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Abstract
Mammographic density has been proven as an independent risk factor for breast cancer. Women with dense
breast tissue visible on a mammogram have a much higher cancer risk than women with little density. A great
research effort has been devoted to incorporate breast density into risk prediction models to better estimate each
individual’s cancer risk. In recent years, the passage of breast density notification legislation in many states in USA
requires that every mammography report should provide information regarding the patient’s breast density.
Accurate definition and measurement of breast density are thus important, which may allow all the potential
clinical applications of breast density to be implemented. Because the two-dimensional mammography-based
measurement is subject to tissue overlapping and thus not able to provide volumetric information, there is an
urgent need to develop reliable quantitative measurements of breast density. Various new imaging technologies
are being developed. Among these new modalities, volumetric mammographic density methods and three-
dimensional magnetic resonance imaging are the most well studied. Besides, emerging modalities, including
different x-ray–based, optical imaging, and ultrasound-based methods, have also been investigated. All these
modalities may either overcome some fundamental problems related to mammographic density or provide
additional density and/or compositional information. The present review article aimed to summarize the current
established and emerging imaging techniques for the measurement of breast density and the evidence of the
clinical use of these density methods from the literature.
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Introduction
The breast tissue mainly consists of two components: fibroglandular
tissue and fat. Fibroglandular tissue is a mixture of fibrous stroma and
the epithelial cells that line the ducts of the breast, and it is denser
compared with fat. X-ray is less likely to penetrate fibroglandular
tissue and appears bright on mammography. In general, fibrogland-
ular tissue is commonly referred to as breast density or “mammo-
graphic density” (MD). MD has been proven as an independent risk
factor for breast cancer [1–6]. Women with dense tissue visible on a
mammogram have a cancer risk 1.8 to 6.0 times that of women with
little density [7]. Increasing evidence has also found that the
morphological distribution pattern of the projected dense tissue
(texture) on mammograms may affect breast cancer risk [8–10].
Starting from 2009, 20 states have passed breast density notification

legislation. At a national level, the Breast Density and Mammography
Reporting Act (H.R. 1302) was introduced in the U.S. Congress in
October 2011, which requires that every mammography report provide
information regarding the patient’s breast density [11]. Currently, the
Breast Imaging and Reporting Data (BI-RADS) score of I to IV based
on radiologists’ subjective assessment is being reported, which is a coarse
qualitative measure. As the H.R. 1302 Breast Density Act is being
proactively debated, quantitative imaging methods are also being
developed to provide a robust, reproducible, and accurate clinical



Figure 1. Quantitative measurement of 2D mammographic
density. Note that the green color defines the breast boundary
and the red color outlines the fibroglandular tissue area.
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measurement of breast density [12]. Many research studies are
investigating how the breast density can be used in disease management,
e.g., incorporating density into risk prediction model for risk-based
screening and using the change of density after hormonal therapy to
predict which patients will benefit from the treatment. A reliable
quantitative measurement of breast density is required before these
potential clinical applications can be implemented.

In this article, we review the currently established and emerging
imaging methods used for the measurement of breast density. Some
of these imaging techniques, although not well known to clinicians
and breast cancer researchers, may have a great potential for the
quantification of breast density and/or breast composition.

Established Imaging Modalities for Evaluating Breast Density
Mammographic density (MD). Dense tissues attenuate x-ray

more than fat and thus show higher signal intensity than fat on
mammography. Because mammography is a widely used screening
modality, the clinical role of breast density was mainly established
based on the measurement of MD. MD can be assessed qualitatively
or measured quantitatively. Qualitative methods include the Wolfe
criteria [13] and the BI-RADS criteria [14]. The Wolfe criteria
comprise N1 (lowest risk), P1 (low risk), P2 (high risk), and DY
(highest risk) [13]. The new breast composition categories according
to the fifth edition of the American College of Radiology BI-RADS
[15] are as follows: (I) the breasts are almost entirely fatty; (II) there
are scattered areas of fibroglandular density; (III) the breasts are
heterogeneously dense, which may obscure small masses; and (IV) the
breasts are extremely dense, which lowers the sensitivity of
mammography. Other more sophisticated method assigns different
scores, such as the six categories developed by Boyd et al.: 0%, 0% to
10%, 10% to 25%; 25% to 50%, 50% to 75%, and ≥75% [16]. The
assessment is observer dependent, and the high inter- or intrareader
variation was a major concern in these approaches [17].

Quantitative method uses computer-aided segmentation of
fibroglandular area from digitized mammograms [18–22] (Figure 1).
Interactive thresholding is a commonly used tool. The threshold is
first set to segment the breast from the surrounding background and
subsequently to select the region of dense tissue. The ratio of the
dense tissue area divided by the breast area is calculated as a
percentage for MD. This is a relatively rapid procedure. Many studies
have used this method to measure MD from digitized mammograms
[23,24]. However, this technique is subjective and requires the
operator to interactively select threshold values for the whole breast
and the fibroglandular tissue area [25], which may lead to large
intraoperator and interoperator measurement variation. To overcome
this problem, an alternative approach is to use cluster-based
segmentation such as fuzzy c-means (FCM) or k-means algo-
rithms [26]. Several cluster centroids are established using heuristics,
and pixels are segregated according to their proximity to the cluster’s
centroid values. Because this method is based on computer
algorithms, when the number of clusters is fixed, the reproducibility
is very high. Therefore, the FCM approach for quantitative breast
density segmentation may be useful for detecting small density
changes after interventions, such as chemo/hormonal therapy, diet/
supplement, or other lifestyle changes [26].

Because mammography takes two-dimensional (2D) projection
image, it suffers from tissue-overlapping problem and cannot
accurately and sensitively differentiate between fatty and fibrogland-
ular tissues. The position of the woman and the degree of
compression may lead to different projection views and thus
measured densities [27]. This is a serious concern when trying to
measure changes over time. A recent study has shown considerable
variability in breast density assessments in repeated imaging with
digital mammography. The variation was particularly obvious in
women with younger age and greater breast density and when
examined using different types of mammography [28]. Calibration of
mammography unit is extremely important for control of the x-ray
exposure for quantitative analysis. A small calibration variation may
render evaluation of small changes unreliable [29]. Recently, a lateral
phantom for calibration of mammographic density was developed,
but its use is still under research investigation [30].

Limitations of 2D area-based measures of breast density have led
to the development of volumetric measures of breast density.
The Standard Mammogram Form (SMF) analysis program was
introduced [31,32]. SMF provides a representation of the amount of
nonfat tissue at each location in a mammogram, estimated by an
evolving series of computer programs. If the separation between the
mammography compression plates is known, then the SMF
representation can potentially provide a volume-based estimate of
the amount of dense tissue in a breast [33]. However, this method
showed a poor left-right symmetry between two breasts of the
same woman, thus raising some concern about its validity [34]. Apart
from SMF, several volumetric assessment methods using full-field
digital mammography with calibration data have been developed
and validated [35,36]. Whether this analysis method can provide
true volumetric breast density for cancer risk estimation needs to
be investigated.

Recently, two automated breast assessment tools have been
approved by the FDA and are increasingly being used. One is
Quantra (http://www.hologic.com/wh/news-101107.htm), and the
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other is Volpara (http://www.volparadensity.com). Both quantitative
tools give an objective estimate of the total volume of fibroglandular
tissue as well as the total volume of the breast tissue in cubic
centimeters, without uncertainty coming from the judgment of
human operators (Figure 2). A complex model of the x-ray imaging
chain is used to calculate the amount of dense tissue contained within
each pixel in the image, which is independent of how the image was
acquired. The volumetric percent density is expected to be lower than
the areal percent density but highly correlated. One study comparing
volumetric breast density determined by Volpara and visual
assessment according to BI-RADS noted a high positive correlation
(Spearman’s r = 0.754, P b .001) [37]. The volumetric measurements
obtained from full-field digital mammography using Volpara showed
a high correlation with magnetic resonance (MR)–measured breast
density, with Pearson’s correlation coefficients of 0.93, 0.97, and 0.85
for volumetric breast density, breast volume, and fibroglandular tissue
volume, respectively [38]. A study evaluating breast density measured
by the Quantra software showed that it provided systematically lower
density percentage values as compared with visual classification [39].
Despite the development of these new analysis tools, because the

analysis is based on 2D projection acquisition, it still suffers from the
intrinsic tissue overlapping problem. A review article by Kopans raised
concerns about the accuracy of breast density determined by
Figure 2. Volumetric mammographic density (acquired using Volpara)
breast density and Volpara density grade on the picture archiving an
mammography [40]. The author stressed that studies suggesting a
link between MD and risk for breast cancer have methodological
flaws, and concluded that studies showing small percentage
differences between groups are likely to be inaccurate.

MR-based quantitative breast density measurement. MR-based
density measurement has gained a lot of research attention in recent
years [41–49]. MR imaging (MRI) provides strong soft tissue contrast
distinguishing between fibroglandular and fatty tissues. More
importantly, it provides a three-dimensional (3D) view of breast
tissues without compression. Therefore, MRI does not suffer from the
tissue overlapping or x-ray exposure calibration problem as
mammography. In addition, MRI can potentially measure more
density-related biological properties that cannot be revealed by
mammography, such as the water-fat content using Dixon imaging
methods [49–53].

To use MRI for quantitative analysis of breast density, two
procedures are necessary: segmentation of the whole breast from the
body and segmentation of the fibroglandular tissue within the breast.
Because the percent density is calculated as the ratio of the
fibroglandular tissue volume to the total breast volume, reliable
methods for the segmentation of the whole breast are mandatory.
This is a challenging task because there is no obvious boundary
indicating where the breast boundary ends. Therefore, it is more a
of a BI-RADS density category 3 woman (A and B). Both volumetric
d communication system are displayed (C) [37].

image of Figure�2
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problem of consistency rather than accuracy. Moreover, there are no
established anatomic landmarks for the whole breast segmentation.
Among the few published studies, the anatomic landmarks for
MR-based breast segmentation methods were either not clearly
specified [41–46] or a horizontal line drawn manually along the
ventral surface of the pectoralis major muscle was used [33,47,48]. A
method published by Nie et al. [54] used V-shaped landmarks of each
individual woman to determine the lateral posterior boundary of the
breast. To draw the V-shaped cut, images with a large field of view
that include the whole chest cavity containing the thoracic spinous
process are necessary. To simplify the procedure, other studies used
the sternum as the landmark [55]. Most of the reported MR density
methods in the literature are based on semiautomated methods that
require some operator interventions [33,44,46,47,54–56]. They are
time consuming and subject to variations from an operator’s personal
judgment. To overcome the problems, model-based segmentation
methods, using the whole breast as the template, have been developed
[57–60]. However, because of widely variable breast shape from
woman to woman, simply using one universal template may not be
robust enough to segment all types of breasts [61]. Recently, a new
automatic template-based method using the chest body model for
breast segmentation has been reported [61]. The process starts from a
middle slice. After defining the breast boundary using three body
landmarks (thoracic spine and bilateral boundary of the pectoral
muscle), the chest template was mapped to each subject's image space
to obtain a subject-specific chest model for exclusion. The chest and
muscle boundaries determined on the middle slice were used as the
reference for the segmentation of adjacent slices, and the process
continued superiorly and inferiorly until all 3D slices were segmented
[61]. Other algorithm-based automatic methods have also been
reported [62,63]. A fully automated segmentation algorithm based on
an atlas-aided fuzzy C-means (FCM-Atlas) method [63] showed a
high correlation with manual segmentation (r = 0.92). The automatic
method can provide an efficient tool for processing large clinical
data sets for quantifying the fibroglandular tissue content in breast
MRI [63].

Another challenge is to identify the chest wall muscle so that it can
be excluded from the breast. For women with dense breasts, the
fibroglandular tissue may be very close to the chest wall muscle, which
makes the exclusion of the muscle while preserving the dense tissue
difficult [61]. Various approaches have been attempted to detect the
chest wall muscle, including semiautomated user-assisted methods
[41,43,54] and automatic methods [60,61,64–66]. The semiauto-
matic methods can be subjective. Automatic methods, especially
model (or atlas)-based segmentation methods [61,65,66], are
promising approaches because they benefit from a prior learning of
anatomical or statistical knowledge [66].

The breast segmentation, chest wall muscle exclusion, and the
fibroglandular tissue segmentation can be integrated into a
comprehensive software for quantitative analysis of volumetric breast
density as well as the morphological distribution on 3D MRI
(Figure 3) [54,67,68]. This MR-based quantitative density analysis
method has been applied to study the menstrual cycle–related change
[69], age- and race-related differences [70], interscanner difference
[71], as well as the change in patients receiving chemotherapy [72,73]
and tamoxifen [74]. The effects of imaging sequences on the
MR-measured density have also been studied [55,75]. One study
noted that although breast density percentage showed a high linear
correlation among different sequences (r = 0.93), the results were
significantly different when different pulse sequences were used [75].
A study comparing percent density measured using mammography
and MRI showed that the mammography overestimates by a factor of
two compared with MRI [41].

Currently, the American Cancer Society recommends that women
with lifetime risk greater than 20% should receive breast MRI
for screening. With the maturity and wide accessibility of this
imaging technology, as well as more education and knowledge about
the use of breast MRI, many more women are expected to receive
screening breast MRI. With large MRI data sets from multiple sites
available, research is ongoing to investigate the value of MRI-assessed
breast density to improve the prediction of cancer risk or to aid
the management.

Emerging New Technologies
Because of limitation of mammography-based measurement in

quantification and the relatively high cost of MRI, other emerging
new technologies are being developed for assessing breast density,
including x-ray–based [76–85], optical imaging [86–90], and
ultrasound (US)-based systems [91–94].

X-ray–based modalities.Digital breast tomosynthesis (DBT). DBT
is a mammographic derivative technology that has gradually become an
important tool in clinical practice. This technique is a pseudo-3D
examination of the breast, allowing cross-sectional visualization and
reducing the superimposition or overlapping of the breast tissue [78].
In DBT, high–spatial-resolution tomographic images of the breast are
reconstructed from multiple projection images acquired within a
limited range of x-ray tube angles [76]. Besides being used for the
improvement of cancer diagnosis, recently, DBT has been used for the
measurement of breast density. Two methodological approaches have
been reported. One approach is to analyze breast density based on the
central DBT projection, acquired with the x-ray tube positioned
orthogonal to the detector plane [76]. Similar to the measurement of
2Dmammographic density, the percent density can be estimated using
interactive thresholding, and it is shown that the density is highly
correlated with mammographic density [76]. Another approach is to
analyze all DBT projection images using a semiautomatic software, and
the mean value is calculated [78]. Because DBT can resolve
overlapping tissues, the density measured by DBT is significantly
lower compared with the 2D mammographic density and not
significantly different compared with the density measured by 3D
MRI [78,95,96].

Dual-energy imaging. Breast density can also be quantified using
dual-energy x-ray imaging [79–81], including dual-energy mammog-
raphy and dual-energy x-ray absorptiometry techniques. Dual-energy
imaging exploits differences between the effective atomic numbers (Z)
of different tissues to provide separate quantitative thickness
measurements for each tissue [79]. The adipose and glandular tissues
have effective atomic numbers of 6.33 and 6.93, respectively.
Dual-energy mammography can exploit this effective atomic number
difference to quantify glandular and adipose tissue for density
measurement [79]. Dual-energy x-ray absorptiometry might provide
a low-radiation option for measurement of breast density; however,
the accuracy was hampered by the beam spectra of the system, which
was not optimal for normal breast tissues [79]. Dual-energy
mammography can also be used to perform compositional breast
imaging, which can separate water, lipid, and protein in the breast
tissue [81] (Figure 4). This is achieved when dual-energy attenuation



Figure 3. Automatic breast MR method for quantification of breast density in three women with different breast morphologies/densities.
Note color-coded images in the right panel showing the defined breast boundary (green) and the fibroglandular tissue area (red).
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and breast shape measures are used together to solve for the three
compositional thicknesses [81]. Preliminary study has demonstrated
the feasibility of creating individual compositional diagnostic images
in a clinical environment [81].

Computed tomography (CT). Efforts have been made to measure
breast density from clinical chest CT [97,98], low-dose chest CT
[99,100], cone beam CT [85], and dedicated breast CT [83,84].
Low-dose chest CT is increasingly being used for lung cancer
Figure 4. Compositional breast imaging acquired from dual-energy
volumetric density image gray scale =% fibroglandular volume, (C) w
scale = lipid thickness, and (E) protein thickness gray scale = water
screening. With the full coverage of whole chest area and the soft
tissue contrast presented on chest CT, the images can be exploited for
analysis of breast density in female subjects (Figure 5).

Breast density on CT can be assessed qualitatively similar to
BI-RADS categorization [97] or quantitatively [83–85,100]. For
quantitative measurement, because breast fatty tissue is continuous
with the body fat, the anatomic landmark used for the segmentation
of breast boundary will affect the calculation of percent breast density
[100]. FCM algorithm was generally used to partition adipose and
mammography: (A) regular mammogram, (B) two-compartment
ater thickness gray scale = water thickness, (D) lipid thickness gray
thickness images, respectively [81].

image of Figure�3
image of Figure�4


Figure 5. Segmentation of breast tissue (green color) and fibroglandular tissue (red color) from low-dose chest CT images in two women
of different breast morphologies.
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fibroglandular tissue [84,100]. The volume glandular fraction could
be computed within the defined region of the segmented
images [83,84]. Breast density grades measured from chest CT have
higher intrareader reliability and interreader agreement than
mammographic BI-RADS density categories [99]. Quantitative CT
density also shows low coefficient of variations of intraoperator and
interoperator measurements (b5%) [99]. Breast density acquired
from CT has been shown to correlate with mammographic density
[83], and the measured volume glandular fraction increased as a
function of the reported BI-RADS classifications [83]. The measured
density was in general lower than that of mammographic density both
qualitatively [85] and quantitatively [99], which is expected because
CT is based on 3D analysis and not on 2D project view.

Optical imaging modalities. Optical imaging, based on visible
light and near-infrared (650 to 1000 nm), provides information about
tissue optical properties through the spectral dependency of
nonionizing photons that migrate through the breast tissue
[101,102]. Because optical absorption arises (stem/originates) from
chromophores, mainly water, lipids, and oxy- and deoxyhemoglobin,
wavelength-dependent measurements allow estimation of their
concentrations in the probed volume. Similarly, wavelength-
dependent tissue scattering information can be used to estimate the
scattering particle density and scattering power, which are related to
the tissue composition (e.g., cells and intracellular organelles,
collagen). Accordingly, both chromophore concentration and
scattering information can be used to differentiate dense from fatty
breast tissues. Compared with fatty tissue, the dense tissue (stromal
and epithelial tissue components) in the breast shows increased
scattering, increased water-associated absorption, decreased lipid
associated absorption, higher total hemoglobin content, and lower
oxygen saturation [103].

Optical spectroscopy is the most commonly used method, which
uses one source-detector pair to estimate bulk optical properties from
tissues that lie between the source and detector. Usually, many
wavelengths are used, and rich spectral information can be obtained.
Optical tomographic imaging uses multiple source-detector pairs, and
a dedicated reconstruction algorithm is applied to render 3D images.
Spatially varying optical properties can be obtained, but because of
the concern of imaging time, only several selected wavelengths are
used, thus having limited spectral information. There are three main
data acquisition techniques: continuous wave, time domain, and
frequency domain. The continuous-wave technique is the easiest and
cheapest approach because of the utilization of steady-state lasers.
Time-domain technique provides the richest data by using a pulsed
laser and measuring the broadening of the light pulse while it travels
through the breast tissue. Frequency-domain technique is based on
modulating the laser output intensity with radiofrequency (~100 to
300 MHz), and it can obtain both magnitude and phase information.

Four optical-based imaging methods for measuring breast density
were reported. Three of those are spectroscopic approaches employing
1) time-domain transillumination geometry [104]: The source and
detector fibers are positioned at the opposite sides of the mildly
compressed breast to collect time-resolved transmittance data.
Seven-picosecond pulsed diode lasers are used as light sources (i.e.,
635, 680, 785, 905, 930, 975, and 1060 nm). 2) Continuous-wave
transillumination geometry: This transillumination breast spectroscopy
(TiBS) system uses a halogen lamp as broadband light source.
Unwanted portion of its spectrum (ultraviolet and visible light range)
is eliminated using optical filters, leaving a broad spectral range (550 to
1300 nm) [86,89,90,101,102,105,106]. The remaining light was
coupled into a 5-mm–diameter liquid light guide in contact with the
skin on top of the breast tissue. The principal component analysis was
applied to reduce the spectral data set into four principal components
and to generate four TiBS scores for each woman [90,101]. 3)
Frequency-domain reflection geometry: The diffuse optical spectro-
scopic imaging (DOSI) uses a handheld probe placed in gentle contact
with the breast, and data are acquired in the reflection mode.
Combining frequency-domain and continuous-wave tissue measure-
ments, the DOSI system can provide quantitative topographic maps of
water, oxyhemoglobin, deoxyhemoglobin, lipids, as well as tissue
scattering associated with micrometer-sized structures such as collagen
and membrane-bound organelles [107–109]. 4) Tomographic ap-
proach using frequency-domain technique in transmission geometry:
This tomographic system uses an examination table on which the
woman lies in prone position with breast pendant through an opening.
Underneath the bed, the circular fiber optic array is brought into contact
with the breast. Each source fiber is activated sequentially, whereas the
data are acquired from all detector fibers simultaneously.

Some encouraging results have demonstrated the feasibility of
optical spectroscopy and imaging for breast density measurements. In
studies using a time-domain multiwavelength optical system, optical
measurements of breast density compare favorably with radiologist’s

image of Figure�5
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assignments of BI-RADS categories [110,111]. TiBS can differentiate
women with N75% MD from those with b75% MD [89]. Other
studies have shown a good correlation between optical density and
Cumulus mammographic density [86,90,106]. With DOSI, several
studies showed that it can measure differences between premeno-
pausal and postmenopausal women, as well as changes after hormone
replacement therapy [88,112]. DOSI could characterize metabolic
differences between benign and malignant tumors [113]. Recently, a
study of DOSI and MRI found that DOSI functional measurements,
including water, deoxyhemoglobin, and lipid concentration, correlate
with MRI fibroglandular density before and after chemotherapy
[114] (Figure 6). However, because the quality and accuracy of the
information obtained by optical methods depend on the geometry
and data acquisition technique, more studies are needed to determine
the optimum technique for breast density measurements. Validation
studies, such as comparing optical imaging results with MRI results,
are also necessary.

US-based images. US shows different signal intensities between
fibroglandular and fatty tissues; thus, it has the potential for
assessment of breast density. Studies using 2D US [115], 3D US
[93,94], and US tomography [91,92] to estimate breast density have
been reported.

2D US imaging. The clinical handheld 2D US probe was used to
take representative images in the transverse direction at the 12 o’clock
(supra-areolar) and 6 o’clock (infra-areolar) positions from the margin
of the nipple [115]. It takes less than 5 minutes for a radiologist to
scan the breasts and qualitatively assess density using four categories,
similar to the BI-RADS mammographic density [115] (Figure 7).
Using this simple approach, the interobserver agreement (average r =
0.63, Intraclass correlation (ICC) = 0.82) was comparable with
mammographic assessments (average r = 0.74, ICC = 0.85) (P = .701)
[115]. The correlation between the US and mammographic
assessments of breast density showed r = 0.65 and ICC = 0.80,
with 68% (222/328 cases) having the same BI-RADS category. The
result suggested that 2D US has the potential to assess breast density.

3D US imaging. 3D US can acquire whole-breast US images and
has been used to measure volumetric density [93,94]. Using this
method, the women can be scanned in a supine [94] or a prone
position with the breast immersed in a water bath [93]. Two or three
passes are needed to cover the whole breast [93,94]. An adaptive
Figure 6. Corresponding MRI and DOSI for quantifying breast densi
tissue. The DOSI maps show measured parameters as a function of p
from an 8 × 6–cm area from the upper-inner region of the left breast.
lipid outlined by the semicircle. ctHHb, deoxyhemoglobin concentrat
speckle reduction filter was used to remove the speckle noise, and a
robust thresholding algorithm, such as FCM classifier, was used to
segment the breast tissue into fatty or fibroglandular components for
density measurements [93,94] (Figure 8). When breast volume and
percent breast density estimated by 3D automated whole breast
ultrasound (ABUS) images were compared with the results evaluated
by 3D MRI, a good correlation was noted (r = 0.884 and r = 0.917,
respectively). Accurate segmentation of breast in ABUS, however, had
its problems. With supine-type ABUS systems, the shape of the breast
can be deformed when the whole breast is scanned with multiple
passes. When the acquired images are merged, some regions overlap
or are lost, making density estimation inaccurate [116]. The lateral
boundary artifact and the retroareolar shadowing can make the
density estimation difficult. Moreover, the anatomic landmark, such
as pectoralis muscle, for separating breast and nonbreast region in 3D
ABUS is usually not obvious. Recently, a more convenient method
was introduced for rapid volume density analysis (RVDA) using
ABUS [116]. With that method, three rectangular volumes of interest
were extracted, including the volumes of interest located at the 6
and 12 o’clock positions relative to the nipple in the anterior to
posterior pass and the lateral position relative to the nipple in the
lateral pass. It was noted that the density correlation between the
RVDA and the whole ABUS methods was very high (r = 0.98). The
correlation between RVDA and conventional BI-RADS was also
good (r = 0.83) [116].

In addition, breast density has been estimated by US tomography
[91,92]. US tomography is based on the volumetric measure using
whole-breast acoustic velocity, defined as a global sound speed measure
obtained through a sound speed histogram developed from US
transmission tomograms, as an overall indicator of breast density [92].
A study on US tomography has shown a direct correlation between
the measured sound speed and the physical density in vitro. The in
vivo study also showed a significantly higher sound speed in women
with mammographic density BI-RADS 4 than BI-RADS 1 to 3 [92].
The volumetric ultrasound percent density is determined by
segmenting high–sound speed areas from each tomogram using a
k-means clustering algorithm and then integrating these results over
the entire volume of the breast and dividing by whole-breast volume
[91]. Ultrasound percent density was shown to have a good
correlation with qualitative mammographic BI-RADS categories
[91] and with quantitative MD with correlation coefficients ranging
from 0.75 to 0.89 [92].
ty. The yellow outlines in the MR images depict the fibroglandular
osition (tick mark separation equals 1 cm). The illustrated maps are
The areolar region has more water and ctHHB, higher TOI, and less
ion; TOI, tissue optical index [114].

image of Figure�6


Figure 7. Reference US images of breast density demonstrating each of the four categories. The images were taken in the transverse
direction at 12 o’clock (supra-areolar) position from the margin of the nipple. Areas of the fibroglandular tissue (solid line) and
subcutaneous or retromammary fat are illustrated (dotted line). The extent of the fibroglandular tissue is less than 25% (category 1, A),
between 25% and 50 % (category 2, B), between 50% and 75 % (category 3, C), and more than 75 % (category 4, D) [115].
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Conclusions
In conclusion, breast density is an important risk factor for the
development of breast cancer. The current method based on 2D
projection mammography for evaluation of breast density is subject
to tissue overlapping and thus is not true volumetric density.
Figure 8. Determination of the 3D US pixels using the threshold-ba
classified as fibroglandular tissue. The lower panel contains the orig
mammographic density grade 2 case. The calculated breast density
New imaging methods, including 3D MR imaging and other
emerging imaging techniques based on x-ray, optical imaging, and
US, are being developed and tested for the quantitative measurement
of breast density. These new methods may overcome some
fundamental problems related to 2D mammographic density. Their
sed method. The white region (upper panel right) indicates areas
inal image and the density result of FCM classifier for a BIRADS
is 13.9% [modified from references 93 and 94].
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clinical role for predicting cancer risk based on the measured breast
density is under investigation.
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