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Candida albicans is a major cause of bloodstream infection
which may present as sepsis and septic shock - major causes
of morbidity and mortality world-wide. After invasion of the
pathogen, innate mechanisms govern the early response.
Here, we outline the models used to study these mechanisms
and summarize our current understanding of innate immune
responses during Candida bloodstream infection. This
includes protective immunity as well as harmful responses
resulting in Candida induced sepsis. Neutrophilic
granulocytes are considered principal effector cells conferring
protection and recognize C. albicans mainly via complement
receptor 3. They possess a range of effector mechanisms,
contributing to elimination of the pathogen. Neutrophil
activation is closely linked to complement and modulated by
activated mononuclear cells. A thorough understanding of
these mechanisms will help in creating an individualized
approach to patients suffering from systemic candidiasis and
aid in optimizing clinical management.

Candida Bloodstream Infection and Sepsis

Severe sepsis and septic shock are major causes of death and
morbidity world wide, 1 and several studies have suggested that
the problem is increasing due to growing numbers of patients at
risk.1,2 Epidemiological analyses show a shift in the classes of
microorganisms causing sepsis. The incidence of Gram-positive
organisms has increased for several years, and drawn equal with
Gram-negative bacteria in some studies.1 However, with the
global spread of Gram-negative multi-resistance, Gram-negative
pathogens continue to pose a major threat. In addition to bacte-
ria, fungi—mainly Candida albicans and other Candida spp.—
can cause sepsis and this entity has increased over the last decades,
now causing significant impact and health care-associated
costs.2,3 In addition, fungal sepsis is associated with a higher mor-
tality than bacterial sepsis.2,4-8 Candida bloodstream infection

frequently arises from either gastrointestinal colonization and
transmigration of the pathogen through the mucosal barrier, or
from colonization of foreign material for example, intravenous
(i.v.) catheters.3 Colonized i.v. catheters may account for as
much as 25–40% of cases of candidemia.9-11 In the EPIC-II
study, a 1-day point prevalence study involving 13,796 analyzed
patients in 1,265 intensive care units, fungi accounted for 19%
of all infections.12 A retrospective analysis of this patient cohort
revealed that 12.6% of all positive blood cultures were either pos-
itive for Candida spp. alone or detected mixed bacterial and fun-
gal infection.13 This is in line with other data showing that in the
United States, Candida spp. account for 8–10% of all positive
blood cultures.14,15 However, despite being a frequent cause of
nosocomial infection, Candida spp. generally account for only
»5% of sepsis cases.16 This is related to the fact that Candida
bloodstream infections—although showing a high mortality—do
not fulfill classical diagnostic criteria for sepsis and septic shock
in most cases.5,17,18 (Table 1). This suggests that classical diag-
nostic criteria for sepsis may be inadequate to fully account for
the clinical implication of systemic fungal infection.19 In addi-
tion to primary Candida sepsis, invasive Candida infection fre-
quently occurs as a complication of bacterial sepsis due to
concomitant immune paralysis. These secondary Candida infec-
tions have been shown to prolong ICU stay, increase mortality
and generate additional costs.20

In recent years, our understanding of early immune activation
processes during systemic Candida infections has advanced con-
siderably. On the one hand, this has been achieved by combining
insights from different infection models. Most importantly how-
ever, modern genomic technologies have allowed researchers to
elucidate mechanisms of immune activation and response based
on the analysis of genetic variation in human patients.21 In this
review, we summarize our current understanding of early
immune response to Candida during bloodstream infections
which includes mechanisms that govern protective immune reac-
tion to C. albicans invasion as well as harmful immune responses
resulting in Candida induced sepsis and septic shock.

Analyzing Systemic Candida Infections

Various model systems have been employed in C. albicans
research to date, including the fruit fly, nematode, wax moth and
zebrafish. The latter has been particularly useful due to the pres-
ence of innate and adaptive immune systems, transparent tissues
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and comparative intra-species transcriptional responses of C.
albicans.22-24 Notably, the roles of NADPH oxidase in response
to C. albicans hyphae have been expanded upon with the help of
non-invasive imaging of spacio-temporal macrophage responses
in this model.24 The most commonly used infection model is the
mouse, and murine models have been developed to mimic both
major routes of C. albicans dissemination.25-27 In the i.v. murine
infection model, fungal cells are administered directly into the
bloodstream and rapidly disseminate, evoking a strong inflamma-
tory reaction.28 The major target organs are the kidneys, and
both systemic inflammation as well as rapid deterioration of the
animals resembles hyper-inflammatory sepsis. However, exclusive
kidney involvement is rare in human systemic candidiasis and
kidney manifestation typically only occurs in disseminated candi-
diasis affecting multiple organs.29,30 Despite this, the murine
infection model enables the analysis of rapid immune activation
induced by systemic Candida dissemination and has undoubtedly
revealed important insights into host responses to fungal
infection.31,32

Unlike humans, mice are intrinsically Candida na€ıve and
establishing colonization of the gastrointestinal tract in adult
mice requires anti-microbial therapy and oral application of Can-
dida.32 A murine model of C. albicans gastrointestinal coloniza-
tion and systemic spread has been described by Koh et al.25,32,33

Concomitant introduction of immuno-suppression and mucosal
damage after colonization resulted in translocation and dissemi-
nation by C. albicans. This model is particularly useful for study-
ing virulence factors and immune mechanisms involved in
translocation and dissemination. A major advance in our techno-
logical portfolio to study host-pathogen interaction during sys-
temic infection is the development of in vivo imaging
systems.34,35 Recently, these tools have been used for in vivo
imaging of Candida infection.36 This allows monitoring of dis-
semination and systemic infection over time in living animals
with considerable sensitivity. Furthermore, it reduces animal tolls
and offers the possibility to shift from end-point data toward

kinetic analyses. Initial experiments already revealed the gall-
bladder as an unexpected site of C. albicans persistence during
anti-microbial therapy.36

As for all murine infection models, it has to be kept in mind
that peripheral blood components in mice differ, both in num-
bers and function, from their human counterparts37,38 and con-
clusions from defined animal models are not necessarily
transferable to human patients. To overcome some of these limi-
tations, human whole blood infection models can be used to ana-
lyze host-pathogen interactions in a situation which closely
mirrors that in vivo.39 Such infection models have successfully
been used to identify microbial virulence factors,40 to analyze
early immune responses,41 to determine the influence of genetic
polymorphisms on immune response42 or to test potential thera-
peutic approaches or vaccine efficacy.43-46 With regard to activa-
tion of host immunity, whole blood infection assays can provide
time-resolved data on cell activation, localization and physiologi-
cal state of the pathogen. Most importantly whole blood infec-
tion assays require minimal pre-analytical handling of the cells.
Therefore these assays avoid modulation of immune cell function
by the isolation procedure that inevitably occurs when using
purified primary human immune cells47-49 (see Fig. 1). How-
ever, purified primary cells provide an important tool to analyze
specific contributions of receptors and signaling pathways in
defined cell populations50,51 and patterns of activation observed
in the whole blood model do not necessarily reflect those
observed in organ tissue. Furthermore, immune cell activation in
blood in vivo is also determined by tissue derived mediators
which are absent in ex vivo blood. In contrast, in the whole blood
model, many parameters of immune cell function remain inac-
cessible to direct quantification due to experimental limitations.
We have shown recently that bio-mathematical modeling can
provide tools to partially overcome these limitations. Using such
a virtual infection model, it was for the first time possible to
prove the dominant role of neutrophils in the immune response
to Candida in human blood.39

Table 1. Candida BSI and sepsis

Candida BSI Candida Sepsis

Frequency 5–15% of all BSI 2–5% of sepsis cases, only a minority of Candida BSI proceed to
severe forms of sepsis (see below)

Diagnostic criteria Positive blood-culture for Candidaa Systemic inflammatory response syndrom (SIRS) with 2 or more of
the following symptoms: temperature<36�C or >38�C; heart rate
>90/min; respiratory rate >20/min or PaCO2<32 mmHg;
WBC <4£109/L or >12£109/L or �10% bands due to
an infection with Candidac

Pathology Dissemination of Candida in the bloodstream with/without
affection of (multiple) organs presenting as “acute
disseminated candidiasis” or “chronic disseminated
candidiasis” with the latter mainly occurring in
neutropenic patients.

Clinical presentation is dominated by severe dysregulation of
immunity, coagulation and circulation. In progressive disease this
results in organ failure (“severe sepsis”) and cardial
decompensation (“septic shock”).

Associated mortality < 30–40%b, 6–8 »70%5 septic shock complicating Candida BSI is “a near fatal
condition”18

Note: aOther diagnostic tests may also be indicative, e.g., PCR based detection in blood, b-glucan testing. bThese are mortality rates from case series of Can-
dida BSI including patients with sepsis, severe sepsis or septic shock; so fatality rates for Candida BSI without sepsis will be lower. cCurrently, several authors
suggest to rephrase sepsis definitions and restrict sepsis to cases with resulting organ failure.19
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Finally—with all models being but models—it is encouraging
to see that modern technologies allow the analysis of molecular
pathways determining the outcome of host–pathogen interaction
directly in human infection. Genetic analyses in patients suffer-
ing from chronic mucocutaneous candidiasis have generated
unprecedented insight into the role of STAT1 signaling and
Th17 response in anti-fungal immunity.3,52,53 These findings
have been extended to other fungal infections and significantly
advanced our knowledge of antifungal immunology.54 By inte-
grating transcriptional analysis and functional genomics, Smeek-
ens et al. identified a prominent role of the type I interferon
pathway in anti-Candida host defense. They confirmed these
analyses by showing that polymorphisms in type I interferon
genes modulated Candida-induced cytokine production and
were correlated with susceptibility to systemic candidiasis.55

Genetic analyses of patients at risk for non-Candida fungal infec-
tions have also identified other important regulators of anti-fun-
gal immunity.3,21,56 Together, these model systems have

generated important insight into mechanisms governing immune
responses against Candida and established a repertoire of recep-
tors and signaling cascades relevant for fungal recognition.57 In
the next sections, we will put a focus on immune effector mecha-
nisms that are relevant for systemic Candida infections.

Complement in Candida Sepsis

Considerable evidence shows that complement activation
plays a central role in systemic infection and sepsis.58,59 The
interaction of C. albicans with complement has recently been
reviewed in detail and we refer to the review of Luo et al.60

Although patients suffering from genetic defects in complement
do not show increased risk for fungal infections, evidence from
both murine and in vitro experiments indicates an important role
of complement in antifungal responses. However, even in
patients with chronic granulomatous disease – a severe functional

Figure 1. Advantages and disadvantages of C. albicans infection models. The most commonly employed C. albicans infection models are immortalized
cell culture, primary immune cells, whole blood and mice. Each method bears both limitations and advantages, a thorough knowledge of which can be
applied to determining the most suitable model.
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defect of neutrophils - numbers of invasive Candida infections
are surprisingly low, (Winkelstein et al.60b and Falcone and Hol-
land60c). This may reflect both redundancy of immune effector
functions or the fact that intestinal barrier integrity may be at
large protective against Candida invasion.25,60a

Aside from multiple functions in the immune response
against invading pathogens, complement activation also modu-
lates other signaling events during systemic infection. Several
studies have shown that Toll-like receptor (TLR) activation
can occur by way of complement, and multiple nodes of inter-
action between complement and coagulation have been identi-
fied.61,62 The surface of C. albicans is a strong trigger inducing
all 3 pathways of complement activation63 (Fig. 2). This
results in rapid formation of C3 convertase, generation of

chemotactic cleavage fragments and subsequent fungal opsoni-
zation by C3b, which facilitates phagocytosis.64-66 Of major
importance during sepsis is the generation of high levels of the
complement activation products C3a and C5a, which act as
anaphylatoxins.59 Mice lacking the C5a precursor molecule
C5 or the C3a precursor C3 are highly susceptible to invasive
C. albicans infection.67-69 Moreover, C5 deficiency is associ-
ated with increased levels of pro-inflammatory cytokines,
including TNF-a and IL-6, and rapid fungal replication in
many organs.60a,70,71 The prominent effects of C5 deletion are
most likely related to the lack of its activation product C5a,
which has been shown to be critical for activation of human
monocytes by C. albicans and which significantly enhances the
release of pro-inflammatory cytokines, e.g., IL-6 and IL-1b.72

Figure 2. Host innate immune responses to C. albicans blood stream infection. Upon transmigration of skin skin/mucosal barrier and entry to the blood-
stream, C. albicans will activate the complement system and encounter circulating and resident leukocytes. Neutrophils are considered the forerunners
of innate responses to C. albicans due to their efficient recognition and clearance of the fungus. Complement receptor 3 (CR3) and FCgR are the para-
mount human neutrophil receptors capable of recognizing C. albicans. Contact to the fungus initiates various signaling cascades, which in turn instigate
effector mechanisms e.g. phagocytosis, oxidative burst and neutrophil extracellular trap (NET) formation. Mononuclear phagocytes include circulating
monocytes as well as macrophages and dendritic cells residing in various tissues. These cells recognize C. albicans principally via dectin-1 which acts in
concert with other pattern recognition receptors. They are a dominant source of IL-6 and TNF-a, both of which can exert direct effects on the fungus
and also influence other immune cells. Although NK cells harbor many PRR capable of C. albicans recognition, NKp30 is the principal mediator of NK cell
anti-Candida activity. NK cell-released perforin is directly candidacidal. Additionally, NK cells secrete GM-CSF and IFN-g which both potently modulate
other immune cells. Candida is a potent activator of human complement. Complement activation results in opsonization by deposition of C3b and
release of anaphylatoxins C5a and C3a which influence immune cell recruitment and effector mechanisms. In addition to C3b, recognition of the fungal
protein Pra1 and surface-recruited Factor H, a major regulator of complement activation, mediate recognition by immune cell CR3.
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Furthermore, C5a can influence neutrophil function during
sepsis and even induce paralysis of neutrophils.73,74 Thus,
early and pronounced activation of complement is also a criti-
cal determinant in the activation of cellular responses toward
Candida and directly triggers activation of major innate
immune cell populations involved in anti-fungal immunity
while at the same time potentially contributing to adverse
effects of fulminant immune activation.

The Various Roles
of Neutrophils in C. albicans Sepsis

Polymorphonuclear leukocytes (PMN) represent the majority
of circulating leukocytes in humans. The sheer number of this
cell type in circulation, as well as their aggressive and successful
elimination of invading pathogens,75 advocates them as forerun-
ners of innate defense. In the murine system, early availability of
neutrophils has been shown to be essential for protection.76 Both
clinical and experimental evidence has confirmed that neutro-
phils are integral components of the innate immune system dur-
ing C. albicans infection. Most importantly, human neutrophils
are the only immune cell which can prevent the transition from
yeast to filamentous growth—a key virulence trait of C. albi-
cans,37,77 and dominate the transcriptional response of C. albi-
cans in whole blood.78 PMN control the elimination of C.
albicans from the bloodstream39 and as such, these professional
phagocytes are considered primary effector cells in C. albicans
infection prevention and neutropenia is a clear risk factor for
mortality in human systemic candidiasis.79,80 However, it must
be noted that in systemic Candida infection, PMN can also exert
adverse effects which are linked to their potent pro-inflammatory
activity and bystander damage to host tissues inflicted by anti-
microbial effector mechanisms. In line with this, neutropenic
patients with invasive candidiasis may require corticosteroid ther-
apy after neutrophil reconstitution to avoid adverse effects of
hyper-inflammation.81 Circulating PMN are recruited rapidly to
sites of Candida infection and upon activation IL-8 is the major
cytokine released by C. albicans activated PMN which promotes
the further recruitment of PMN.77 Consequently, the IL-8 – IL-
8R signaling axis is essential for protective immunity.82 However,
several other cytokines contribute to PMN recruitment and func-
tion. In the murine model system for example type 1 interferon
(INF-1) signaling mediates neutrophil recruitment by stimulat-
ing early release of inflammatory cytokines, e.g., IL-6.83 IL-17
can be produced by T cells, but also neutrophils during Candida
sepsis, when it promotes early and sustained recruitment of neu-
trophils into the C. albicans infected kidney.84 While IFN-1 and
IL-17 are important at early stages, chemokine receptor CCR1 is
necessary for PMN trafficking from the blood to the kidney dur-
ing later stages of infection,85 which is correlated with neutro-
phil-mediated immunopathology and mortality. While other
myeloid cells constantly expressed CCR1, neutrophils were
found not to express the receptor until days after C. albicans
infection. Independent of CCR1 expression, neutrophils were
able to mount normal effector mechanisms, demonstrating that

the immunopathology related to the quantity of infiltrating neu-
trophils and not their activity.85 Aside from recruiting PMN,
cytokines and chemokines are involved in activating these cells
during Candida infection. Murine knock-out strains of several
cytokines display a decrease in PMN anti-C. albicans activity due
to an impaired intrinsic pre-stimulation of PMN.86 Cell types
that secrete factors modulating PMN anti-fungal activity include
antigen-presenting cells, epithelial and endothelial cells as well as
antigen-specific T cells.86-88 In addition to this, NK cell–PMN
cross-talk may be immunologically relevant89,90 (see later).

Neutrophil receptors involved in Candida recognition
PMN express various pattern recognition receptors as well as

receptors for opsonizing antibodies and complement compo-
nents.91 Thus, interaction with Candida as well as concomitant
activation is mediated by a set of closely interlinked interactions
and signaling events and cannot be contributed to a single recep-
tor. However, several lines of evidence suggest that complement
receptor 3 (CR3; also known as amb2 integrin; Mac-1, CD11b/
CD18) is a major receptor for C. albicans yeast and hyphae on
human neutrophils.50,92,93 CR3 is expressed on circulating neu-
trophils and may be rapidly recruited from intracellular compart-
ments to the cell surface upon activation.94 Van Bruggen and co-
workers found that phagocytosis of unopsonized C. albicans by
human PMN was mainly mediated by CR3, while no explicit
role for neutrophil expressed dectin-1 was observed95(Fig. 2).
Multiple possibilities for the interaction of C. albicans with this
receptor have been described: CR3 is the major receptor for C3b
and its cleavage product iC3b and can therefore recognize C.
albicans after complement mediated opsonization.96 Further-
more, the C. albicans surface protein Pra1 as well as the cell-wall
component b-glucan can directly bind to CR3.97 Finally, C. albi-
cans harbors a set of proteins known as CRASPs (complement
regulator surface acquiring proteins) that can recruit the comple-
ment regulator factor H (CFH) and related complement regula-
tors to its surface.60a After recruitment to the surface of Candida,
CFH family proteins CFH, CFH-like protein 1 (CFHL1) and
CFH-related protein (CFHR) 1 can bind to CR3 and increase
attachment of neutrophils to C. albicans.98 Thus, CR3 is able to
mediate both uptake of both (C3b-)opsonized and non-opson-
ized C. albicans. In contrast to CR3, human dectin-1, a major
human receptor for b-glucan,99 seems to play a minor role in
phagocytosis of Saccharomyces cerevisiae or zymosan by human
PMN.95 In addition, neither generation of reactive oxygen inter-
mediates (ROI) nor secretion of IL-8 in response to zymosan
required dectin-1 signaling in human PMN.95 These data may
indicate a less pronounced role for dectin-1 in PMN-Candida
interaction, contrary to the dominant role of dectin-1 signaling
in other cell types (see below). This is further confirmed by recent
findings showing that killing of C. albicans by human PMN
occurs independently of dectin-150. In contrast, loss of caspase-
associated recruitment domain 9 (CARD9), the intracellular
adapter molecule downstream of dectin-1 signaling,100,101 has
been shown to significantly impair unopsonized anti-Candida
immunity in human neutrophils.51 However, this function seems
to be independent of dectin-1 and is known to act downstream
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of several receptors, including other C-type lectin receptors.50 It
should be noted that dectin-1 may be more important for the
activation of murine PMN by Candida.102 In the murine system,
dectin-1 has been shown to induce and activate CR3 after ligand
binding to also recognize fungal components.103,104 This cross-
activation was found to be required for murine neutrophil cyto-
toxic responses.104 CR3 activation and neutrophil effector func-
tions in murine neutrophils also required exchange factors for
RhoGTPases Vav1 and Vav3.104

Neutrophils also express a range of Toll-like receptors (TLR).
In mice, TLR2 expression is required for optimal neutrophil
chemotaxis, pro-inflammatory cytokine production and MPO
activity in response to murine C. albicans infection.105 However,
TLR signaling is not essential for anti-Candida activity of
human PMN as shown by testing PMN from patients with
IRAK4 deficiency, a central component in TLR signaling.106

Finally, neutrophils constitutively express FcgR; specifically,
FcgRIII (CD16) activation can initiate characteristic neutrophil
activation mechanisms, e.g., degranulation and respiratory
burst.107,108 In summary, while CR3 seems to play a central
role multiple receptors may contribute to the interaction of
PMN with C. albicans.

Anti-candida effector mechanisms of neutrophils
Once they recognize the pathogen, PMN have a range of weap-

ons they can unleash against C. albicans. Among the most promi-
nent mechanisms is the rapid formation of reactive oxygen
intermediates (ROI) termed ‘oxidative burst’. Upon activation,
the neutrophilic NADPH oxidase-complex is assembled on the
cytoplasmic membrane to release superoxide into the extracellular
space, or on the phagosomal membrane to release oxidants into
phagosome.109,110 PMN isolated from NADPH (and MPO) defi-
cient mice show reduced C. albicans killing ex vivo.111,112 Aside
from inducing oxidative stress,113,114 ROI are required for the for-
mation of the so-called neutrophil extracellular traps (NETs).115–
117 However, this may only be the case in the blood stream as
NET formation seems to be CR3 dependent and ROI indepen-
dent in tissues93 NETs provide a barrier past which a pathogen
cannot easily pass, and instead becomes entangled in a mesh of
cytotoxic compounds. These are structures formed of released neu-
trophil chromatin decorated with anti-microbial substances, prin-
cipally calprotectin,117 which are normally stored within
neutrophilic granules and can be formed within 10 minutes of
activation.118 NETs have been shown to entrap free bacteria in
the bloodstream and therefore prevent dissemination in an Escheri-
chia coli model of sepsis.119 They may form simply from the
plasma of septic patients,120 as well as upon direct contact with a
pathogen. C. albicans induces NET formation, after which both
filamentous and yeast forms are trapped and killed.116 The rele-
vance of NETs to Candida sepsis may be suggested by increased
susceptibility of mice deficient in calprotectin, a key component of
NETs, to systemic candidiasis. However, with additional immu-
nomodulatory effects of calprotectin well established in the litera-
ture, this is not formal proof for a role of NET-formation in anti-
Candida immunity.117 In addition to oxidative burst and NET
formation, neutrophils contain an arsenal of anti-microbial

peptides and proteins, many of which also have anti-fungal activ-
ity. Furthermore, they can release cytokines, which recruit other
immune cells and potentially induce damage in Candida and
induce carbohydrate and nitrogen starvation.113,121 However, it is
still relatively unclear exactly how PMN kill C. albicans. Most
likely, a combination of different stresses forms the basis for their
fungicidal activity.122,123 In a recent study, 2 distinct mechanisms
for killing of C. albicans dependent on how PMN recognize either
opsonized or unopsonized fungus have been described.50

Unopsonized C. albicans is recognized via CR3 and killing is CR3
and CARD9 dependent, whereas dectin-1 was not required. In
contrast, opsonized C. albicans was recognized via FcgR, and
PKC and NADPH oxidase activity were the principal killing
machinery.50 The latter studies demonstrate that in the complex
environment of the host, combinations of killing mechanisms
are in play which occur independent of pattern recognition
receptors like TLR and dectin-1 dominating the activation of
monocytic cells and can compensate for each other under defi-
ciency conditions. Thus, redundancy of anti-fungal mechanisms
is most likely a major contributor to the potent fungicidal activ-
ity of PMN.

Linking Innate and Adaptive Immune Responses:
Monocytes, Macrophages and Dendritic Cells

Relative to neutrophils, monocytes—the second most abun-
dant innate immune cell population in human blood—may play
a smaller role in the initial response to C. albicans blood stream
infection and are in fact less effective in C. albicans killing in
whole blood.39 Nevertheless, monocytes as well as macrophages
and dendritic cells (DC) are crucial in establishing protective
immunity and monocyte deficient mice suffer quick dissemina-
tion into organs and higher mortality following C. albicans infec-
tion,124 although monocytopenia alone does not confer
susceptibility to candidiasis.125,126 Monocytes may also play an
integral role in anti-Candida defense in locations of dissemina-
tion, e.g., the kidney, where early and organ specific innate
responses have recently been demonstrated in the murine
model.127 Abrogation of inflammatory monocyte trafficking into
the kidneys impaired fungal clearance and decreased survival.
Migration of these cells was mainly mediated by CCR2 and
depletion of CCR2-expressing cells led to uncontrolled fungal
growth in the kidneys and brain.128 Similarly, the promotion of
macrophage survival and accumulation in tissues by CX3CR1-
dependent mononuclear cells is a critical mechanism by which
the early innate response can protect against candidiasis.129 DC
are the most potent antigen presenting cells in the human body
and play a crucial role in inducing and modulating adaptive
immune responses. Recently the role of DC in anti-fungal
immune responses has been reviewed (see ref130). The spectrum
of receptors used for recognition of Candida in these cells is
broad and includes C-type lectin receptors (CLR) including dec-
tin-1, dectin-2, Macrophage Mannose Receptor (MMR) and
DC-SIGN, as well as TLRs, namely TLR2, TLR4, TLR7 and
TLR9.91,130 Aside from these, several other receptors can contrib-
ute to recognition of Candida, including complement receptors
CR3, CR4 and Fc-receptors. Despite this plethora of potential
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receptors, dectin-1 seems to play a prominent role in the recogni-
tion of C. albicans and activation of DC by C. albicans occurs via
dectin-1 recognition of b-glucan, and involving, to a lesser
extent, recognition of other surface structures by TLR.131 Simi-
larly, dectin-1 is central for recognition of A. fumigatus.132 Dec-
tin-1-triggered CARD9 signaling then drives cytokine
production, through an NF-kB and NFAT-dependent path-
way.133 The central importance of CARD9 signaling to the DC
response to C. albicans is highlighted by the finding that mice
deficient in the dectin-1-CARD9 pathway are unable to mount
normal DC cytokine secretion, for example IL-6 and TNF-a,
and neither are they able to generate Th17 cells upon confronta-
tion with C. albicans.101,134 In addition, IFN-b production by
DC induced by C. albicans is largely dependent on dectin-1 and
dectin-2 mediated signaling and plays a crucial role in the
defense against C. albicans infection.83,135,136 The prominent
role of CLR signaling in murine Candida infection has
recently been confirmed by a study showing that the selective
loss of spleen tyrosine kinase Syk but not the TLR adaptor
protein MyD88 in DC abrogates innate resistance to systemic
C. albicans infection in mice. Syk is recruited by dectin-1 and
other CLR and can trigger NF-kB activation via CARD9101 as
well as other signaling cascades e.g., NFAT, MAPK and
PI3K.137,138 Engagement of dectin-1 with C. albicans leads to
Syk expression and CARD9 complex assembly. This was
found to be essential for C. albicans induced IL-23p19 release,
which in turn mediates GM-CSF secretion by natural killer
(NK) cells at the site of infection. As NK cell-derived GM-
CSF sustains the anti-Candida activity of neutrophils, the
authors conclude that DC mediated an innate response to
Candida sepsis, dependent on SYK signaling.139,140

Natural Killer Cells

Although traditionally studied in the context of anti-viral and
anti-tumor immunity, NK cells have recently gained prominence
as key players in various fungal infections. These cells form a pop-
ulation of innate lymphocytes, accounting for 5–10% of circulat-
ing blood lymphocytes. Most of the blood NK cells express high
levels of CD56 (CD56bright) and produce high levels of per-
forin.141 Early on, activity of NK cells was reported against Crypto-
coccus neoformans.142,143 Anti-fungal roles for NK cells in
aspergillosis and cryptococcosis are attributed to cytokine and per-
forin release, respectively.144–146 Whereas patients with inherited
NK cell deficiencies are generally not more susceptible to candidia-
sis than the healthy population, in a murine model of invasive oro-
pharyngeal candidiasis, combined T and NK cell deficiencies were
detrimental to outcome, while T cell deficiency alone exerts no
discernible phenotype.147 Recently, several studies have addressed
the role of NK cells in systemic Candida infection. NK cells are
activated by C. albicans and can wield direct perforin mediated
cytotoxic effects on the fungus.90 Interestingly, human NK cells
have been found to ingest C. albicans by phagocytosis and elicit
pro-inflammatory responses.90 NK cells harbor a range of recep-
tors capable of recognizing C. albicans such as TLR, mannose,

scavenger, FCg receptor and NK cell activating receptors.148,149

However, the principal C. albicans recognition receptor was
recently shown to be NKp30.150 NKp30 was responsible for rec-
ognition and killing of C. albicans and also C. neoformans. Recog-
nition of fungi via NKp30 resulted in PI3K signaling and perforin
release, which has been shown to exert anti-fungal activity. Using
NK cells from HIV infected patients, which exhibit a dimin-
ished expression of NKp30, the authors showed that reduced
levels of NKp30 are associated with defective anti-fungal activ-
ity.150 NK cells can also indirectly affect C. albicans via modula-
tion of other immune cells.90,140 Several cytokines released by
Candida-activated NK cells, including GM-CSF and IFN-g,
may directly trigger anti-fungal effector mechanisms in other
immune cells.140,151,152 NK cells have been shown to exert
immuno-modulatory functions,128,153-155 influence PMN sur-
vival156 and expression of neutrophil activation markers.157 In a
murine model for C. albicans sepsis in immuno-competent
mice, NK cells have a detrimental influence on the course of
disease by promoting hyper-inflammation, which resulted in
reduced survival time.158 In contrast, in immuno-compromised
animals deficient in B and T cells, NK cells were found to be
beneficial in recruiting and activating other immune cells, aiding
in eventual clearance of the fungus.158

Conclusion and Outlook

Immune responses in systemic Candida infection and sepsis are
complex and involve several rapidly acting players. More impor-
tantly, the balance between protective immunity and harmful
hyper-inflammation is hard to define and several protective inflam-
matory reactions have been shown to also contribute to sepsis
pathology. A future thorough understanding of these mechanisms
may offer new insight into the pathophysiology of these infections,
as well as open new avenues for tests allowing early discrimination
of bacterial and fungal sepsis and targeted anti-microbial therapy.
With individualized approaches to clinical management of infec-
tions rapidly developing and a pressing need for stratification of
the broad clinical entity sepsis being increasingly recognized, this
research forms the basis for translational approaches to fungal sep-
sis.159 To get meaningful insight into the underlying mechanisms,
a combination of models has to be used, taking into account the
strengths and weaknesses of each of them. Thus, although the
murine system clearly provides the model of the highest complex-
ity, it is not necessarily always superior. Finally, the field of infec-
tion genetics has provided major advances to our understanding of
anti-Candida immunity. With molecular tools rapidly evolving
and sequencing approaches becoming more and more feasible, it
is likely that new findings will arise from in-depth studies of indi-
viduals suffering from well characterized diseases. Clearly, these
studies will pave the way toward optimized and individualized
clinical management of infectious diseases.
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