce the expressions of PAX2/8 genes in
the kidney-forming mesoderm (James and Schultheiss, 2005;
Cartry et al., 2006; Fleming et al., 2013). PAX2 transcripts
and proteins are found in multiple stages of the developing
kidney, including the IM, nephric duct, UB, MM, and CM.
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Subsequently, its expression in MM derivatives is downregulated
(Ryan et al., 1995; Mugford et al., 2008a) and becomes restricted
to UB derivatives (Cai et al., 2005). In the early stage of kidney
development, PAX8 and PAX2 are co-expressed. As development
proceeds, the PAX8 mRNA and protein disappear, and are
expressed again in the RV stage (Narlis et al., 2007). PAX2/8
can affect signaling in the developing kidney by transcriptional
regulation of GATA3 (Trans-acting T-cell-specific transcription
factor), LIM1 (Narlis et al., 2007; Boualia et al., 2013), RET
(Bouchard et al., 2002), SALL1 (Ranghini and Dressler, 2015),
SIX2, GDNF (Brophy et al., 2001), WNT4 (Torban et al.,
2006), and secreted frizzled-related protein 2 (SFRP2) (Brophy
et al., 2003) genes during multiple steps. The results of studies
indicate that both PAX2/8 are critical for cell survival, branching
morphogenesis, and nephron specification (Bouchard et al., 2002;
Narlis et al., 2007).

Eyes Absent Homolog 1 (EYA1)
EYA1 is a transcription regulator with threonine phosphatase
activity. EYA1 is expressed in the PIM, MM, and CM. As
nephrogenesis proceeds, its expression is gradually decreased
(Xu et al., 2015). EYA1 forms a transcriptional complex with
homeodomain genes during multiple stages of nephrogenesis.
Eya1-Six1-Dach and Eya1-Hox11-Pax2 complexes during the
early stages of MM activate expressions of SIX2 and GDNF
in the mesenchymal progenitors (Li et al., 2003; Gong et al.,
2007; Xu et al., 2015). Thereafter, the SIX2-Eya1-Myc complex
is critical for expansion of the multi-potent nephron progenitor
pool (Xu et al., 2015).

Early patterning of kidney-forming mesoderm leads to the
formation of multiple distinct renal progenitor populations
within the nephrogenic niche. Kidney organogenesis depends
on cell–cell communication between these populations that lie
adjacent to each other.

RENAL PROGENITOR CELLS

Pioneering studies revealed that the renal nephrogenic niche
includes at least four major self-renewing, multi-potent
progenitor cell populations: UBPCs, NPCs, stromal progenitors,
and endothelial progenitor cells (EPCs; Figure 1). Kidney
organogenesis, like the organogenesis of all other organs, is
dependent on the migration of external cells from different
embryonic tissues into the developing kidney (Bronner-Fraser
and Fraser, 1988; Schmidt-Ott et al., 2006; Guillaume et al.,
2009). Spatiotemporal multicellular interactions and precise
orchestration of signals between several distinct cell populations
have important roles in the successful induction, maintenance,
and differentiation of all cell types of the kidney.

Nephron Progenitor Cells (NPCs)
NPCs harbor the capacities of both self-renewal and
differentiation to maintain the nephron progenitor pool
and generation of all epithelial cells of nephrons. NPCs undergo
mesenchymal-epithelial-transition (MET) and sequential
morphological alterations to form the PTA that differentiate into

RV, comma- and S-shaped bodies, and mature nephrons. One
nephron is composed of more than 20 different cell types that
include podocyte cells, the proximal tubule, loop of Henle, distal
tubule, and connecting tubule cells (Al-Awqati and Oliver, 2002).
The modes of proliferation and differentiation of NPCs are
coordinately controlled during nephrogenesis. For this purpose,
NPCs-specific transcription factors CITED1, PAX2, EYA1, SIX2,
SALL1, and WT1 specify cell phenotypes (Lindström et al., 2018).
NPCs population in the CM are divided into the self-renewing
CITED1+/SIX2+ compartment and CITED1−/SIX2+ induced
compartment that progress toward epithelialization (Brown
et al., 2013). SIX2 expression is controlled by upstream signaling
proteins such as the Pax2/Eya1/Hox11 complex (Gong et al.,
2007). SIX2 maintains the un-differentiated cell state of NPCs,
and its expression is progressively decreased in the following
steps of kidney organogenesis (Park et al., 2012). Several lines
of evidence indicate that SIX2 regulates its own expression
and the expressions of LHX1, OSR1, WT1, GDNF, FGF8, and
WNT4 in NPCs and thereby regulates cell maintenance and
self-renewal (Brodbeck et al., 2004; Self et al., 2006; Park et al.,
2012; Xu et al., 2014). WT1 is another transcription factor that is
important in regulation of self-renewal, MET, and differentiation
of NPCs (Hartwig et al., 2010; Fanni et al., 2011). WT1, by
inhibition of BMP7/pSMAD signaling, can repress apoptosis
in MM (Motamedi et al., 2014). WT1 directly activates growth
arrest-specific 1 (GAS1) transcription and promotes NPCs
proliferation via the fibroblast growth factor (FGF) stimulated
phosphoinositide 3-kinase (PI3K)-Akt signaling pathway (Kann
et al., 2015). FGF16/20 are direct transcriptional targets of
WT1 (Motamedi et al., 2014). The three-dimensional (3D)
arrangement of NPCs and communication with other cells in the
developing nephrogenic zone is critical for the cell fate decisions
of these cells (Figure 2).

Ureteric Bud Progenitor Cells (UBPCs)
Anterior intermediate mesoderm (AIM) commit to the UB
lineage, including the collecting system (Ohmori et al., 2013).
The collecting duct have critical roles in electrolyte and fluid
balance, and acid-base homeostasis (Costantini and Kopan,
2010). The collecting duct consists of two highly specialized
cell types, principal cells and intercalated cells. Both populations
are derived from bi-potent UB precursors located at the UB
tips (Al-Awqati, 2013). vHNF1 (Garcia-Villalba et al., 2009),
EMX2 (Empty spiracles homolog 2) (Miyamoto et al., 1997),
PAX2 (Dressler et al., 1990), LHX1 (Karavanov et al., 1998),
GATA3 (Grote, 2005; Grote et al., 2008), RET (Pachnis et al.,
1993), WNT11 (Majumdar, 2003), and Vsnl1 (Bridgewater et al.,
2011) are expressed in the UB tips and they specify its cell fate.
Results from studies indicate that a sub-population of UBPCs,
which express the 1Np63 isoform (N-terminus truncated p63)
is dedicated to generating cortical intercalated cells (El-dahr
et al., 2017). FOXi1 and a disintegrin and metalloproteinase
domain 10 (Adam10)/Notch signaling pathway play critical roles
in intercalated and principal cell fate decision in the collecting
duct, respectively (Al-Awqati and Schwartz, 2004; Jeong et al.,
2009; Vidarsson et al., 2009; Guo et al., 2015). In response
to paracrine signals from neighboring tissues, UB precursors
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FIGURE 2 | Crosstalk between major signaling pathways during nephron progenitor cell (NPC) differentiation. WNT9b, BMP7, and FGF2/9 are secreted by UB cells
(green color). Stromal cells secret Decorin, SFRP1, Fat4, and TGFβ2 (orange color). High levels of WNT9b/β-catenin increase expression of the differentiation-specific
genes (PAX8, C1qdc2, and WNT4) of nephron progenitor cells (NPCs). Fat4/Hippo signaling amplifies β-catenin activity. On the other hand, WNT signaling can be
inhibited by SFRP1 and DKK1 to arrive appropriate number of nephrons in a definitive kidney. The BMP7/SMAD1/5 signaling pathway promotes differentiation of
NPCs. Decorin antagonizes BMP7/SMAD signaling in NPCs. BMP7 activates proliferation by the TAK1-JNK-JUN cascade. FOS activation is regulated by FGF9. AP1
(a dimeric transcription factor composed of Jun and FOS) acts as a point of collaboration between the BMP7 and FGF9 signaling pathways. AP-1 activates
transcription of a variety of genes (MYC, BCL-2, and p53) related to the cell cycle and anti-apoptotic events; thereby, it regulates survival and proliferation of NPCs.
The FGF/RAS-MAPK, FGF/PI3K/AKT signaling pathway promotes survival and proliferation of NPCs. After binding of Notch2 to Notch ligands, NICD is released into
the cytoplasm and translocates to the nucleus where the complex decreases self-renewal specific gene expression and primes NPCs for differentiation. TGFβ2 is
required for MET-related gene expression during NPCs differentiation. AKT, protein kinase B; ALK, anaplastic lymphoma kinase; AP1, activator protein 1; APC,
adenomatous polyposis coli; BMP, bone morphogenetic protein; CK1, casein kinase 1; Csl, CBF1/RBP-J, Su(H), Lag-1, the mammalian, fly, and worm orthologous
proteins; DKK1, DKK1, Dickkopf-1; DVL, homologous to drosophila Dishevelled; EC, endothelial cells; ERK, extracellular signal-regulated kinase; Fat4, tumor
suppressor homolog 4; FGF, fibroblast growth factor; Frz, Frizzled; GAB1, Grb2-associated binder 1; GSK-3β, glycogen synthase kinase 3β; GRB2, growth factor
receptor-bound protein 2; JAK, Janus kinase; JNK, c-Jun N-terminal kinase; LATS1, large tumor suppressor homolog 1; LEF, lymphoid enhancing factor; LRP,
low-density lipoprotein receptor-related protein; MAML, mastermind-like; MAPK, mitogen activated protein kinase; MEK, mitogen activated protein kinase; MET,
mesenchymal to epithelial transition; MST1/2, Mammalian sterile 20-like kinases; NICD, notch intracellular domain; P, phosphate group; PI3K, phosphatidylinositol
3-kinase; RAS/RAF, Rat sarcoma/rapidly accelerated fibrosarcoma; SFRP1, secreted frizzled-related protein; Smad, Caenorhabditis elegans SMA (“small” worm
phenotype) and Drosophila MAD (“Mothers Against Decapentaplegic”); SOS, Son of Sevenless; TAK1, TGF β-activated kinase; TCF, T-cell factor; TEAD, transcription
factor family member; TGF-β, transforming growth factor-β; WNT, wingless-type mouse mammary tumor virus integration site; YAP, yes-associated protein.

undergo morphological changes and coordinated cell movements
to form the collecting duct (Figure 3).

Stromal Progenitor Cells
The interstitial stroma is defined as a heterogeneous population
of cells that serve both as a supportive environment and a source
of dedicated cells that produce extracellular matrix (ECM) and

associated signaling molecules. Stromal progenitors are spindle-
shaped cells that encompass the anterior part of NPCs in the
MM and later localize around nascent UBs and nephrons. The
stromal cells not only provide structural support but also regulate
the development of neighboring cells. Cellular origins of the
FOXD1+ cortical stromal cell lineage arise from multipotential
Osr1+ cells in the IM (Mugford et al., 2008b). This multipotent
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FIGURE 3 | Major signaling pathways in ureteric bud morphogenesis. Branching morphogenesis is tightly regulated by different growth factors such as GDNF, VEGF,
and FGFs. GDNF and VEGF are secreted from the MM and FGF7/10 is produced by stromal cells. Binding of these growth factors to their tyrosine kinase receptors
activates three major signaling pathways: RAS/MAPK, DAG/PKC/MAPK, and PI3-K/AKT. Thus, they stimulate mitotic proliferation, survival, and migration of UB
cells. VEGF-A induces RET activation. Members of the TGF-β super-family, including BMP4 and TGFβ, which are expressed by mesenchymal cells that surround UB,
inhibit UB outgrowth in a Smad-dependent manner. AKT, protein kinase B; ALK, anaplastic lymphoma kinase; BMP, bone morphogenetic protein; ERK, extracellular
signal-regulated kinase; DAG, diacylglycerol; DVL, homologous to drosophila Dishevelled; EC, endothelial cells; FGF, fibroblast growth factor; FGFR, fibroblast
growth factor receptor; FRS2α, fibroblast growth factor receptor substrate 2α; GAB1, Grb2-associated binder 1; GDNF, glial cell-derived neurotrophic factor;
GFRα1, glial cell line-derived neurotrophic factor family receptor α1; GRB2, growth factor receptor-bound protein 2; MEK, mitogen activated protein kinase; NRP1,
neuropilin 1; P, phosphate group; PI3K, phosphatidylinositol 3-kinase; PKC, protein kinase C; PLC-γ, Phospholipase C-γ; RAS/RAF, Rat sarcoma/rapidly
accelerated fibrosarcoma; Smad, Caenorhabditis elegans SMA (“small” worm phenotype) and Drosophila MAD (“Mothers Against Decapentaplegic”); SOS, Son of
Sevenless; Smad, Caenorhabditis elegans SMA (“small” worm phenotype) and Drosophila MAD (“Mothers Against Decapentaplegic”); TGF-β, transforming growth
factor-β; UB, ureteric bud; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.

stromal progenitor population is characterized by expressions of
FOXD1, PBX1, POD1, SALL1, retinoic acid receptors (RARs),
and FAT4 (Das et al., 2013; Bagherie-lachidan et al., 2015; Ohmori
et al., 2015). Some researchers have demonstrated that renal
stromal cells may be derived from migrating cells of other tissues
such as paraxial mesoderm and neural crest that integrate into the
FOXD1+ compartment of the MM (Bronner-Fraser and Fraser,
1988; Guillaume et al., 2009). TBX18 expressing cells are another
population of multi-potent mesenchymal progenitors in the
metanephric kidney that contribute to the ureteric mesenchyme
and renal interstitial cells (Bohnenpoll et al., 2013). Cells derived
from mesenchymal progenitors contribute to different types of
stromal cells, including interstitial fibroblasts, vascular smooth

muscle cells, renin producing cells, pericytes, and mesangial cells
(Kobayashi et al., 2014).

Endothelial Progenitor Cells (EPCs)
Renal vasculature plays a significant role in the development
and function of the kidney. It has been shown that endothelial
cells (EC) are important not only for delivery of oxygen
and micronutrients, but also for paracrine signals that are
distributed to other cells in the nephrogenic niche that promote
kidney organogenesis (Munro et al., 2017). Development of the
renal vasculature proceeds synchronously with nephrogenesis
and occurs through two main mechanisms, vasculogenesis and
angiogenesis (Mukherjee et al., 2017). Sprouting angiogenesis
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of pre-existent vessels plays a key role in formation of the
major vessels (Nishimura et al., 2016). The renal vasculature
arises predominantly from formation of de novo vessels via
differentiation of endothelial progenitors (angioblasts) (Sequeira-
lopez et al., 2015). Results of recent studies suggest that
there are different populations of both intra- and extra-renal
EPCs (Mugford et al., 2008b; Munro et al., 2017). Previously,
a population of FLK1-expressing cells (vascular endothelial
growth factor [VEGF]-A receptor, VEGFR2 [FLK1, KDR]) in
the periphery of the induced mesenchyme and adjacent to the
stalk of the UB have been identified (Robert et al., 2018).
These cells are most probably derived from OSR1+ multi-
potential progenitors within the IM (Mugford et al., 2008b).
In the following stages of development, these KDR+ cells
undergo changes to immature intermediate melanoma cell
adhesion molecule (MCAM+, CD146+) cells, and at the end
of the developmental period, platelet/endothelial cell adhesion
molecule-1 (PECAM+, CD31+) mature vascular cells (Homan
et al., 2019). Furthermore, a population of c-Kit+ endothelial
progenitors reside within the cortical stromal compartment.
Studies indicate that this progenitor population has migrated
from the aorta-gonad-mesonephros (AGM) region to the early
MM. UB cells secrete stem cell factor (SCF), a c-Kit ligand
and thereby promote survival, migration, and tube formation
of EC (Schmidt-Ott et al., 2006; Homan et al., 2019). Another
source of endothelial progenitors is a subpopulation of FOXD1+
renal stromal cells that are incorporated into the peritubular
capillary. These cells play a critical role in the proper spatial
distribution of renal vessels (Sims-lucas et al., 2013; Mukherjee
et al., 2017). A subset of MCAM+ progenitors that are derived
from a FOXD1+ renal stromal population are incorporated
into endothelial structures (Pärssinen et al., 2016). Results of
a transcriptomic study have revealed that a subpopulation of
SALL1+/SIX1+ NPCs reside in the second-trimester of human
fetal kidneys and co-express the CD31 mature endothelial marker
(Low et al., 2019).

REGULATION OF NEPHRON
PROGENITOR CELL (NPC) FATE

Many studies identified biological processes and signaling
pathways that regulate cell fate decisions of NPCs. We intend
to discuss the critical role of the wingless-type mouse mammary
tumor virus integration site (Wnt) protein family, FAT4, Hippo,
BMPs, FGFs, Notch, and Hedgehog/transforming growth factor
beta (TGFβ) signaling pathways and explain how cross-talk
between them determines the cell fate of NPCs (Figure 2).

Wnt Family Signaling Pathways
WNT9b/β-catenin signaling is one of the major signals that
mediate nephron progenitor renewal and differentiation (Karner
et al., 2011). The activity of β-catenin in NPCs is controlled
by signals from the UB and cortical stroma. Low levels
of β-catenin increase expression of self-renewing genes and
promote expansion of the NPC pool. High levels stimulate
transcription of several differentiation-specific genes such as

PAX8, C1qdc2, and WNT4, resulting in PTA formation (Park
et al., 2007; Ramalingam et al., 2018). One signaling pathway
that amplifies β-catenin activity is Fat4/Hippo signaling from
stromal cells. Fat4, by phosphorylation of YAP/TAZ, stimulates
transcription of differentiation-related genes (Das et al., 2013).
Fat4 binds to Dchs1 in the CM and regulates the polarity
of polarized cells. This process is thought to regulate cell-cell
communication and cell fate determination (Saburi et al., 2008;
Mao et al., 2015). In the following steps of nephrogenesis, WNT4,
through a Ca2+-dependent pathway, stimulates expression of
differentiation genes FGF8, LHX1, PAX8, Notch, RET, ItgA6a,
E-cadherin, and ZO1 (Valerius and McMahon, 2008; Tanigawa
et al., 2011; Park et al., 2012) in the CM and provokes
MET in NPCs. WNT11 is expressed in UB tips through non-
canonical pathways and regulates the polarity and behavior
of NPCs, which ultimately determines the proper nephrogenic
program (O’Brien et al., 2018). During nephrogenesis, some
molecules act to downregulate WNT signaling to arrive at
an appropriate number of nephrons in a definitive kidney.
Dickkopf-1 (DKK1) is an inhibitor of the WNT co-receptor
LRP5/6 and downstream of LHX1. During nephrogenesis,
DKK1 is expressed by PTA cells and their derivatives (Potter
et al., 2007). Stromal cells generate SFRP1, a secreted WNT
antagonist that blocks canonical WNT signaling, and restricts
NPC differentiation (Levinson et al., 2005).

Growth Factor Signaling Cross-Talk
Studies of the role of BMPs in kidney organogenesis indicate
that BMP2/4 signaling has a critical role in size determination
and patterning of the nephrogenic field (Oxburgh et al.,
2014). Likewise, BMP7 promotes survival and self-renewal
of NPCs. BMP7 is exclusively expressed in the NPCs
and UB tips (Blank et al., 2009; Jeanpierre et al., 2012).
UB-derived WNT9b induces NPCs expression of BMP7
(Park et al., 2012). The BMP7/SMAD1/5 signaling pathway
promotes susceptibility of NPCs to the differentiation signal
of WNT9b/β-catenin (Brown et al., 2013; Muthukrishnan
et al., 2015). Furthermore, SMAD1 can bind to β-catenin to
form a transcriptional activating complex in the promoter
region of MYC, and thereby exhibit synergistic effects with
the WNT/β-catenin pathway (Hu and Rosenblum, 2005).
Decorin, an ECM protein produced by stromal progenitor cells
accumulates in the ECM microenvironment that surrounds
the NPCs. Decorin antagonizes BMP7/SMAD signaling in
NPCs and represses the differentiation signal of the canonical
WNT9b/β-catenin pathway. Therefore, ECM components
mediate differentiation of NPCs to epithelial structures (Fetting
et al., 2014; Ohmori et al., 2015).

BMP7 activates the proliferative signal mediated by the TAK1-
JNK-JUN cascade in self-renewing CITED1+/SIX2+ NPCs. JUN
is a DNA-binding partner in the dimeric AP-1 transcription
factor. Besides, the activator protein 1 (AP1) also includes
another component named FOS. FOS activation is regulated
by FGF9 (Muthukrishnan et al., 2015). FGFs is produced in
UB cells. Likewise, FGF9 and FGF20 are exclusively expressed
in the CM (Jeanpierre et al., 2012). FGF9 expression in these
cells is activated by UB-secreted WNT9b. AP1 acts as a point
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of collaboration between BMP7 and FGF9 signaling pathways.
AP-1 activates transcription of the target genes MYC, BCL-2,
and p53, and thereby regulates the cell cycle and proliferation
of NPCs (Couillard and Trudel, 2009; Muthukrishnan et al.,
2015; Saifudeen et al., 2012). When FGF2 and FGF9 bind to
their receptors on the NPCs, the RAS-MAPK and PI3K/AKT
signaling cascades are activated, which promotes survival and
proliferation of CITED1+/SIX2+ NPCs (Brown et al., 2011;
Lindström et al., 2015). The use of BMP7 and FGFs in
directed differentiation of PSCs promotes both proliferation
and differentiation of NPCs in vitro (Morizane et al., 2015;
Taguchi and Nishinakamura, 2017). Recently, researchers have
demonstrated that the activin/GDF11/TGFb-SMAD2/3 signaling
cascade showed superior effects to BMP7 in maintenance of
hiPSC-derived NPCs (Yamamoto et al., 2019).

Other Signaling Pathways in Nephron
Progenitor Cell (NPC) Fate Decision
Notch signaling plays two distinct roles in nephrogenesis. (1)
Notch2 downregulates PAX2, SIX2, and GDNF expressions, and
thereby primes NPCs for differentiation (Yuri et al., 2015; Chung
et al., 2016). (2) Notch is required for accurate segmentation
of the nephrons by transcriptional activation of the LHX1 and
HNF1B genes (Chung et al., 2017).

The Hedgehog (Hh)/GLI3R signaling pathway controls the
development of capsular stromal cells by increasing expression
of the stromal genes FOXD1, RALDH2, and PBX1. Furthermore,
HH-GLI3R signaling regulates the expression of TGFβ2 and its
targets in FOXD1+ stromal cells. TGFβ2 that is secreted from
the stroma mediates crosstalk between stromal and nephrogenic
compartments. In NPCs, TGFβ2 is required for the expression of
MET-related genes such as LHX1(Rowan et al., 2018).

DEVELOPMENTAL EVENTS DURING
URETERIC BUD (UB) AND COLLECTING
DUCT MORPHOGENESIS

Many studies have revealed the critical roles for growth
factors secreted from the MM in UB branching morphogenesis
(Figure 3). GDNF/RET/glial cell line derived neurotrophic
factor family receptor α1 (GFRα1) signaling plays an important
role in early developmental events during UB and collecting
duct morphogenesis. GDNF secreted from NPCs stimulates cell
proliferation and survival in these cells (Pepicelli et al., 1997;
Shakya et al., 2005). The positive feedback loop between WNT11
and GDNF/Ret provides for dense packing of the UB branches
(Iber et al., 2019). VEGF-A is involved in mitotic proliferation
and migration of endothelial and epithelial cells, and may serve
to coordinate the formation of blood vessels and kidney tubules
during kidney development (Marlier et al., 2008). In the early
stages of kidney organogenesis, VEGF-A is produced by NPCs.
This molecule influences two adjacent cell populations: Flk1-
expressing angioblasts and UB cells (Gao, 2005). In the UB
cells, VEGF-A promotes the formation of a Neuropilin 1 and
KDR complex, thereby promoting branching morphogenesis

in a PKC, ERK1/2, and PI3-K dependent manner (Karihaloo
et al., 2005). Furthermore, VEGF-A induces RET activation;
therefore, VEGF-A and GDNF have increasing effects on UB cell
proliferation and branching morphogenesis (Tufro et al., 2007).
These cells send an unknown signal to NPCs to maintain PAX2
and GDNF expressions and, in turn, stimulate branching of the
UB (Gao, 2005).

FGF7 and FGF10 are expressed in cortical stromal cells and
bind to FGFR2 (IIIb) on UB cells, thereby stimulating UB cell
proliferation (Qiao et al., 1999; Ohuchi et al., 2000; Walker
et al., 2017). Spatial expression of Ret in the UB branch tips
is under the control of stromal-specific transcription factors
FOXD1, Rara, Rarb2, and Pod1 (Piscione and Rosenblum, 2002).
RA signaling in FOXD1+ stromal cells induces the expression
and secretion of the extracellular matrix 1 (Ecm1), which restricts
expression of Ret to the UB tips (Paroly et al., 2013). Also,
SFRP1 from stromal cells may directly down-regulate WNT11
and restrict branching morphogenesis (Yoshino et al., 2002).
Sprouty 1/2 and SLIT2/ROBO2 signals restrict UB formation
to the posterior nephric duct (Grieshammer et al., 2004; Licht
et al., 2005; Wilhelm et al., 2015). Several factors such as BMP4
and TGFβ inhibit UB elongation (Cain et al., 2005; Lopez-Rios
et al., 2007; Sakurai and Nigam, 2017) and can generate a proper
definitive renal collecting system structure and position.

ENDOTHELIAL MIGRATION AND
PATTERNING DURING RENAL
VASCULAR DEVELOPMENT

As mentioned before, NPCs and UB cells produce VEGF-A
(Gao, 2005; Marlier et al., 2008). VEGF-A binds to VEGFR-2
(KDR, Flk-1) on the EPC surface and the signal transduction
events activate endothelial progenitor mitotic proliferation and
migration (Abrahamson et al., 1998). At later stages, presumptive
podocytes in the S-shaped bodies express VEGF-A and recruit EC
into the developing glomerulus (Mundel et al., 2003; Eremina,
2006). Activation of ECs may involve a signaling pathway
independent of VEGF. UB cells secrete SCF, a c-Kit ligand,
and thereby promote survival, migration, and tube formation
of ECs (Figure 4) (Schmidt-ott et al., 1993; Homan et al.,
2019). Expressions of WNT7b and WNT9b in the medullary
ureteric epithelium regulate capillary lumen formation through
modulation of VE-cadherin localization (Roker et al., 2017).

Stromal cells have critical roles in the normal hierarchical
pattern of the renal vasculature. It is thought to that adjacent
stromal cells secret SFRP1, and thereby induce proliferation,
migration and tubulogenesis of ECs (Dufourcq et al., 2002;
Yoshino et al., 2002). Recombination signal binding protein
for immunoglobulin kappa J region (RBP-J)-mediated Notch
signaling regulates vascular patterning by controlling stromal
progenitor differentiation into the vascular mural cell layer of
the renal arteries and mesangial cells (Lin and Gomez, 2014).
At later stages, EC-derived PDGF-β binds to platelet-derived
growth factor receptor beta (PDGFRβ) on stromal cells; thereby,
ECs are recruited into the glomerulus and generate capillary
loops. On the other hand, in stromal cells, PBX1 temporally and
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FIGURE 4 | Molecular control of renal endothelial migration and patterning. VEGF is secreted by UB and NPC cells. Binding of VEGF to its tyrosine kinase receptor
(KDR) activates three major signaling pathways: RAS/MAPK, DAG/PKC/MAPK, and PI3-K/AKT. Thus, it stimulates mitotic proliferation, survival, and migration of
endothelial cells and promotes vascular network formation. UB cells produce SCF and induce survival, migration, and tube formation of endothelial cells.
Expressions of WNT7b and WNT9b in the medullary ureteric epithelium regulate capillary lumen formation through modulation of VE-cadherin localization. AKT,
protein kinase B; APC, adenomatous polyposis coli; c-Kit, tyrosine-protein kinase KIT (CD117); CK1, casein kinase 1; DAG, diacylglycerol; EC, endothelial cells;
ERK, extracellular signal-regulated kinase; FRS2α, fibroblast growth factor receptor substrate 2; Frz, Frizzled; GAB1, Grb2-associated binder 1; GSK-3β, glycogen
synthase kinase 3β; GRB2, growth factor receptor-bound protein 2; KDR, kinase insert domain protein receptor; MAPK, mitogen activated protein kinase; MEK,
mitogen activated protein kinase; P, phosphate group; PI3K, phosphatidylinositol 3-kinase; PKC, protein kinase C; PLC-γ, phospholipase C-γ; RAS/RAF, Rat
sarcoma/rapidly accelerated fibrosarcoma; SCF, stem cell factor; SOS, Son of Sevenless; VEGF, vascular endothelial growth factor; WNT, wingless-type mouse
mammary tumor virus integration site.

spatially restrict PDGFRβ expression patterns to cortical domains
of the kidney, leading to renal vascular stabilization (Hurtado
et al., 2015; Daniel and Cleaver, 2019). Finally, perivascular
macrophages in the nephrogenic zone interact with newly
forming renal vessels and promote vascular anastomoses. Thus,
they play a critical role in proper vessel network formation
(Munro et al., 2019).

KIDNEY ORGANOIDS: TRANSLATING
DEVELOPMENTAL KNOWLEDGE INTO
THE DISH

Many recent efforts have aimed to generate in vitro 3D
models of both functional tissues and organs to study human
developmental and physiological processes, drug screening,

disease modeling, and regenerative medicine applications.
A defined culture system drives forward the differentiation
of human PSCs into kidney organoids by recapitulating the
developmental signaling events. Human metanephric kidney
formation is initiated during the fifth week of gestation and
this corresponds to embryonic day 10.5 (E10.5) for mouse
kidney formation (Reidy and Rosenblum, 2009; Costantini
and Kopan, 2010). Human PSC-derived kidney organoids,
like the developing kidney, should be composed of NPCs,
UBPCs, and stromal and EPCs. Recently, scientists have
developed protocols that mimic kidney developmental paths
in vivo. A cocktail of small molecules and growth factors
(CHIR99021, Noggin, Activin A, FGF9, and BMP7) are essential
for in vitro renal lineage differentiation (Morizane et al.,
2015; Ahmadi et al., 2019b; Mansoori-moghadam et al., 2019).
The stepwise processes of directed differentiation includes
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intermediate cell populations: mesendoderm, PIM, RPCs, PTAs,
RVs, and the mature kidney. Next, we describe protocols
and methods used for the generation of in vitro 3D kidney
organoids and how developmental knowledge can improve
their complexity.

Kidney Organoid Differentiation
Protocols and Methods
Takasato and colleagues have reported a protocol that generates
human iPSC-derived kidney organoids that consist of both
NPCs and UBPCs-derived populations, as well as the
CD31+/KDR1+/SOX17+ endothelial network, and cortical
(FOXD1+/MEIS1+) and medullary (FOXD1+/MEIS1+) stromal
cells. RNA sequencing analysis indicated that Takasato organoids
were very similar to the first trimester kidney (Takasato et al.,
2015). Several studies utilized the Takasato protocol to conduct
developmental studies (Bantounas et al., 2018), disease modeling
(Forbes et al., 2018), in vivo transplantation (Koning et al., 2018),
and a scale-up of organoid generation (Kumar et al., 2019).
Another study was conducted by Bonventre’s laboratory. Their
method, the Morizane differentiation protocol, enabled 75–92%
induction efficiency of NPCs with a shorter differentiation
period from hPSCs. However, the nephron derived organoids
lacked UB lineages (Morizane and Bonventre, 2017). Wu and
colleagues compared the Takasato and Morizane differentiation
protocols by using single-cell transcriptomics of hPSCs-derived
kidney organoid cells. Their data demonstrated that both
protocols generated organoids with at least 12 individual
kidney cell types, but with different proportions. Both protocols
produced non-renal cells including neurons, muscles, and
melanocytes. The Morizane protocol generated only 11%
non-renal cells whereas the Takasato organoids contained
about 21% of these cells. Although hPSCs-derived kidney
organoids expressed some markers of terminal differentiation,
they were relatively immature. The Morizane protocol had
fewer proliferative cells, and their organoids had more podocyte
cells and more differentiated loop of Henle, whereas the
Takasato protocol generated more tubular epithelial cell types
(Wu et al., 2018).

In another study, hPSCs cultured between two layers of
dilute Matrigel (0.2 mg ml), and cavitated epiblast spheroids
were produced. To induce the differentiation of the spheroids
toward kidney organoids, the researchers used GSK-3β inhibitor
CHIR99021 (12 µM) for 1.5 days, and then incubated the
spheroids in B27-supplemented media for up to 16 days.
The spheroids underwent a sequential epithelial-mesenchymal
transition (EMT) and mesenchymal-epithelial transition (MET)
process and acquired 3D kidney structures that contained
some segments of nephron such as PODXL+/WT1+/SYNPO+
podocytes, lotus tetragonolobus lectin (LTL)+ proximal tubules,
and immature ECs (Siedlecki et al., 2015). These organoids
resembled an immature kidney reminiscent of the late first
trimester to mid-second trimester human kidney. Podocyte cells
are similar to developing capillary loop stage podocytes in vivo
(Brooks et al., 2017; Harder et al., 2019) and their nephron-
like organoids contain non-renal cells, including ectoderm and

lateral plate mesoderm derivatives (Morizane and Bonventre,
2017). In another study, the same protocol was used to generate
hPSC-derived organoid plates in microwell formats (high-
throughput screening platform) to enhance the differentiation
efficiency of the kidney organoids. Single-cell RNA sequencing
analysis revealed six major clusters of cell type subpopulations
that included proximal tubules, podocytes, early tubules that
expressed markers of both proximal and distal tubules and
collecting ducts, early podocytes that had characteristics of both
CLDN1+/PAX8+ parietal epithelial cells and podocytes, as well
as, stromal and ECs (Czerniecki et al., 2018).

In a recent study, Garreta and colleagues improved the
speed and efficiency of maturation by increasing the duration
of the 3D culture. They utilized soft hydrogels during the
monolayer culture for 4 days to derive IM committed cells
that contained both AIM and PIM cell populations. Afterward,
the cells were aggregated in a 96-well V-bottom plate to form
the 3D structures. Aggregates were cultured in the presence
of the induction factors for 16 days to generate the kidney
organoids. Their hPSCs-derived kidney organoids contained
various kidney cell types, including cell populations with
characteristics of proximal tubules, loops of Henle, distal tubules,
and glomeruli. The human kidney organoids were transplanted
into chick chorioallantoic membrane (CAM) and incubated in
ovo for 5 days. hPSCs-derived organoid transplants showed more
in vivo-like characteristics with higher functional differentiation
compared to in vitro organoids, and transcriptionally, they more
closely resembled second trimester human fetal kidneys (Garreta
et al., 2019). Hiratsuka et al. (2019) established a new approach
that used synthetic mRNAs to generate induced nephron-like
organoids (iNephLOs) with some segments of the nephron
that were comprised of proximal tubules, distal tubules, and
podocytes. They used two sets of synthetic mRNAs encoding
transcription factors for 4 days to derive PAX8+/LHX1+
pretubular aggregate cells, after which the cells were aggregated
in 96-well U-bottom plate for up to 14 days to form 3D structures
that transcriptionally resembled kidney organoids generated by
using growth factor induction (Hiratsuka et al., 2019).

There is a large variation between independent differentiation
experiments. The variability may arise from the technical
strategies underlying kidney organoids formation such as inter-
reagent and inter-batch variability, variation between hPSC lines,
and even skill of the experimenter. Moreover, the generation of
hPSC-derived kidney organoids faces many remaining challenges
including immature renal cell types, nascent vascular network,
and lack of connection between nephron segments and collecting
duct system in organoids (Miyoshi et al., 2019). Therefore,
developing more in vivo mimicking structures by biological
approaches for reproducible and robust generation of kidney
organoid is urgently needed.

Biological Approaches to Improve
Kidney Organoid Complexity
Cell-to-cell interactions and signals from the complex
microenvironment during embryonic kidney development
affect cell behaviors such as proliferation, migration and
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differentiation of renal progenitors. Organoids can be generated
following the same developmental events that occur in the
embryo; thus, consideration for cellular communications
and microenvironmental cues in organoids can improve
their complexity.

Cell-to-Cell Interactions
Like early organogenesis event, a tightly coordinated crosstalk
between NPCs, UBPCs, ECs, and stromal cells during
development leads to a higher-order and vascularized kidney
organoid (Takasato et al., 2016). Studies have shown that
increasing the duration of the 3D culture by enhancing cell–cell
and cell–matrix interactions would generate kidney organoids
with higher maturity (Garreta et al., 2019). Most studies of
kidney organoids have relied on the self-organizing capacity of
aggregates derived from uni-lineage progenitors such as hPSCs
(Morizane et al., 2015; Takasato et al., 2015; Garreta et al., 2019).
However, some studies have developed heterotypic cellular
aggregates. Taguchi and Nishinakamura established a protocol
for differential induction of mouse NPCs and UBPCs separately,
and reaggregated them with the PDGFRa+ stromal progenitors
isolated from E11.5 mouse embryonic kidneys. This reassembled
kidney organoid had more differentiated nephron structures with
overall components and contiguous collecting duct architecture
(Taguchi and Nishinakamura, 2017). Many studies, including
researches in our laboratory, indicated that when hPSC-derived
progenitor cells were combined with mesenchymal stem cells
(MSCs) and ECs, the mixture self-organized into 3D structures
such as kidney (Takebe et al., 2015), pancreatic (Takebe et al.,
2015; Takahashi et al., 2018), cardiac (Varzideh et al., 2018), and
liver (Takebe et al., 2014, 2015, 2017) organoids. Data showed
that stromal cells produced various cytokines and growth factors
that modulated the proliferation and maturation of other cells
in the organoids (Takahashi et al., 2018). Myosin IIA expressed
by MSCs directed forceful movements of cells and triggered the
initiation of self-condensation (Takebe et al., 2015).

Research has shown that ECs are important not only for
delivery of oxygen and micronutrients, but also for the paracrine
signals that are critical for proper RPCs differentiation and
promotion of organoid maturation (Garreta et al., 2019). EC
generation in both the Takasato and the Morizane differentiation
protocols was very low (0.3% or less of total cells) (Wu et al.,
2018). A recent study developed a highly-efficient protocol
that used a three-step CHIR treatment to generate a subset
of SIX1+/KDR+/PECAM1+ NPCs that contributed to new
vessel formation in 3D hPSC-derived kidney organoids. VEGF-
A secretion by differentiating podocytes within the organoid
supported maturation of the newly formed ECs (Low et al.,
2019). Some studies demonstrated that VEGF supplementation
during the differentiation process resulted in a significant
increase of ECs and a population of stromal cells that expressed
the VEGF receptor, FLT1, and maturation and maintenance
of organoid vasculature. However, many of these ECs have
immature characteristics. These ECs fail to invade the developing
podocytes (Czerniecki et al., 2018; Koning et al., 2018). Moreover,
organoid transplantation into a highly vascularized site such as
the sub-renal capsule and CAM facilitates both vascularization

and maturation of organoids (Koning et al., 2018; Varzideh et al.,
2018; Garreta et al., 2019; Low et al., 2019).

Microenvironmental Cues
Microenvironmental cues include biochemical and biophysical
(oxygen tension, ECM stiffness, and fluid flow) signals during
organogenesis regulate cell behavior of different stem cell
populations (Vining and Mooney, 2017; Silva et al., 2019).
The ECM of the kidney is a complex architectural network
that contains collagens, elastin, and several proteoglycans and
glycoproteins, which together form basal membranes and the
interstitial space. In addition to its biochemical cues, these
dynamic structures provide mechanical support and mediate the
cell signaling pathways, which are essential for proper kidney
development and function (Bülow and Boor, 2019).

Researchers have demonstrated that cells sense the ECM
stiffness by mechanoreceptors such as integrins. Thus, the ECM
plays a key role in the cell fate decision (Akkerman and Defize,
2017). ECM stiffness regulates differentiation into each germ
layer (Zoldan et al., 2011). Researchers have sought to determine
if the substrate matrix stiffness may affect self-organization
and maturation of the organoids. Takebe and colleagues used
a co-culture system by combining hPSC-derived tissue-specific
progenitors with MSCs and ECs. This mixture was transferred
onto Matrigel with varying degrees of stiffness. Data showed
that self-condensation was promoted by soft environmental
conditions (E∼ 10 ∼ 20 kPa) in their 3D culture system (Takebe
et al., 2015). Garreta and colleagues fabricated polyacrylamide
hydrogels with varying mechanical properties (1–60 kPa). They
investigated whether substrates with mechanical properties
similar to native tissues such as CAM could improve organoid
maturation. RNA-Seq analysis revealed that the soft substrate
(E∼1 kPa) improved the expressions of mesodermal lineage
genes T, PAX2, SALL1, LHX1, and Hoxd11. These organoids
had more mature features when compared with rigid conditions
(Garreta et al., 2019).

Fluid flow is a mechanical force that plays a key role
in the developmental process, including vascularization and
differentiation (Ghaffari et al., 2015; Vining and Mooney,
2017). Homan et al. (2019) have investigated the effect of
fluid shear stress (FSS) in vascularization and maturation of
hPSCs-derived kidney organoids. hPSCs were differentiated into
pretubular aggregate cells as previously reported (Morizane
et al., 2015). They placed these aggregates onto a gelatin-
fibrin (gelbrin) ECM layer within a 3D-printed millifluidic chip
that was perfused under varying flow rates for 10 days. Their
data showed that gelbrin increased expression of endothelial
markers PECAM1 and MCAM. Under high FSS at differentiation
day 21, they observed significantly enhanced expansion and
differentiation of the KDR+ and PECAM1+ ECs with formation
of perfusable vascular anastomosis between the organoids.
As the organoid vasculature evolved, PDGFRβ+ pericyte-
like cells greatly increased in numbers and were recruited
to the vascular network. Accordingly, endothelial-epithelial
crosstalk increased the maturation of tubular and glomerular
cells within the kidney organoids in comparison to static
conditions (Homan et al., 2019).
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CONCLUSION AND PERSPECTIVES

Major advances have been made in the understanding
of various cellular components and intercellular signaling
pathways involved in kidney development. The creation
of kidney organoids from hPSCs by assessing the cells
at each step of nephrogenesis has also expanded our
knowledge of kidney development. Organoids can be generated
following the same developmental events that occur in the
embryo. Thus, consideration for cellular communications and
microenvironmental cues in organoids can improve their
complexity. Despite some significant improvements, there are
difficult challenges that remain before this technology can be used
in modern regenerative medicine. Until now, kidney organoids
have been in a relatively immature state comparable to fetal
nephrons. Moreover, kidney organoid vasculature is not fully
mature, and their nascent ECs fail to invade the glomerular
primordial. In the future, kidney organoids combined with recent

biotechnological progresses such as microfluidic kidney-on-a-
chip, co-culture systems, and 3D bioprinting technology have the
potential to revolutionize developmental studies, drug screening,
and personalized medicine.
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