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Abstract

Odontocetes produce a range of different echolocation clicks but four groups in different families have converged on
producing the same stereotyped narrow band high frequency (NBHF) click. In microchiropteran bats, sympatric species have
evolved the use of different acoustic niches and subtly different echolocation signals to avoid competition among species.
In this study, we examined whether similar adaptations are at play among sympatric porpoise species that use NBHF
echolocation clicks. We used a six-element hydrophone array to record harbour and Dall’s porpoises in British Columbia
(BC), Canada, and harbour porpoises in Denmark. The click source properties of all porpoise groups were remarkably similar
and had an average directivity index of 25 dB. Yet there was a small, but consistent and significant 4 kHz difference in
centroid frequency between sympatric Dall’s (13763 kHz) and Canadian harbour porpoises (14162 kHz). Danish harbour
porpoise clicks (13663 kHz) were more similar to Dall’s porpoise than to their conspecifics in Canada. We suggest that the
spectral differences in echolocation clicks between the sympatric porpoises are consistent with evolution of a prezygotic
isolating barrier (i.e., character displacement) to avoid hybridization of sympatric species. In practical terms, these spectral
differences have immediate application to passive acoustic monitoring.
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Introduction

Toothed whales have evolved the use of a suite of different

sounds for communication and echolocation. Communication

signals can consist of both whistles, burst-pulsed calls (high

repetition rate clicks) or patterned clicks [1]. Echolocation is

conversely always based on clicks. The clicks vary in spectral

properties among species and for some species even among

individuals. A functional biosonar system requires clicks of high

source level to detect and classify prey at ranges that allow the

animal to find sufficient food. A high source level is in part

obtained by high directionality. Directionality is determined by the

ratio between the size of the transmitting organ and the

wavelength of the projected sound [2], [3] and consequently,

small echolocating animals must use higher frequencies than larger

species to achieve similar directionality [4], [5]. This appears to be

generally true for echolocating toothed whales. There are,

however, profound differences in echolocation clicks among

different families of toothed whales, and among species within

some families that are not simply a result of body size, but could be

related to habitat or prey specializations instead.

Similarly, a range of studies have shown that echolocation calls

of Microchiropteran bats differ in signal peak frequency,

bandwidth, duration and repetition rate in relation to their habitat

[6–9]. Based on experimental testing, it has been shown that such

acoustic adaptations to specific foraging niches between, for

example, sympatric Myotis bats allow several species to have

overlapping home ranges without competing for the same prey

resources [10], [11]. It is expected that echolocating toothed

whales may have similar adaptations with respect to acoustic niche

partitioning, but very little is known about how different

odontocete species may have adapted acoustically to their specific

habitats.

Most delphinids (superfamily: Delphinoidae) produce short,

broad-band echolocation clicks that can vary intra- and interspe-

cifically and depending on background noise conditions [3,12].

The exception is four groups of smaller toothed whales who share

the same Narrow Band High Frequency (NBHF) click. This

echolocation click is distinct from any other toothed whale click

type and has evolved independently in all four groups. This raises

the question of whether habitat or prey specializations exist for this
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signal type, as demonstrated in sympatric microchiropteran bats?

The NBHF click is shared by six species of phocoenids (porpoises)

[3,13–16] six dolphin species in the Lissodelphininae subfamily

[4,17,18], the pygmy sperm whale (Kogia simus, Owen, 1866) [19]

and likely the Franciscana river dolphin (Pontoporia blainvillei,

Gervais and d’Orbigny, 1844) [20]. The NBHF echolocation click

is produced with essentially no energy below 100 kHz [21], which

happens to be the upper effective hearing range of killer whales

[22]. In contrast, porpoises can hear the calls and clicks of killer

whales, which has been likened to an ‘‘acoustics arms race’’

between predator and prey [1]. This mismatch between the

spectrum of NBHF clicks and killer whale hearing has led to the

idea that the adaptive value of the NBHF click is to facilitate

acoustic crypsis, allowing the NBHF species to echolocate and

communicate without being heard by killer whales [19,23,24].

The NBHF species are found in almost all marine habitats;

coastal, shelf and open ocean, except for densely ice filled waters,

and the species overlap geographically in many places where they

potentially compete for resources. One such example is the pairs of

porpoise species that overlap in the Northwest Pacific, the

Northeast Pacific and in South America. Based on the observed

adaptations of echolocating bats to specific prey or microhabitats it

may therefore be hypothesized that similar mechanisms are at play

among toothed whales. More specifically, we would expect to find

special acoustic adaptations among species sharing the same

habitat. Such adaptations could be differences in for example

source level, bandwidth or peak frequency as these parameters will

determine detectability by changing the reflective properties of the

prey, either by enhancing details by increasing bandwidth or by

increasing the detection range in different habitats, e.g. cluttered

vs. uncluttered and noisy vs. lower ambient noise by changing

source level. A cluttered habitat could be a very reflective habitat

such as a rocky archipelago. Slight differences in centroid

frequency and bandwidth may in combination facilitate species

recognition for NBHF species with very similar click properties

([4]). We therefore posed the hypotheses that 1) there would be

acoustic differences between two sympatric NBHF species sharing

the same habitat and 2) there would be acoustic differences

between the echolocation clicks of the same NBHF species

recorded in two different habitats.

To test these hypotheses we used a six-element linear

hydrophone array to quantify the source parameters of NBHF

clicks by recording harbour porpoises (Phocoena phocoena, L 1758)

and Dall’s porpoises (Phoconoides dalli, True 1885) living sympat-

rically [25] in British Columbia (BC) and by recording the harbour

porpoise in Denmark, where there is no overlap with other NBHF

species. In BC, harbour and Dall’s porpoise’ habitat overlaps with

that of fish-eating (resident) and mammal-eating (Bigg’s or

transient) killer whales [26]. In this region, mammal-eating killer

whales prey upon harbour porpoise, Dall’s porpoise, harbour seals,

and Pacific white-sided dolphins [26,27]. Both species have been

recorded previously [15,16,28] in Japan, California and Denmark.

However Dall’s porpoise were previously recorded with a single or

two hydrophones only, by which the recorded clicks represent an

unknown mixture of on- and off-axis clicks with no defined source

properties, rendering comparison futile.

Secondly, we wanted to test if there are any general adaptive

benefits of the NBHF click in relation to normal broad band

dolphin clicks. Based on a number of assumptions, we therefore

model the consequences of using the NBHF click in terms of

absorption, spectral noise, bandwidth and masking noise.

We discuss the findings in light of the anti-predation theory,

habitat specializations and character displacement and conclude

that the two porpoise species, and possibly all NBHF species, have

stereotyped signals likely to meet the dual requirements of

operating an effective sonar system from a small head yielding a

high directionality and at the same time minimizing the risk of

detection by killer whales.

Materials and Methods

Recording Chain and Field Sites
Recordings were made with a linear array of six Reson TC

4034 omnidirectional hydrophones (Reson A/S, Slangerup,

Denmark) with 20 m cable and a measured sensitivity of –

221 dB re 1V/mPa (62 dB) between 100 and 150 kHz. The

hydrophones were calibrated in an anechoic tank both prior to

and following the field recordings using a Reson 4014 hydrophone

as a reference. Hydrophones were mounted horizontally in the

same direction along a vertical perspex rod with 0.75 m

hydrophone spacing, except between the two topmost hydro-

phones that were spaced 1.5 m apart. The 41 mm diameter

Perspex rod was hollow and water-filled when submersed and very

stiff to avoid flexing of the array during deployment.

Half-way through the field recordings in Canada, hydrophone 3

broke and provided no data for the remainder of the recordings.

In Canada, the array was suspended vertically below a buoy

with the top hydrophone 2 m below the surface and the bottom

hydrophone 6.5 m below the surface. In Denmark, the array was

identical but with the top hydrophone 4 m below the surface. A

0.5 kg weight in the bottom kept the array vertical in the water.

Signals were bandpass filtered with a 1 kHz (1 pole) high pass and

a 180 kHz (4 poles) low pass filter, and amplified by 60 dB using

custom made amplifiers. Signals were digitized in three National

Instruments multifunction devices (USB-6251) at a sampling rate

of 500 kHz per channel at 16 bits, using a common clock for

triggering AD conversions in all devices. The frequency response

of the recording system was flat (62 dB) from 2 to 180 kHz.

Recordings were made in Denmark and in British Columbia,

Canada. At all locations, recordings were made from a small boat

with an outboard engine. Porpoises were approached at low speed

and the array lowered into the water when the engine was stopped.

Recordings were made over several minutes and the procedure

repeated with the same or a new group. In Canada, recordings

were obtained at several different sites near the Broughton

Archipelago (50u36’N, 126u40’W) in July 2009. Here the hard

bottom is composed of rocks covered with kelp. Harbour porpoises

were primarily encountered in Beware Passage and Retreat

Passage whereas Dall’s porpoises were consistently found in tidal

eddies in Blackfish Sound west of Hanson Island. On all but one

occasion only one species was observed at a time and no other

marine mammals were observed or detected acoustically at times

of recordings. On one occasion, both porpoise species were

observed in the same area. Recordings from this encounter were

excluded from analysis. Killer whales were observed close to the

recording sites several times and on each occasion, were identified

as the fish-eating ecotype, so-called ‘residents’. Recordings were

made in calm weather conditions (low winds, sea state 1), but at

times of Dall’s recordings there were heavy tidal currents. In

Denmark, porpoises were encountered in June 2010 in the

narrowest part of Little Belt (55u33’N, 9u45’E), outside Fredericia

harbour and between the highway and railway bridges. The water

here is deep for Danish waters, down to 80 m. The soft bottom is

composed of mud and sand with no kelp. The Little Belt is heavily

trafficked, which may have increased the ambient noise level.

Killer whales are extremely rare in the Danish straits. There is

only one documented event of a mammal-eating killer whale in

Danish Waters, when a stranded killer whale in 1861 was found to
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contain remains of not less than 13 porpoises and 14 harbour seals

in its stomach [29].

Click Analysis
Analysis was performed only on clicks likely to have been

recorded directly in front of the vocalising animal, so-called on-

axis clicks. To minimize the risk of including distorted off-axis

clicks in the analysis [30] we applied a set of on-axis criteria

following [18] and [4]. On-axis clicks should be: i) recorded on all

six (five) channels; ii) part of a scan across the array, i.e. a series of

clicks closely spaced in time with rapidly varying received levels

sensu [31]; iii) be the click of maximum amplitude in the scan, and

iv) of maximum amplitude on one of the four (three) middle

hydrophone channels; v) the direct path of the click had to be

stronger than any trailing bottom or surface reflections, and vi)

only one click per scan could be on-axis and included. We did not

include clicks from buzzes, i.e. click trains emitted at attempts of

prey capture where click repetition rate increases to some hundred

clicks per second, because these clicks always have lower source

levels than clicks outside the buzz [32], which would introduce

unnecessary variance into the dataset. Click source properties were

quantified using a series of parameters following [3] and [30] for

each click accepted as being on-axis: Duration 210 dB, given by

the 210 dB points down from the peak of the signal envelope (the

absolute value of the analytical signal was calculated using the

‘‘hilbert’’ function in Matlab). Peak frequency (FPeak). Centroid

frequency (FC) defined as the frequency dividing the spectrum in

two halves of equal energy. 210 dB bandwidth defined as the

bandwidth at 210 dB points below the spectrum peak. 23 dB

bandwidth defined as the bandwidth at –3 dB points below the

spectrum peak. Root-mean-square (rms) bandwidth defined as the

spectral standard deviation around the centroid frequency on a

linear scale. Q-rms defined as the centroid frequency divided by

the rms bandwidth. Q–3 dB defined as the peak frequency divided

by the 23 dB bandwidth. The power spectrum was interpolated

with a factor 10.

All analyses and signal processing was performed with custom

written scripts in Matlab 6.5 (Mathworks).

Estimation of Source Level
The range to the vocalising animal was estimated from the time-

of-arrival differences between the six hydrophones of the array, by

the algorithms from [33]and [34]. Due to the over-determined

design of the array, a localization error could be assessed for each

localization estimate [34]. Transmission loss (TL) was estimated

from the distance assuming spherical spreading loss plus frequency

dependent absorption ([2]; [35]). Although assumed to be on-axis,

all source levels were calculated with unknown angle from the

midline of the animal, which means that source levels are likely to

be underestimated to some degree and are therefore actually

apparent source level, however will be referred to as source level

from hereon. Apparent source level (SL) was estimated as

SL~RLz20logrzar ð1Þ

where a is the absorption coefficient in dB/m and r is range in

meters. The frequency-dependent sound absorption constant a
was found for each species equations of [36] for the specific salinity

of 33.9%o and water temperature of 9.2uC for BC and salinity of

20%o and 15uC for Denmark using the mean centroid frequency

of the clicks for each species. Source levels are given as peak-peak

(pp) pressure, RMS pressure and energy flux density (E) computed

as follows: SLpp (dB//1 mPa pp) was measured from the maximum

and minimum peak pressure of the waveform. SLRMS (dB//1 mPa

RMS) is the rms pressure calculated over the duration-10dB of the

signal. SLEFD (dB//1 mPa2s) is the signal energy integrated over

the duration-10dB ([30]).

The accuracy of the array localization has previously been

evaluated ([4]) and based on this only clicks from animals localized

within 65 m of the array where the rms-error on the transmission

loss is ,3 dB were used.

Estimation of Beam Pattern
When a click from an animal at a known distance from the

array is recorded simultaneously by all six hydrophones and with

one hydrophone deemed to be on-axis (as by the criteria above),

the angle from the midline of the animal to the line to each of the

five other hydrophones can be calculated. From these angles and

the received levels at the off-axis hydrophones a vertical beam

pattern may be estimated (see [4]). Beam patterns were calculated

for on-axis clicks recorded from animals within 20 m of the array.

Species Discrimination Based on Echolocation Click
Parameters

We used a canonical discriminant analysis in Systat 10 (SPSS

Inc.) to examine the differences in source parameters among the

three porpoise groups. We used the spectral properties centroid

frequency and rms-bandwidth along with duration as variables.

To assess whether differences between the two species could be

perceptible to porpoises from British Columbia, we created a new

dataset for each of the two species. All on-axis clicks and the clicks

recorded simultaneously on the five other hydrophones where

filtered using a filter that emulated the audiogram of a harbour

porpoise [37], [38] fig. 6, in order to make the clicks resemble

what the porpoises are likely to hear. The filter was made by

convolving each click with an inverse-transformed interpolated

linear version of the audiogram. We thus assumed that Dall’s

porpoise would have the same audiogram as a harbour porpoise.

After the filtering we calculated all click source parameters again

for both on- and off-axis clicks and we then performed a Monte

Carlo simulation where we randomly selected 100 sets of click

pairs of 1, 2, 4, 8, 16 or 32 clicks for each species from the new

datasets containing one on-axis click for every five off-axis clicks.

The separation criterion was based on mean centroid frequencies

using a ROC curve and found to 139 kHz. Click sets with mean

centroid frequency below 139 kHz classified as Dall’s porpoise,

above 139 kHz as harbour porpoise) the total proportion of

correct classifications were calculated. The procedure was

repeated ten times, allowing for calculation of standard deviations

of the performance.

Model of Target Detection Range for Signals of Different
Centroid Frequency

NBHF clicks are different from typical dolphin clicks by the

narrow bandwidth and by the high frequency of 130 kHz.

Dolphin clicks are typically about three times wider and thus

with energy spread over a much larger frequency range. These

different physical properties are constraints affecting detectability

and detection range, and looking in detail at these differences may

shed light on the evolution of the NBHF click.

To compare the physical properties of NBHF clicks versus

broadband dolphin clicks we therefore made a model to explore

the consequences of the trade-off between the relative effects of 1)

the possible low-noise window at 100–150 kHz in the sea [2], 2)

the lower detection threshold effects of a narrow bandwidth,

Clicking in Killer Habitat

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e63763



longer duration signal and 3) the negative effects of increased

absorption with increasing frequency.

First we assumed a single signal of fixed bandwidth (15 kHz)

resembling a NBHF click and compared the effects of varying the

centroid frequency on absorption for the same source energy flux

density. Since the ear operates as an energy detector [3,39]

different click durations with the same peak pressure will yield

different detection thresholds because the energy content of a click

increases with click duration. To simplify the model we therefore

expressed source level as the energy flux density (dB re 1 mPas2).

Thus a NBHF click with a duration of 100 ms and a source sound

pressure level of 200 dB re 1 uPa (pp) will have the same source

energy flux density as a dolphin style click with a duration of

25 msec and a source sound pressure level of 206 dB re 1 uPa (pp)

due to the longer duration. Secondly, we included a click with a

three times wider bandwidth (45 kHz) resembling a dolphin style

click [3] and again we varied the centroid frequency to test the

effects of the increased bandwidth of a dolphin style click

compared to a NBHF for each centroid frequency and for the

same source energy flux density.

The model is based on the following assumptions:

1. Masking noise (NL) was estimated as NL = No(Fc)+10log

(BWRMS) [31], where No is the background spectral noise level

at the centroid frequency, Fc. No was extracted from figure 7.5

in [2] for deep water. BWRMS is the rms-bandwidth of the

emitted click/returning echo and was kept constant at 15 kHz

to represent a NBHF click or at 45 kHz to resemble a dolphin

style click.

2. Source energy flux density level (SL), receiving directivity index

(DI) and target strength (TS) were assumed constant.

3. Detection threshold (DT) for the animal was assumed to be at

the same echo-to-noise ratio (ENR) level above the masking

noise for all centroid frequencies.

4. That the spectral noise is lowest in the environment around

130 kHz.

During transmission back and forth to the target, the energy flux

density of an echolocation click is reduced as a result of absorption

and geometric spreading. This reduced fraction is termed

transmission loss (TL). Absorption increases with frequency and

the absorption coefficient, a, can be estimated from [36] for a

given frequency, water temperature and salinity. The centroid

frequency of a signal thus affects the received level of the returning

echo, everything else being equal, and the centroid frequency and

bandwidth will influence the masking noise level, which will affect

the detection range of a given target keeping all other things equal.

This is formalized in the active sonar equation:

ENR~SL{2TLzTS{ NL{DIð Þ ð2Þ

where transmission loss is TL = 20log(r)+a(r), r is range to target in

meters and a is the absorption coefficient in dB/m at the centroid

frequency of the signal. NL is noise level, TS is target strength, SL

is source level and DI is directivity index. For detection of a signal

of a given frequency the echo level has to exceed the noise level

with some factor (ENR) by which the detection threshold (DT) can

be defined as a certain dB level of ENR above the masking noise

level at the centroid frequency of the echo. Thus, the echo-to noise

ratio goes up when source level, target strength and directivity

index go up or when transmission loss or bandwidth goes down.

For the model it is assumed that ENR for detection on a statistical

basis is the same for all centroid frequencies. In the model, source

level receiving directivity index and target strength were assumed

to be constant (assumption 2), while transmission loss and noise

level were varied (as a function of varying bandwidth) and thus

changing ENR. To see these changes most easily the resulting

changes in ENR were normalized relative to the ENR of a NBHF

signal at detection threshold.

Results

Canadian Porpoises
Porpoises were encountered in small groups of 3–8 animals and

a total of 4.7 hours and 4.5 hours of recordings were obtained

from several groups of Dall’s and harbour porpoises, respectively,

over several days. Of the thousands of clicks recorded, 98 clicks

from Dall’s porpoise were accepted as on-axis according to the five

criteria and 78 of the BC harbour porpoise clicks were classified as

on-axis. The source parameters of Dall’s and harbour porpoises

are summarised in table 1. The mean source level of Dall’s

porpoises was 18767 dB re 1 mPa (peak-peak). The mean centroid

frequency was 13763 kHz and the mean rms-bandwidth

862 kHz yielding a mean rms Q value of 1765. For Canadian

harbour porpoises the mean source level was 17864 dB re 1 mPa

(peak-peak). The mean centroid frequency was slightly higher of

14162 kHz while the mean rms-bandwidth was similar of

862 kHz yielding a mean rms-Q value of 1864. Representative

clicks of the two species are shown in figure 1.

Danish Harbour Porpoises
Harbour porpoises were recorded in Little Belt, Denmark, over

three days. Animals were found in groups of sometimes more than

10 animals, actively foraging and observed together with gulls

diving vigorously where the porpoises were surfacing. In total, 4.1

hours of recordings were obtained and 247 clicks fulfilled the on-

axis criteria. Source parameters are summarised in table 1. Danish

harbour porpoises had a mean source level of 18965 dB re 1 mPa

(peak-peak). The mean centroid frequency was 13663 kHz and

the mean rms-bandwidth was 1062 kHz yielding a mean rms-Q

value of 1463. A representative click is shown in figure 1.

Centroid frequency, rms-bandwidth and source level was

compared among the three data sets with Kruskall-Wallis One-

Way Analysis of Variance on ranks. The source level of Danish

harbour porpoises were significantly higher than source levels of

Dall’s and BC harbour porpoises (p,0.001, n = 421) and BC

harbour porpoises produced clicks of the lowest source levels

(p,0.001, n = 421) among the porpoises. Clicks of BC harbour

porpoises had the highest centroid frequency (p,0.001, n = 421)

among the porpoises and Dall’s porpoise had the narrowest

bandwidth (p,0.001, n = 421). Mann-Whitney Rank Sum Test

showed that BC harbour porpoises produced clicks with energy

concentrated in a narrower and higher placed frequency band

than Danish harbour porpoises: Centroid frequency was signifi-

cantly higher (p,0.001) and bandwidth significantly narrower

(p,0.001) than for Danish harbour porpoises.

Species Separation Based on Click Parameters
A canonical discriminant analysis showed that the on-axis clicks

from the three porpoise populations could be separated with

overall 84% correct classifications based on source parameters

(Table 2) for single clicks. Dall’s porpoise were equally likely to be

misclassified as either BC harbour porpoise or Danish harbour

porpoise. BC harbour porpoises were more often misclassified as

Danish harbour porpoises than as Dall’s porpoise, while Danish

harbour porpoises were more often misclassified as Dall’s

porpoises (Table 2, Figure 2). Because the discriminant analysis

showed good character agreement within each species, we used a
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Monte Carlo simulation to test whether the differences in source

parameters could be used for acoustic species identification. The

Monte Carlo simulation showed that Dall’s and BC harbour

porpoises could be separated based on mean centroid frequency of

eight randomly drawn clicks from a mixture of on-and off-axis

origin with more than 90% correctly classified click pairs. When

using clicks filtered with the harbour porpoise audiogram the

percentage rose to more than 96% correctly classified click pairs

(Figure 3).

Beam Patterns
Composite, vertical beam patterns of the three porpoise species

are shown in figure 4. The beam patterns were built only on clicks

recorded within very short range (,20 m) of the vertical array and

therefore only few clicks were available for each species: 5 BC

harbour porpoise clicks, 19 Danish harbour porpoise clicks and 15

Dall’s porpoise clicks. Canadian harbour porpoises had equivalent

transmission apertures [3] of 11.0 cm, Dall’s porpoise of 9.9 cm,

while the Danish harbour porpoises had the smallest equivalent

aperture of 9.5 cm (Figure 4). The directivity index (DI) was

correspondingly highest for Danish harbour porpoises of 26 dB.

Dall’s had a similar high DI of 25 dB, while Canadian harbour

porpoises had the lowest of 24 dB (Table 1). The estimated DIs are

based on the assumption of a rotationally symmetric biosonar

beam with identical horizontal and vertical beamwidth. However,

it has been found that the biosonar beam pattern of harbour

porpoises is slightly dorsoventrally compressed, with the vertical

beam slightly narrower (23 dB beamwidth of 11u) compared to

the horizontal beam (23 dB beamwidth of 13u) [5].

Source Levels, Range and Frequency
Source level varies as a function of click repetition rate/Inter-

Click-interval (ICI) [32]. Source level may further vary with range,

since range is used to back-calculate transmission loss and

hereafter source level. Range may thus cause an artificial effect

on source level. In order to test whether the source level differences

observed among the three porpoise populations could derive from

differences in inter-click-interval or recording range we made two

tests. First we plotted source levels of the three porpoise types

against recording range with regression lines and equation

(Figure 5a). Secondly, we calculated mean source level as a

function of inter-click-interval bands with standard deviation for

each group (Figure 5b). The ICI bands were 0–40, 40–60, 60–80,

80–100, 100–150 & 150–200 ms, which were chosen to level

sample size in each interval.

Figure 5a shows that the three groups were recorded at the

same ranges from about 5 to 65 m. Source level did increase

with range as expected, but with very low r2 values (Danish

harbour porpoises r2 = 0.23, Canadian harbour porpoises

r2 = 0.25 and Dall’s r2 = 0.12), and the differences in source

level could therefore not be attributed different recording

ranges. Figure 5b shows that within each porpoise group, the

mean source level was not significantly different across the ICI

bands (Kruskall Wallis, BC HP: p = 0.512; DK HP: p = 0.439;

Dall’s: p = 0.681). But when comparing the three porpoise

groups, the source level was significantly different for each ICI

band (Kruskall Wallis, p,0.001) except for 150–200 ms

(Kruskall Wallis, p = 0.084). This means that the source level

differences were independent of inter-click-interval in each

species group and therefore that the source level differences

reflect genuine population differences.

Figure 1. Representative clicks from a) Canadian harbour
porpoise, b) Danish harbour porpoise and c) Dall’s porpoise.
(Fast Fourier transform size of 512, spectrum interpolated with a factor
10, sampling rate 500 kHz, rectangular window). Note that the scale of
the Y-axis in the first panel varies due to differences in received level.
doi:10.1371/journal.pone.0063763.g001
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Model of Target Detection Range for Signals of Different
Centroid Frequency

Results of the model are shown in Figure 6 as a function of

target range (x-axis). Changes in echo-to-noise ratio (DENR) (y-

axis) were normalized relative to the NBHF signal to aid

interpretation. Thus at 0 dB in figure 6 the NBHF echo is just

detectable for a given range, source level and target, so when a

value DENR on the y-axis is greater than zero, it means that the

Table 1. Echolocation click source parameters of on-axis clicks from Danish and Canadian harbour porpoises (Phocoena
phocoena) and Canadian Dall’s porpoise (Phocoenoides dalli) recorded with a six element hydrophone array.

BC Dall’s porpoise BC Harbour porpoise Danish harbour porpoise

Phocoenoides dalli Phocoena phocoena Phocoena phocoena

Parameters
Mean values ±
St.d. Range

Mean values
± St.d. Range

Mean values ±
St.d. Range

10dB duration, us 104637 53–251 88629 48–189 5468 35–98

Source level, dB re 1 uPa (p.-p.) 18367 153–203 17864 170–189 18965 169–199

Source level-10db, dB re 1 uPa (rms) 17267 141–192 16664 158–178 17865 158–188

Energy flux density-10db dB re 1 uPa2s 13267 104–150 12564 116–137 13565 114–144

Peak frequency, kHz 13764 119–143 14061 137–143 13766 112–145

Centroid frequency, kHz 13763 121–147 14162 138–148 13663 126–144

3dB bandwidth, kHz 1165 3–23 863 3–19 1765 5–36

RMS bandwidth, kHz 862 5–14 862 5–14 1062 6–17

Q-3dB 1568 6–45 2067 7–42 963 3–30

QRMS 1764 10–29 1864 9–28 1463 8–25

Directivity index, dB* 25 24 25.6

Equivalent aperture, diameter, cm.* 10 12 10

n 98 77 246

*All clicks used for vertical beam pattern estimations were recorded within 20 m from the array resulting in 5 Canadian and 19 Danish harbour porpoise and 15 Dall’s
porpoise clicks.
st.d. denotes standard deviation. All other abbreviations appear in the text.
doi:10.1371/journal.pone.0063763.t001

Figure 2. Discriminant analysis. Centroid frequency, bandwidth
(rms) and duration were used to separate BC harbour porpoises, Danish
harbour porpoises and Dall’s porpoises. All parameters were signifi-
cantly different across populations. The three species could be
separated 84% correctly.
doi:10.1371/journal.pone.0063763.g002

Figure 3. Acoustic species discrimination. Dall’s (circles) and BC-
harbour porpoises (triangles) can be separated by means of differences
in centroid frequency using a criterion of 139 kHz in a Monte Carlo
simulation. The clicks were first filtered with the harbour porpoise’
audiogram (see text) to simulate porpoise reception. The dashed line
indicates 90% correctly classified clicks. Such differences may also be
useful in passive acoustic monitoring, provided there is fine-scale
frequency resolution in the PAM dataloggers. The percentage correct
(y-axis) for each click pair is the mean of ten rounds of randomly
drawing 100 click pairs consisting of N clicks per pair (x-axis), and the
values are shown with the standard error of the mean. The clicks
included are one on-axis click for each five off-axis clicks.
doi:10.1371/journal.pone.0063763.g003
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animal would need to increase source level by that dB difference to

detect that specific target. If the DENR is below zero it means a

better echo to noise ratio by that dB difference than for the NBHF

signal for the same source energy flux density, target and range.

The following was modeled (but see methods):

a) Absorption and spectral noise. The effects of absorption on

detection threshold was modeled for signals of different

centroid frequencies (32.5, 65, 130 and 200 kHz) and equal

bandwidths (15 kHz) and source energy flux densities. Effects

of changes in centroid frequency on absorption and

background noise as DENR (y-axis) and target range (x-axis)

are shown as different colored solid lines, where y = 0 is the

normalized NBHF signal.

b) The model showed that for the same source energy flux

density level and bandwidth, a click at 130 kHz would have

the best echo to noise ratio for ranges shorter than some 100

meters compared to the other frequencies. Beyond target

ranges of some hundred meters, for the same bandwidth, the

absorption would render poorer echo to noise ratios

compared to clicks at lower centroid frequencies, whereas a

centroid frequency of 200 kHz would perform worse than

NBHF clicks regardless of the range.

c) Bandwidth and masking noise. Typical dolphin clicks have a

much wider bandwidth than NBHF clicks do. Thus to test

what effect a wider bandwidth has on detection range,

bandwidth was assumed three times wider for the same four

frequencies. Effects of increased bandwidth on DENR (y-axis)

and target range (x-axis) are shown as different colored

broken lines.

d) The model shows that if the NBHF click is compared to a

broadband dolphin click of the same centroid frequency and

source energy flux density, but with a bandwidth three times

wider, the echo to noise ratio for the same range is 5 dB

worse for the broadband click. Broadband clicks of lower

frequency (32.5 and 65 kHz), equal source energy flux density

and three times wider bandwidth will first yield the same echo

to noise ratio at target ranges of more than 200 meters. The

NBHF click thus has an advantage compared to a broad

band dolphin click in terms of detection range within some

200 m for the same source energy flux density.

Discussion

The three porpoise populations recorded in this study made

remarkably similar echolocation clicks across species and habitat

(Figure 1, Table 1) corresponding closely to those previously

recorded from these and other NBHF species [4,13–15,17–19].

However, for the first time, subtle differences were found between

echolocation clicks of Dall’s and harbour porpoise occupying the

same habitat, to the extent that Danish harbour porpoise clicks

sound more like those of Dall’s porpoise than those of harbour

porpoise in the Pacific.

Studies of harbour porpoises in captivity have shown that the

spectral content of clicks changes slightly with click repetition rate

and source level [32], and a first step in evaluating whether source

parameters vary among different populations of porpoises should

thus involve the level of variability of click source parameters

within an individual animal. Within a click train, source levels

Table 2. Classification matrix (cases in rows, categories
classified into columns) of the canonical discriminant analysis
for the three porpoise groups.

BC HP DK HP Dall’s % correct

BC harbour porpoise 65 8 4 84

DK harbour porpoise 28 215 3 87

Dall’s harbour porpoise 5 20 73 74

Total 98 243 80 84

Included variables are Duration-3dB, Centroid frequency and rms-bandwidth.
doi:10.1371/journal.pone.0063763.t002

Figure 4. Vertical transmission beam patterns of Canadian
harbour porpoise, Danish harbour porpoise and Dall’s por-
poise. A) Canadian harbour porpoise, b) Danish harbour porpoise and
c) Dall’s porpoise. The points are field data. On-axis clicks recorded
within 20 m from the array (5 BC harbour porpoise, 19 Danish harbour
porpoise, 15 Dall’s), each with the five off-axis versions recorded on the
other hydrophones simultaneously. 0–90 are degrees off-axis re on-axis
at 0u. 0 to 230 is dB re on-axis source level.
doi:10.1371/journal.pone.0063763.g004
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decrease when repetition rates get high, likely because of

restrictions in the pneumatic sound production apparatus [19],

[32]. At the same time, a high source level is positively correlated

with centroid frequency and negatively correlated with bandwidth.

Spectral differences in content and source levels could thus result

from comparing different modes of sonar outputs among the

porpoise groups. This cannot be ruled out entirely here, but we

strictly chose on-axis clicks for analysis according to five criteria,

Figure 5. Source levels of Canadian harbour porpoises, Dall’s porpoise and Danish harbour porpoises. A) Source level plotted against
range to array with linear regressions for Canadian harbour porpoise (BC-HP, grey circles), Danish harbour porpoise (DK-HP, black squares), Dall’s
porpoise (Dall, white triangles). B) Mean source level and standard deviation per Inter-Click-Interval (ICI) band for Danish harbour porpoises (black),
Canadian harbour porpoise (grey) and Dall’s porpoise (white). Danish harbour porpoises use clicks of significantly higher source level regardless of
range or ICI band than the two other porpoise groups.
doi:10.1371/journal.pone.0063763.g005
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maximising chances that a click was recorded on-axis. This means

that we purposefully only included the one click of maximum

signal-to-noise ratio in a click train and omitted buzzes that are of

a different mode and lower source levels. Since received signal-to-

noise ratio depends on recording range, click trains of low source

levels are typically not included unless recorded at very close

range. This means that click trains of high source level likely are

overrepresented in this dataset, because the porpoises did not

come very close to the recording boat. Thus, in view of our

conservative on-axis criteria it seems that at the same time we

reduced the possible variation from intra-click train differences

and we therefore find that the three datasets are collected under

comparable conditions.

We hypothesized that there would be differences among the

echolocation signals of sympatric porpoise species in British

Columbia, and that there would be differences among populations

of the same species in different habitats. However, when

comparing the observed variation to the reported variability

among non-NBHF dolphins [3,40,41] or among sympatric

Microchiropteran bats [6–9] the recorded porpoise groups appear

strikingly similar.

The most favoured explanation for the evolution of the NBHF

clicks of porpoises, dolphins of the genus Cephalorhynchus and

Kogiids (Kogia sp.) is that the click type evolved convergently as an

acoustic crypsis against predation from killer whales [19,23,24]

that cannot hear well above about 100 kHz [22]. Our results do

not refute this theory, where the small body size of NBHF species

have driven the peak frequency up, while the risk of predation

have narrowed the bandwidth until the clicks were no longer

audible to their predators [42]. The present study also supports the

findings of [21] that porpoises have an extreme high pass filtering

with no energy below 100 kHz, because none of the recorded

porpoise clicks had energy below 100 kHz.

Requirements of Operating an Effective Sonar System
A second striking result of this study is the consistent high

directivity index (DI) of both porpoise species of about 25 dB

(Figure 4). This DI is similar to some larger captive delphinids;

22.3–28.5 dB for false killer whale [43] and 25.4 dB for bottlenose

dolphin [12] but smaller than for wild white beaked dolphin

(Lagenorhynchus albirostris) with DI of 29 dB [44] and captive beluga

whale (Delphinapterus leucas) with DI of 32.1 dB [3]. DI has been

measured twice for captive harbour porpoises: first by Au and

colleagues, who found a DI of 22 dB [39]; and later by Koblitz

and colleagues, who found a DI of 24 dB [5]. The DI difference

between the studies likely arose from methodological differences,

since Au and colleagues [39] measured the vertical and horizontal

beam pattern individually and averaged over many clicks from

different angles, whereas Koblitz and colleagues [5] measured

both the vertical and horizontal beam pattern simultaneously with

an array of 16 hydrophones along four angles. This means that the

original study [39] likely introduced some variation at each angle

resulting in a lower DI. Here we calculated DI from individual

clicks recorded simultaneously on seven different hydrophones.

Because our results closely match results obtained with the 16

hydrophone array in captivity [5], we conclude that our

methodology may likely accurately represent the DI of wild

porpoises. We used the same methodology for similarly sized

NBHF Commerson’s and Peale’s dolphins that also have DIs of

25 dB [4]. It therefore appears that a DI around 25 dB may be the

minimum requirement for operating a functional biosonar in

water, and that porpoises evolved their special echolocation click

source properties to meet the dual requirements of operating an

effective sonar system from a small head and at the same time to

minimize the risk of killer whale predation from passive listening.

The size of echolocating toothed whales thus ultimately defines

frequency content through a minimum DI between 22 and 25 dB.

However, since the signal will suffer from increasingly high

absorption with increasing centroid frequency there is an upper

limit on centroid frequency for efficient sonar, which may help

explain that all recorded NBHF species have centroid frequency

around 130 kHz [4,14,15,17–19].

The opposing mechanisms of a need for high frequencies to

make a directional sonar beam from a small head while facing

high absorption at high frequencies, and risk of predation when

phonating at lower frequency may thus have resulted in the

narrow bandwidth of NBHF clicks around 130 kHz to which their

hearing is matched. The mammalian auditory system is well

modelled as a filter bank with overlapping frequency bands

centred at different frequencies [4]. For mammals in general, the

auditory filter bandwidth increases with centroid frequency to

form a constant Q filter bank [3,45]. However, the critical bands

of finless and harbour porpoises only increase from 3 to 4 kHz

Figure 6. Effects of absorption and masking noise on detection
range of NBHF and broadband dolphin style clicks. Two effects
are modeled; 1) effects of varying centroid frequency (Solid lines) and 2)
effects of increasing bandwidth three times (Broken lines). The effect is
calculated as summed costs/benefit in dB in relation to the echo-
detection- ratio (ENR) at detection threshold (DT) of a NBHF click (DENR)
(y axis) with bandwidth of 15 kHz as a function of target range (x-axis).
Thus at 0 dB the NBHF echo is just detectable for a given range, source
level and target. A positive DENR value means that the animal would
need to increase source level by that dB difference to detect that same
target. If the DENR is below zero it means a better echo to noise ratio by
that dB difference than for the NBHF signal. The figure assumes fixed
source energy flux density level and target strength (TS). Masking noise
levels (NL) are calculated from fig.7.5 in [2] for sea state 3 in deep water
assuming a fixed bandwidth of 15 kHz. Absorption is calculated by
equations given by [36] for relevant centroid frequencies (32.5, 65, 130
and 200 kHz) at 14uC and salinity of 33o/oo. Solid lines show detection
ranges for a NBHF type click with varying centroid frequency. Broken
lines of colour x mimics the effect of switching to a dolphin type click
with a bandwidth of 45 kHz (36NBHF bandwidth) with the same
centroid frequency and source energy flux density as solid colour x. The
figure shows that NBHF click yields longer detection ranges than
dolphin type clicks out to ranges of about 200 m, assuming clicks of
equal source energy flux levels. This is primarily caused by the lower
detection threshold effects of a narrow bandwidth signal. (See full
explanation and assumptions of the model in the methods section).
doi:10.1371/journal.pone.0063763.g006
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when the centroid frequency increased from 32 kHz up to

140 kHz indicating that the porpoise auditory system is more

accurately represented as a constant bandwidth filter bank [46].

With a constant Q-filter bank in white noise, masking noise

increases with increasing centroid frequency, because the band-

width increases. However, for a constant bandwidth filter bank,

masking will decrease with increasing frequency in white noise

[46] or normal ocean noise conditions thus providing an

advantage.

Auditory Advantages of the NBHF Click
We have illustrated the possible auditory advantages of the

NBHF click in the model of Figure 6. First, the model shows that

for the same source energy flux density level and bandwidth, a

click at 130 kHz will have the best echo-to-noise ratio for ranges

shorter than some hundred meters compared to the other

frequencies due to the low noise window at 130 kHz [2]. The

low noise window is found in deep water and low sea state and

only assumed here for coastal waters as well, and this may well be

too simplistic an assumption, but we lack the data to test it. Beyond

target ranges of some hundred meters, for the same bandwidth,

the absorption will render poorer echo-to-noise ratios for the

NBHF click compared to clicks at lower centroid frequencies,

whereas a centroid frequency of 200 kHz will result in poorer

performance than a NBHF click regardless of the range.

Secondly the model shows that if the NBHF signal is compared

to a broadband dolphin style signal of the same centroid frequency

and source energy flux density, but with a bandwidth three times

wider, it is seen that the echo-to-noise ratio for the same range is

5 dB worse at shorter ranges for the dolphin style click. It will only

yield the same echo-to-noise ratio at target ranges of more than

200 meters. Yet, if the bandwidth of a 130 kHz signal is three

times wider the low-noise window only offers a small advantage in

detection range in relation to the lower centroid frequency signals

at 15 kHz bandwidth, and only for very short ranges. Thus, for a

fixed source energy flux density level, the low noise window at

130 kHz offers an advantage of the NBHF signal out to about

100 m, while the narrow band properties offers an advantage out

to about 200 m at 130 kHz. The narrow band signal is as such

very well suited for short-range sonar. This then raises the question

of why all delphinids do not use very narrow band signals at

different centroid frequencies depending on their size and needs of

sonar ranges. Due to a shorter click duration, a dolphin species will

require 3–6 dB more pressure to generate the same energy flux

density as NBHF species, so if all toothed whales were peak

pressure limited, NBHF species would have an overall advantage

due to their narrow bandwidth, long duration and the low-noise

window around 100–150 kHz. However, if production of NBHF

clicks somehow is peak pressure limited (some 200 dB re 1 uPa (p-

p) according to all available data [4,15,18,19,47] compared to

similar sized dolphin species (SL up to 225 dB re 1 uPa (p-p),

[3,48], it seems that dolphin species can overcome the 3–6 dB

difference and the 5–15 dB poorer echo-to-noise ratio from a

larger masking bandwidth simply by creating a higher peak

pressure. So if the long duration of NBHF clicks should serve to

increase energy flux density [3], why not just make normal

broadband dolphin clicks, where the energy goes up with the

square of the pressure (i.e. 6 dB more source energy would either

require four times longer duration or twice the pressure)? This

may be answered by the anti-predation theory that requires clicks

produced without energy at frequencies below 100 kHz. Since the

model, with its inherent limitations due to the many assumptions,

shows that there are no overall advantages of the NBHF click

compared to dolphin clicks produced with a higher source level, it

is implied that the long duration of NBHF clicks has evolved to

generate a narrow bandwidth as opposed to increasing energy flux

density as proposed by Au [3]. The sonar requirements may thus

have driven the selection for the high centroid frequency required

for a high DI, whereas the bandwidth has been narrowed

subsequently to reduce risk of predation from killer whales.

Character Displacement
Given the above selection pressures for obtaining a functional

biosonar and remaining inaudible to killer whales, the similarity

among the recorded porpoise groups is less surprising and species

and habitat differences must inherently be small. We hypothesized

that the two sympatric porpoise species should have different click

source properties to reinforce speciation rather than hybridization.

Such acoustic differences are potentially important cues for finding

the right species in dark waters beyond the short distances where

vision may be used. We do in fact observe subtle, but significant

differences in centroid frequency between sympatric Dall’s and

harbour porpoises in British Columbia (BC) (Table 1). The mean

centroid frequency of harbour porpoises was about 4 kHz higher

than Dall’s porpoises in BC, while the Danish harbour porpoises

were more similar in centroid frequency to Dall’s porpoise than to

their BC conspecifics (Figure 2). Since the difference in centroid

frequency seemingly is area-dependent rather than species-

dependent it may be an example of character displacement [49]

to enable acoustic species recognition in two closely related

sympatric species producing otherwise very similar clicks. We

found a similar 4 kHz difference in centroid frequency between

two closely related sympatric NBHF dolphins at the Falkland

Islands [4]. The question then is whether porpoises are in fact able

to hear such a 4 kHz difference and whether hybridization is or

has been a problem in terms of wasted reproductive effort [50]?

One line of evidence supporting the notion that the 4 kHz click

frequency difference is large enough to be exploited for species

differentiation is that this difference matches the auditory filter size

of 4 kHz [46,51]. However, there appears to be a mismatch

between click centroid frequency and frequency of best hearing for

harbour porpoises based on the available audiograms [37,38]:

One would expect frequency of best sensitivity to be equal to the

centroid frequency of the emitted clicks, however the frequency of

best hearing is around 100 kHz and not 130 kHz [37,38]. To

mimic the situation of a poorer sensitivity at the centroid

frequency, we filtered clicks from both Dall’s and harbour

porpoises with the harbour porpoise audiogram [37,38] and

calculated new source parameters for the filtered clicks. The

filtered clicks were then submitted to a Monte Carlo simulation to

see if the differences in centroid frequency were persistent and still

large enough for species separation. The results in fact yielded a

better discrimination potential than before the filtering (Figure 3)

and the BC species could easily be separated. This points to the

differences in the frequency centroid between species to be based

in differences in the lower cut-off frequency of the clicks, and this

strengthens the idea that the animals themselves can perform

species differentiation based on the 4–5 kHz centroid frequency

differences.

Frequency difference limens has not been assessed for porpoises,

however bottlenose dolphins have a very acute frequency

discrimination and can separate tones of only 1 kHz difference

around 130 kHz [52]. A porpoise, with narrower auditory filters

around this frequency, would be expected to at least equal, if not

exceed, the bottlenose dolphin in differentiating between frequen-

cies. That porpoises may have a similar fine frequency resolution is

also suggested by the observation that a captive harbour porpoise

accurately (.90% correct) could distinguish between balls of equal

Clicking in Killer Habitat

PLOS ONE | www.plosone.org 10 May 2013 | Volume 8 | Issue 5 | e63763



size but of different material (brass, steel, pvc, plexiglass) when

blindfolded [53]. This capability would hence suggest that they

can also separate between clicks from different species with mean

differences of 4 kHz.

That hybridization actually occurs between porpoise species is

evident in British Columbia from numerous strandings and

observations of animals intermediate in shape and coloration

[54,55]. It is consistently harbour porpoises that seem to father the

hybrids and it has been speculated that since the harbour porpoise

population is declining in the area, male harbour porpoises, with

their extremely large testes [56] and promiscuous behaviour, may

be driving the hybridization through indiscriminate pursuit of

females of either species [55]. Such behaviour cannot be prevented

by accurate species discrimination.

Differences in source levels on other hand may be caused by

environmental factors rather than species differences. In the

present study, Danish harbour porpoises used clicks of significantly

higher source level than both BC harbour and Dall’s porpoises

(Figure 5), despite that Dall’s porpoise also produced few clicks of

equally high source level showing they are capable of producing

the same output as the smaller harbour porpoise. The source levels

could be caused by differences in prey type, i.e. target strength,

clutter levels or ambient noise levels. Unfortunately, we did not

measure either during the field efforts and we cannot qualify the

previous notions.

Passive Acoustic Monitoring
The documented spectral species differences also have impor-

tant implications for passive acoustic monitoring. If dataloggers

with sufficient frequency resolution are used, there is an acoustic

basis for differentiating between several sympatric NBHF species,

provided that similar species differences exist. Since acoustic

monitoring is a cheap alternative to visual monitoring, and since

many NBHF species are subject to high bycatch rates (e.g. [57]) it

seems relevant to pursue this possibility in the near future.

Conclusion
We conclude that porpoises produce clicks of high directionality

that is comparable to that of larger dolphins, and we argue that the

click source parameters of porpoises likely evolved to meet the dual

requirements of operating an effective sonar system from a small

head and at the same time to minimize the risk of killer whale

predation from passive listening. Within these constraints there

appear to be little more than a few kilohertz at play for species

differences and habitat specializations, and only at the low-

frequency cut-off. The observed spectral species differences likely

evolved as a character displacement, a prezygotic barrier to obtain

reproductive isolation of two sympatric species and thereby reduce

the risk of hybridization, but may as well be utilised for species

separation in passive acoustic monitoring.
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