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Abstract: The aim of this study was to investigate the association of single nucleotide 

polymorphisms (SNPs) and haplotypes of potassium voltage-gated channel, KQT-like 

subfamily, member 1 (KCNQ1) with type 2 diabetes (T2D) in Malaysian Chinese subjects. 

The KCNQ1 SNPs rs2237892, rs2283228 and rs2237895 were genotyped in 300 T2D 

patients and 230 control subjects without diabetes and metabolic syndrome. Two logistic 

regression models of analysis were applied, the first adjusted for age and gender while the 

second adjusted for age, gender and body mass index. The additive genetic analysis 

showed that adjusting for body mass index (BMI) even strengthened association of 

rs2237892, rs2283228 and rs2237895 with T2D (OR = 2.0, P = 5.1 × 10−5; OR = 1.9,  

P = 5.2 × 10−5; OR = 1.9, P = 7.8 × 10−5, respectively). The haplotype TCA containing the 

allele of rs2237892 (T), rs2283228 (C) and rs2237895 (A) was highly protective against 
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T2D (Second model; OR = 0.17, P = 3.7 × 10−11). The KCNQ1 rs2237892 (TT), and the 

protective haplotype (TCA) were associated with higher beta-cell function (HOMA-B) in 

normal subjects (P = 0.0002; 0.014, respectively). This study found that KCNQ1 SNPs was 

associated with T2D susceptibility in Malaysian Chinese subjects. In addition, certain 

KCNQ1 haplotypes were strongly associated with T2D.  

Keywords: KCNQ1; SNPs; haplotype; diplotyps; type 2 diabetes 

 

1. Introduction  

The KCNQ1 gene has a total of 17 exons, spans 404 kb of chromosome sequence and is located on 

chromosome 11p15.5 [1]. KCNQ1 codes for the pore-forming alpha subunit of the voltage-gated K+ 

channel (KvLQT1) that is highly expressed in the heart. This channel plays an important role in 

controlling repolarization of the ventricles [2]. KCNQ1 is ubiquitously expressed in epithelial cells, 

including the endocrine and exocrine pancreatic cells [3]. KCNQ1 was reported to be expressed in 

insulin-secreting cells, and inhibition of this potassium channel has been shown to significantly 

increase insulin secretion [4].  

Genome wide association study (GWAS) has been applied to complex diseases, including T2D and 

has resulted in the identification of a growing number of trait susceptibility loci for T2D [5].  

Two independent GWAS have identified KCNQ1 as a novel T2D susceptibility gene in East Asian 

subjects [6,7]. More recently, two GWAS on Chinese Han and European populations confirmed 

KCNQ1 as T2D susceptibility gene [8,9]. The association of T2D with KCNQ1 variants was replicated 

in studies among Chinese [10–12], Singaporean [13,14], Indians [15], Pakistani [16] and in some  

Euro-Caucasians [6,17,18]. However, there is little data about the association of haplotypes of KCNQ1 

with T2D. The focus of this study was on the association of common variants of KCNQ1  

single nucleotide polymorphisms (SNPs) (rs2237892, rs2283228 and rs2237895), haplotypes and 

diplotypes with T2D in Malaysian Chinese subjects. 

2. Results  

Three hundred and forty-eight T2D and 354 control subjects who gave informed consent forms 

were recruited for this study. An application of the new metabolic syndrome criteria [19] on the 

control group resulted in 123 subjects with metabolic syndrome; therefore, they were excluded from 

the study. As a result of calculating % beta-cell insulin secretion using HOMA calculator, 3 diabetic 

and 1 normal subjects were excluded due to fasting insulin <20 pmol/L while 45 diabetic subjects were 

excluded due to fasting insulin >300 pmol/L. Consequently, 300 diabetic and 230 normal subjects 

without diabetes and metabolic syndrome were included in this study. The demography and 

biochemical parameters of the subjects are shown in Table 1.  
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Table 1. Demography and biochemical parameters. 

Parameters 
Normal 
n = 230 

Type 2 diabetes 
n = 300 

P-value

Gender  
Male % 61.3 51 
Female % 38.7 49 

Family history of diabetes % 
Male % 32 76 
Female % 34 63 

Age (years) 52.9 ± 9.15 49.8 ± 7.42 <0.001
Height (m) 1.62 ± 0.08 1.63 ± 0.09 0.18
Weight (kg) 63.1 ± 15.5 75.0 ± 15.2 <0.001
BMI(kg/m2) 24.1 ± 5.14 28.3 ± 5.15 <0.001
Waist (cm) 84.7 ± 13.1 95.7 ± 12.3 <0.001
Hip (cm) 99 ± 10.1 104 ± 10.1 0.001
Waist/Hip 0.85 ± 0.07 0.92 ± 0.07 <0.001
Systolic blood pressure 136 ± 18.5 136 ± 18.5 0.97
 81 ± 9.7 82 ± 10.5 0.20
Fasting insulin (pmol/L) 63.8 ± 44.6 103 ± 56.6 <0.001
Fasting glucose (mmol/L) 5.1 ± 0.49 8.3 ± 2.74 <0.001
Triacylglycerol (mmol/L) 1.1 ± 0.44 2.1 ± 1.20 <0.001
HDL cholesterol (mmol/L) 1.52 ± 0.32 1.21 ± 0.28 <0.001
Insulin resistance (IR) 1.4 ± 0.93 2.5 ± 1.44 <0.001

2.1. Association of KCNQ1 SNPs with T2D 

The SNPs included in this study did not deviate from the Hardy-Weinberg Equilibrium in the 

control group. The risk allele frequencies of rs2237892 (C), rs2283228 (A) and rs2237895 (C) in 

normal subjects were 0.69, 0.64 and 0.27 versus 0.78, 0.73 and 0.34 in diabetic patients, respectively. 

The first logistic regression model (adjusted for age and gender) showed that rs2237892, rs2283228, 

rs2237895 were associated with T2D (additive, OR = 1.6; 1.5; 1.5, P = 0.0005; 0.002; 0.004, 

respectively) (Table 2). Adjusting for body mass index (BMI) even strengthened the association of 

rs2237892, rs2283228, rs2237895 with T2D (additive, OR = 2.1; 1.9; 1.9, P = 5.1 × 10−5, 5.2 × 10−5, 

7.8 × 10−5, respectively). 
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Table 2. Association of KCNQ1 single nucleotide polymorphisms with type 2 diabetes evaluated by recessive, dominant and additive  

genetic models. 

NPs Group Genotype n (distribution %) 
Recessive model Dominant model Additive model 
OR 
(95% CI) 

P-value 
OR 
(95% CI) 

P-value 
OR 
(95% CI) 

P-value 

First logistic regression model, analysis adjusted for age and gender 

rs2237892 
 TT  CT  CC  

1.9 
(1.29–2.66) 

0.001 
2.1 
(1.09–3.94) 

0.026 
1.6 
(1.25–2.18) 

0.0005 normal 27(11.7) 90(39.1) 113(49.1) 
diabetic 18(6.0) 99(33.0) 183(61.0) 

rs2283228 
 CC AC AA       
normal 33(14.3) 98(42.6) 99(43.0) 1.8 

(1.24–2.52) 
0.002 

1.7 
(0.97–2.93) 

0.06 
1.5 
(1.17–1.97) 

0.002 
diabetic 27(9.0) 105(35.0) 168(56.0) 

rs2237895 
 CC AC AA       
normal 14(6.1) 96(41.7) 120(52.2) 1.6 

(0.83–3.17) 
0.16 

1.7 
(1.17–2.39) 

0.004 
1.5 
(1.14–2.01) 

0.004 
diabetic 30(10.0) 147(49.0) 123(41.0) 

Second logistic regression model, analysis adjusted for age, gender, and body mass index 

rs2237892 * 
 TT  CT  CC  

2.2 
(1.5–3.4) 

0.0002 
2.7 
(1.3–5.5) 

0.007 
2.0 
(1.4–2.7) 

5.1 × 10−5 normal 27(12.6) 81(37.7) 107(49.8) 
diabetic 18(6.0) 99(33.0 183(61.0) 

rs2283228 * 
 CC AC AA 

2.3 
(1.5–3.5) 

7.3 × 10−5 
2.2 
(1.2–4.1) 

0.011 
1.9 
(1.4–2.5) 

5.2 × 10−5 normal 33(14.9) 89(40.3) 99(44.8) 
diabetic 27(9.0) 105(35.0) 168(56.0) 

rs2237895 * 
 CC AC AA 

3.7 
(1.7–8.1) 

0.001 
2.0 
(1.3–3.0) 

0.001 
1.9 
(1.4–2.7) 

7.8 × 10−5 normal 11(5.0) 96(44.0) 111(50.9) 
diabetic 30(10.0) 147(49.0) 123(41.0) 

In the additive model, genotype of homozygote for the non-risk allele (0/0), heterozygote (1/0) and homozygote for the risk allele (1/1 were coded as  
0, 1 and 2 respectively). The recessive model was defined as 1/1 vs. 1/0 + 0/0 and dominant model as 1/1+1/0 vs 0/0; * The outlier (studentized residual is 
greater than 2.0 or less than −2.0) were excluded.  
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2.2. Association of KCNQ1 Haplotypes and Diplotypes with T2D 

Three-SNP haplotypes and diplotypes block were identified with significant linkage  

disequilibrium (LD). This block was constructed from rs2237892, rs2283228 and rs2237895 (Figure 1). 

The possible haplotype for each individual was adjusted to more than 0.5 resulting in 8 haplotypes and 

23 diplotypes. The rare haplotypes (those below 2% frequency in cases or controls) were excluded 

from the analysis. Thus, 6 haplotypes and 8 diplotypes were further analyzed for their association  

with T2D.  

Figure 1. Pairwise linkage disequilibrium among KCNQ1 single nucleotide  

polymorphisms (SNPs) in Malaysian Chinese. Values in the upper represent KCNQ1 SNPs 

while values in the left represent D' value.  

 

The overall association of haplotypes with T2D was significant (P = 7.49 × 10−6). The haplotype 

TCA containing the protective alleles of rs2237892, rs2283228 and rs2237895 is more frequent in  

the normal (0.33) compared to diabetic subjects (0.15). Both logistic regression models showed that 

this haplotype was strongly protective against T2D (first model, OR = 0.33, P = 8.4 × 10−7; second 

model, OR = 0.17, P = 3.7 × 10−11) (Table 3). The haplotype CAC containing the risk allele of the 

SNPs included in this study was the most frequent haplotype (0.44 in normal subjects vs. 0.51 in 

diabetic subjects). Second logistic regression models showed that this haplotype was a risk for T2D 



Int. J. Mol. Sci. 2011             

 

 

5710

(OR = 1.7, P = 0.008) whereas the first model showed this haplotype as borderline risk for T2D  

(OR = 1.4, P = 0.057). 

Table 3. Association of common haplotypes with type 2 diabetes. 

Haplotypes 
rs2237892, 
rs2283228, 
rs2237895 

Frequency 
Odds 
ratio 

95% CI P-Value 

 

Normal 
n (230) 

Type 2 
diabetes 
n (300) 

Overall  
P-value 

First logistic regression model, analysis adjusted for age and gender  
CAC 0.44 0.51 1.4 0.99–2.01 0.057 7.49 × 10−6 a 
TCA 0.33 0.15 0.33 0.21–0.51 8.4 × 10−7 

CAA 0.13 0.16 1.3 0.86–2.21 0.263 
CCA 0.05 0.04 0.7 0.30–1.63 0.41 
TAA 0.01 0.06 4.6 1.31–16.19 0.017 
CCC 0.02 0.07 3.2 1.20–8.81 0.021 

Second logistic regression model, analysis adjusted for age, gender and body mass index 
CAC * 0.44 0.51 1.7 1.1–2.4 0.008  
TCA * 0.34 0.15 0.17 0.1–0.28 3.7 × 10−11 
CAA * 0.14 0.16 1.4 0.79–2.4 0.26 
CCA * 0.05 0.04 0.54 0.2–1.5 0.23 
TAA * 0.01 0.06 6.0 1.6–22.1 0.007 
CCC * 0.02 0.07 2.6 0.88–7.5 0.083 
* The outlier (studentized residual is greater than 2.0 or less than −2.0) were excluded; a non-adjusted 
overall P-value. 

The less frequent haplotype TAA (0.01 in normal vs. 0.06 in diabetic subjects was strongly 

associated with T2D (first model, OR = 4.6, P = 0.017; second model, OR = 6.0, P = 0.007). The 

results showed that haplotype CCC was significantly associated with T2D in the first logistic 

regression model (OR = 3.2, P = 0.021) whereas this significance was less evident in the second model 

(OR = 2.6, P = 0.083). Both logistic regression models showed that the haplotype CAA and CCA were 

no association with T2D.  

The overall association of diplotypes with T2D was significant (P = 8.1 × 10−7). The diplotypes 

TCA-TCA and CAA-TCA containing the protective haplotype (TCA) showed a protection against 

T2D (first model, OR = 0.16, P = 8 × 10−5; OR = 0.4, P = 0.0003, respectively) (second model,  

OR = 0.13, P = 4.4 × 10−5; OR = 0.09, P = 2.9 × 10−10, respectively) (Table 4). In addition, the second 

logistic regression model showed that the diplotype CAC-CAC containing the risk haplotype (CAC) 

was strongly a risk for T2D (OR = 3.9, P = 0.008) and diplotype CCA-CAC was a borderline risk for 

T2D (OR = 2.6, P = 0.07) whereas the first model did not show such effect. Both logistic regression 

models showed that the other diplotypes (CAA-CAC, CAA-CAA, TCA-CAC and CAA-CCA) were 

not significantly associated with T2D. 
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Table 4. Association of common diplotypes with type 2 diabetes. 

Diplotypes  
rs2237892, 
rs2283228, 
rs2237895 

(Frequency) 
Odds 
ratio 

95% CI P-Value 

 

Normal 
n (230) 

Type 2 
diabetes 
n (300) 

Overall  
P-value 

First logistic regression model, analysis adjusted for age and gender 
CAA-CAC 0.22 0.25 1.3 0.86–1.99 0.21 8.1 × 10−7 a 
CAA-CAA 0.13 0.16 1.3 0.81–2.21 0.26 
CAA-TCA 0.18 0.09 0.4 0.21–0.63 0.0003 
TCA-CAC 0.13 0.12 0.92 0.54–1.57 0.77 
TCA-TCA 0.12 0.02 0.16 0.06–0.40 8 × 10−5 
CAC-CAC 0.03 0.06 2.2 0.85–5.74 0.104 
CAA-CCA 0.05 0.03 0.48 0.19–1.19 0.11 
CCA-CAC 0.04 0.06 1.8 0.78–4.10 0.17 

Second logistic regression model, analysis adjusted for age, gender, and body mass index 
CAA-CAC * 0.23 0.25 1.4 0.79–2.4 0.26  
CAA-CAA * 0.14 0.16 1.3 0.82–1.3 0.26  
CAA-TCA * 0.19 0.08 0.09 0.04–0.18 2.9 × 10−10  
TCA-CAC * 0.14 0.12 1.0 0.54–1.7 0.88  
TCA-TCA * 0.12 0.02 0.13 0.05–0.34 4.4 × 10−5  
CAC-CAC * 0.01 0.06 3.9 1.4–10.9 0.008  
CAA-CCA * 0.05 0.03 0.38 0.12–1.2 0.09  
CCA-CAC * 0.03 0.06 2.6 0.92–7.5 0.07  

* The outlier (studentized residual is greater than 2.0 or less than −2.0) were excluded;  
a , non-adjusted overall P-value. 

2.3. Impact of KCNQ1 SNPs, Haplotypes and Diplotypes on Beta-Cell Function in Normal Subjects  

Two general linear models (GLM), the first adjusted for age and gender and the second adjusted for 

age, gender and BMI were approached to identify potential mediators who link the KCN Q1 variants, 

with T2D. The three SNPs were tested for their associations with diabetes-related quantitative traits, 

beta cell function (HOMA-B). Both GLM models showed that HOMA-B in normal subjects those had 

the variant of KCNQ1 rs2237892 (TT) was higher than CC and CT genotype (P = 0.002, 0.0002, 

respectively) (Table 5). The second GLM showed little effect of rs2283228 CC genotype on  

HOMA-B (P = 0.034) compared to other genotypes of this SNP. The results showed that rs2237895 

had no effect on beta-cell function.  
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Table 5. 3 Impact of KCNQ1, haplotypes and diplotypes on beta-cell function (HOMA-B) in normal subjects. 

 
Non adjusted 

HOMA-B 
means(CI) 

Adjusted for age, gender Adjusted for age, gender, BMI 

HOMA-B 
mean(CI) 

Parameter 
estimate 
P-value 

Univariate
P-value 

HOMA-B 
Mean(CI) 

Parameter 
estimate 
P-value 

Univariate 
P-value 

rs2237892 
CC(n = 113) 96(90–103) 98(92–105) 0.006 0.002 100(95–106) 0.01 0.0002 
CT(n = 90) 94(87–101) 92(85–98) 0.0004 90(85–96) 0.0003 
TT(n = 27) Ref 120(104–137) 121(106–138)  118(105–132)  

rs2283228 
AA(99) 97(90–104) 97(90–104) 0.33 0.584 102(96–109) 0.80 0.034 
AC(98) 97(87–101) 97(90–103) 0.30 92(86–97) 0.039 
CC(33) Ref 104(92–118) 104(92–118)  104(94–115)  

rs2237895 
CC(14)  100(83–122) 98(81–119) 0.91 0.74 106(90–125) 0.36 0.554 
AC(96) 95(88–102) 96(89–103) 0.44 96(91–103) 0.70 
AA(120) Ref 100(94–107) 99(93–106)   98(93–104)   

haplotypes 
CAA(n = 30) 84(74–95) 85(75–97) 0.001 0.003 90(81–100) 0.007 0.014 
CAC(n = 102) 97(91–104) 97(91–104) 0.026 97(92–103) 0.026 
TCA(n = 75) Ref 111(103–120) 110(102–119)  107(101–115)  

Diplotype 
CAA-CAA(n = 30) 84(75–94) 85(76–95) 4.0 × 10−5 1.5 × 10−6 90(81–99) 0.0001 5.7 × 10−6 
CAA-CAC(n = 51) 106(97–115) 107(98–116) 0.12 110(102–119) 0.20 
CAA-TCA(n = 42) 117(107–129) 114(104–126) 0.55 105(96–115) 0.062 
TCA-CAC(n = 30) 83(75–93) 84(75–94) 1.9 × 10−5 85(77–94) 5.8 × 10−6 
TCA-TCA(n = 27) 
Ref 

120(106–134) 120(107–135)  120(108–133)  

% beta-cell insulin secretion was log-transformed before analyses, and the data were presented as geometric means; Ref, reference, the protective genotype, 
haplotypes and diplotypes were selected to be a reference for the comparison; CI, confidence interval. 
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Three haplotypes (CAA, CAC and TCA) and 5 diplotypes (CAA-CAA, CAA-CAC, CAA-TCA, 

TCA-CAC and TCA-TCA) fitted the criteria of parametric analysis (count ≥ 25) to evaluate their 

impact on the beta-cell function. Both GLM showed that HOMA-B was higher in normal subjects, 

which had the protective haplotype TCA than those normal subjects carrying the risk haplotyype CAC 

or CAA (P = 0.003; 0.014, respectively). Furthermore, the two protective diplotype (TCA-TCA, and 

CAA-TCA) showed a higher HOMA-B than the other diplotypes (first GLM, P = 1.5 × 10−6; second 

GLM, P = 5.7 × 10−6). 

3. Discussion 

The association of KCNQ1 SNPs, haplotypes and diplotypes with T2D among Malaysian Chinese 

was studied. Common variants of KCNQ1 SNPs rs2237892, rs2283228 and rs2237895 were selected 

for this study based on the Unoki and Yasuda findings [6,7] that these SNPs showed an association 

with T2D in Asian populations. The present study found that the common KCNQ1 SNPs rs2237892, 

rs2237895 and rs2283228 were strongly associated with T2D, which is in agreement with previous 

reports [6–15,18,20,21]. Adjusting for BMI even strengthened the association of KCNQ1 variants with 

T2D. The odds ratios of the second logistic regression model were 1.9–3.7 (additive genetic analysis) 

which are higher than the previous reported odds ratios (1.2–1.6) [6–15,18,20,21].  

The haplotypes and diplotypes showed a higher association with T2D than single individual SNPs 

did. Plotting the second logistic regression odds ratios and 95% CI of the association of SNPs (additive 

genetic models), haplotypes and diplotypes with T2D resulted in, the reciprocal 95% CI of the more 

associated haplotype (TAA) and diplotypes (CAA-TCA and TCA-TCA) were higher than 95% CI of 

individual SNPs, and were not overlapping each other (Figure 2). Other haplotype blocks have been 

reported to be associated with T2D [11,12,15]. 

Figure 2. Odds ratios and 95% confidence intervals of the association of individual SNPs 

(additive genetic models), haplotypes and diplotypes with T2D. Left number, odds ratio; 

bar, 95% confidence interval; * reciprocal odds ratio and 95% confidence interval  

were represented. 
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The current study confirmed the association of the KCNQ1 variants with impaired b-cell function 

estimated by HOMA-B, and the risk alleles of rs2237892 and rs2283228 were significantly associated 

with lower HOMA-B values. This finding is in agreement with a previous report [12]. The increased 

risk for T2D linked to KCNQ1 gene is likely to be caused by a reduction in insulin secretion [10–13]. 

The pore-forming alpha subunit of the voltage-gated K+ channel (KvLQT1) (encoded by KCNQ1) and 

the regulatory beta subunit ISK (encoded by potassium channel, voltage-gated, ISK-related subfamily, 

member 1; KCNE1 gene) co-assemble to form the I(KS) potassium channel in the pancreas [22]. 

Intrinsically, there is a possibility that KCNQ1 polymorphisms alter the role of the I(KS) potassium 

channel, causing decreased insulin secretion, leading in time to T2D [13]. However, homozygous 

Kcnq1−/− mice have been reported not to show hyperglycaemia or glucose intolerance, and the 

contribution of the kcnq1-encoded protein to the molecular pathogenesis of T2D remains unclear [6]. 

A recent study, found that both blood glucose and insulin levels were lower in kcnq1–/– than in 

kcnq1+/+mice and the uptake of glucose into skeletal muscle, liver, kidney and lung tissue was 

significantly higher in kcnq1–/– than inkcnq1+/+mice [23] leading to a suggestion that kcnq1 is a novel 

molecule affecting insulin sensitivity.  

4. Materials and Methods 

4.1. Subjects and Data Collection 

T2D Malaysian Chinese subjects aged between 30 and 70 years who attended the University 

Malaya Medical Centre (UMMC), Kuala Lumpur for treatment were randomly approached and asked 

to participate voluntarily in this study (target group). For the control group, the physically normal 

Malaysian Chinese subjects who attended the UMMC for routine medical check-ups were approached. 

The study was approved by the Medical Ethics Committee of the University of Malaya Medical 

Centre. Venous Blood (10 mL) was collected from each subject after obtaining written consent.  

4.2. Biochemical Analyses  

Glucose, triacylglycerol, total cholesterol and HDLc were measured by an automated analyzer 

(Dimension® RxL Max® Integrated Chemistry System), and insulin was measured by ADVIA Centaur 

assay XP Immunoassay System (Siemens Healthcare Diagnostics Inc. Deerfield, IL USA). % beta-cell 

insulin secretion (HOMA-B) was calculated using the Homeostasis Model Assessment (HOMA2) 

Calculator v2.2, which is available online from Oxford Center for Diabetes, Endocrinology and 

Metabolism.  

4.3. Genetic Analyses  

Single nucleotide polymorphisms of KCNQ1; rs2237892, rs2283228 and rs2237895 were selected 

for genotypic analysis in Malaysian T2D subjects based on the findings of Unoki and Yasuda [6,7] that 

these SNPs are associated with T2D in Asian populations. The SNPs sequences were obtained from 

the database of the US National Library of Medicine [24]. Specific primers were designed for each 

SNP by FastPCR program. DNA extraction was achieved through the salt precipitation method. All 

SNPs were amplified using a 96 microwell plate StepOnePlus thermocycler (Applied Biosystems Inc, 



Int. J. Mol. Sci. 2011             

 

 

5715

Foster City, USA). The SNPs rs2237892, rs2283228 and rs2237895 were genotyped by restriction 

enzymes BsoBI, BstNI and SmaI, respectively. Polyacrylamide gel electrophoresis (7%) was used for 

detection the digested product of the PCR amplicons. The Polyacrylamide gel was stained by 0.1 

µg/mL ethidium bromide for 5 minutes and then visualized by exposure to ultraviolet light in the gel 

imaging system (Infinity 3026, Vilber Lourmat, Marnela Valled, France). To confirm the restriction 

enzyme results, approximately 10% of each SNPs PCR amplicons (54 samples) was sequenced by 

automated DNA sequencer (3130xl Genetic Analyzer, Applied Biosystems, Foster City, CA, USA) 

using terminator cycle sequencing kit v3.1 (Applied Biosystems). The sequencing results were 

identical to the restriction enzymes’ results of rs2237892 and rs2237895 (kappa = 1) where the kappa 

was 0.932 for rs2283228.  

4.4. Statistical Analysis  

HelixTree 7.0 SNP and Variation Suite for Genetic Statistics (SVS) was used to study the linkage 

disequilibrium (LD) between SNP and construct haplotypes and diplotypes of related SNPs. The 

deviation from the Hardy-Weinberg Equilibrium was tested by De Finetti program [25]. The other 

statistical analyses were performed on SPSS version 11.5. Two logistic regression models were 

applied for the evaluation of associations of the KCNQ1 SNPs, recessive, dominant and additive 

genetic analysis and the association of haplotypes and diplotypes with T2D. The first model was 

adjusted for age and gender while the second model, adjusted for age, gender and body mass index.  

The overall association of haplotypes and diplotypes with T2D was evaluated by crosstabs  

(chi-square test). The impact of the KCNQ1 SNPs variants, haplotypes and diplotypes on beta-cell 

insulin secretion (HOMA-B), was evaluated by two general linear models (GLM). The first adjusted 

for age and gender while the second adjusted for age, gender and BMI. HOMA-B values were skewed 

and, therefore, normalized by logarithmic transformation. Means were subsequently back transformed 

for presentation as geometric means. 

5. Conclusions  

This study showed that KCNQ1 common variants were associated with T2D in Malaysian Chinese 

subjects. In addition, analysis of KCNQ1 haplotypes and diplotypes supported the association of 

KCNQ1 gene polymorphisms with T2D. Furthermore, KCNQ1 SNPs, haplotypes and diplotypes were 

associated with beta-cell function in normal subjects without diabetes and metabolic syndrome. 
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