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Abstract 
Genome-wide association studies (GWAS) for autoimmune hepatitis (AIH) and GWAS/genome-wide meta-analyses 
(GWMA) for primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) have been successful over the past 
decade, identifying about 100 susceptibility loci in the human genome, with strong associations with the HLA locus and many 
susceptibility variants outside the HLA locus with relatively low risk. However, identifying causative variants and genes and 
determining their effects on liver cells and their immunological microenvironment is far from trivial. Polygenic risk scores 
(PRSs) based on current genome-wide data have limited potential to predict individual disease risk. Interestingly, results of 
mediated expression score regression analysis provide evidence that a substantial portion of gene expression at susceptibil-
ity loci is mediated by genetic risk variants, in contrast to many other complex diseases. Genome- and transcriptome-wide 
comparisons between AIH, PBC, and PSC could help to better delineate the shared inherited component of autoimmune liver 
diseases (AILDs), and statistical fine-mapping, chromosome X-wide association testing, and genome-wide in silico drug 
screening approaches recently applied to GWMA data from PBC could potentially be successfully applied to AIH and PSC. 
Initial successes through single-cell RNA sequencing (scRNA-seq) experiments in PBC and PSC now raise high hopes for 
understanding the impact of genetic risk variants in the context of liver-resident immune cells and liver cell subpopulations, 
and for bridging the gap between genetics and disease.

Keywords  Autoimmune hepatitis · Primary biliary cholangitis · Primary sclerosing cholangitis · Genome-wide association 
studies (GWAS) · Genome-wide meta-analyses (GWMA) · HLA · Non-HLA · Polygenic risk score · Mediated expression 
score regression

Introduction

The liver can be affected by three leading forms of complex 
autoimmune liver diseases (AILDs), in which the immune 
system attacks different sites in the liver: autoimmune hepa-
titis (AIH), primary biliary cholangitis (PBC), and primary 
sclerosing cholangitis (PSC). The exact pathogenesis of 
these diseases is poorly understood, and available therapeutic 

approaches are only partially effective. AIH is a rare, chronic 
progressive disease with a prevalence of approximately 4–42 
per 100,000 depending on geographical location [1]. It is 
characterized by elevated levels of serum transaminases and 
immunoglobulin G (IgG), inflammatory liver histology, the 
presence of autoantibodies, and the absence of markers for 
viral hepatitis [2]. AIH occurs predominantly in middle-aged 
women but can affect all age groups of both sexes [3]. The 
exact cause of AIH is unknown, although loss of tolerance 
against liver antigens is thought to be the major pathophysi-
ologic mechanism caused by an unknown trigger in individ-
uals with a genetic susceptibility [4]. Concordance of AIH 
and familial clustering of AIH were found in twins, with an 
estimated pair-wise concordance rate in monozygotic twins 
of 8.7%, suggesting genetic risk factors for AIH [5]. PBC is 
a rare disease in which a cycle of immune-mediated damage 
to biliary epithelial cell, cholestasis, and progressive fibrosis 
over time can lead to end-stage biliary cirrhosis. PBC more 
commonly affects women, with a prevalence of about 4–58 
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per 100,000 people [6], and is characterized by autoimmune 
destruction of small to medium size intrahepatic bile ducts 
and the presence of anti-mitochondrial antibodies (AMAs), 
which are present in > 90% of cases [7, 8]. The onset of the 
disease is thought to be due to the interaction of environ-
mental triggers and a genetic predisposition. Genetic risk is 
consistent with other complex autoimmune diseases, with 
an estimated sibling relative risk of 10.5 [9] and a pairwise 
concordance rate in identical twins of 63%, which is among 
the highest reported in autoimmune diseases [10]. PSC is a 
rare disease characterized by multifocal biliary strictures and 
progressive liver disease. In PSC, there is autoimmune dam-
age to the medium to large bile ducts leading to concentric 
and obliterative fibrosis and structuring [11]. The prevalence 
of PSC is approximately 10 per 100,000 [12]. The most com-
mon positive autoantibodies are perinuclear antineutrophil 
autoantibodies (pANCA), which are detected in about 80% 
of patients but are not specific enough for diagnosis [13, 14]. 
Unlike AIH and PBC, men are more commonly affected by 
PSC than women [15]. First-degree relatives of patients with 
PSC have an 11.5-fold increased risk of PSC [16].

AIH, PBC, and PSC are not yet curable. Progression of 
the disease, especially in PSC, often leads to liver trans-
plantation or death. AIH is usually treated by regulating the 
immune system with steroid and thiopurine-based treatments 
[17], which is why therapy in AIH is often associated with 
significant side effects [4]. In many cases, the drugs can 
permanently suppress AIH and allow patients to live a nor-
mal life. If the disease progresses to cirrhosis despite con-
sistent therapy, liver transplantation is the only option. Two 
drugs, the natural bile acid ursodeoxycholic acid (UDCA) 
and the semi-synthetic bile acid obeticholic acid (OCA), are 
approved and mainly used for the treatment of PBC. Long-
term therapy with UDCA is often successful if started early 
[18], but many patients respond poorly to both agents, put-
ting them at risk of progressive liver disease [19]. Therapy 
of PSC is also carried out with UDCA, but in contrast to 
PBC, the success of therapy in PSC is rather limited. In 
certain circumstances, liver transplantation is the only thera-
peutic option. Biologics, such as anti-tumor necrosis factor 
alpha (TNF-α) or B cell-depleting antibodies [20], and many 
new drugs are currently being investigated for the treatment 
of AILDs [21]. Unfortunately, there are still no promising 
drugs that target the (unknown) key pathogenic processes 
in the early phase of disease progression [22]. Of central 
importance is the improvement of risk stratification strat-
egies, which requires in-depth, longitudinal phenotyping 
of patients using multi-omics data analysis. The different 
course of the disease and the different response of patients 
to treatment could also be related to the heterogeneous 
genetic background of individual patients, which translates 
into a heterogeneous clinical phenotype [23]. Elucidating 

the genetic architecture of AIH, PBC, and PSC is likely 
to contribute to a better understanding of these diseases 
by identifying causative genes and downstream signaling 
pathways that can be influenced pharmacologically. Genetic 
research should complement future work to identify the as 
yet unknown environmental risk factor(s) responsible for the 
development of autoimmune liver disease through interac-
tion with genetic factors [24]. One of the greatest challenges 
in genetic epidemiological studies remains deriving a func-
tional biological interpretation of the results from GWAS. 
In the following, I describe the current status from GWAS 
studies for AIH, PBC, and PSC and briefly outline what 
additional work I believe is promising to better understand 
the genetic component and its biological contribution.

HLA‑related genetic associations from GWAS

AIH, PBC, and PSC show a strong association with clas-
sical human leukocyte antigen genes (class I and II HLA 
genes; region on chromosome 6p21), which is a common 
feature of autoimmune diseases, with HLA susceptibility 
variants usually having a much greater impact than any other 
risk variant in the genome [25]. Proteins encoded by HLA 
genes are expressed on cell surfaces and present processed 
antigens to immune cells, which then activate downstream 
immune processes. A GWAS is an association study involv-
ing several million single nucleotide polymorphisms (SNPs) 
to determine the contribution of genetic variants to disease 
susceptibility [26]. The first GWAS for AIH [27], PBC [28], 
and PSC [29] revealed genetic associations close to classical 
HLA susceptibility alleles discovered before the GWAS era 
[30]. Subsequent GWAS and genome-wide meta-analyses 
(GWMA) used HLA imputation methods to investigate a 
variety of HLA alleles as possible susceptibility alleles. 
HLA imputation is a method of deriving HLA types for 
patients and controls in GWAS studies by imputing (pre-
dicting) genotypes of HLA genes using regional SNPs and 
a SNP-HLA-allele reference panel for imputation [31]. In a 
first GWAS for AIH [27], involving 649 adult AIH patients 
and 13,436 controls, followed by replication in 451 patients 
and 4103 controls, the strongest genome-wide significant 
(P < 5 × 10−8) association signal for SNP rs2187668 was 
found at 6p21.32, and HLA imputation assigned the SNP 
signals to HLA-DRB1*03:01, which is considered the pri-
mary AIH susceptibility allele (Table 1); HLA-DRB1*04:01 
was identified as another independent (i.e., secondary) AIH 
susceptibility allele by conditional forward stepwise logistic 
regression analysis [32]. Recently, a meta-analysis of two 
GWAS study populations from China (1622 Chinese AIH 
type 1 patients and 10,466 population controls) identified a 
SNP association signal near HLA-B [33]. Results of GWAS 
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and HLA fine-mapping for other populations as well as tran-
sethnic studies (i.e., studies across globally different study 
populations with largely different haplotype structure) are 
not available for AIH but would be of great importance to 
identify additional HLA susceptibility alleles and determine 
susceptibility to AIH across populations. In PBC, a total of 
14 HLA alleles with genome-wide significance were identi-
fied in a HLA Immunochip fine-mapping study of 2861 PBC 
cases and 8514 controls of European ancestry [34], with four 
independent HLA association clusters for PBC identified by 
conditional logistic regression (Table 1). The first three inde-
pendent HLA susceptibility alleles (clusters representatives) 
DQA1*04:01, DQB1*06:02 and DQB1*03:01 confirmed 
findings from serological studies [35–37], with the fourth 
allele DRB1*04:04 not previously associated with PBC. In 
another Immunochip HLA fine-mapping study of 676 Ital-
ian PBC cases and 1440 controls, three DRB1 (DRB1*08, 
DRB1*11, DRB1*14) and one DPB1 (DPB1*03:01) suscep-
tibility cluster were identified through conditional analysis 
[38], although DRB1*14 and DPB1*03:01 did not meet the 
genome-wide significance threshold and are therefore not 
listed in Table 1. An HLA genotyping study of 1200 Japa-
nese PBC patients and 1196 controls found a primary con-
tribution of DQB1*06:04 and DQB1*03:01 to PBC suscep-
tibility [39]. Subsequently, a GWAS and HLA fine mapping 

study of 1126 Han Chinese PBC patients and 1770 controls 
showed that DRB1 (with DRB1*08:03) and/or DQB1 (with 
DQB1*03:01) picked up most of the signals, with DPB1 
(DPB1*17:01) being an independent locus [40]. Interest-
ingly, the protective DQB1*03:01 allele for PBC has been 
identified as a secondary association signal in populations 
of European origin and in Japan, whereas it is considered 
a primary association signal in the Han Chinese popula-
tion. For a complete list of HLA susceptibility alleles for 
PBC, including alleles from candidate studies, see Gerussi 
et al. [41]. For PSC, five independent HLA association clus-
ters (B*08:01; DQA*01:03; DQA*05:01; DRB1*15:01; 
DQA*01:01) were identified in an Immunochip fine-map-
ping study of 3789 PSC cases and 25,079 population con-
trols [42]. In their combined stepwise regression analysis 
of HLA alleles and SNPs, HLA class II associations were 
consistent with previous studies [43, 44], with the excep-
tion of DQA1*01:01 which was newly added (Table 1). For 
a complete list of HLA susceptibility alleles for PSC from 
candidate studies up to 2013, see Mells et al. [45], although 
this list of candidate HLA alleles has not been expanded to 
include with new candidates from non-GWAS studies since 
the advent of several GWMA studies for PSC. Regression 
analysis can work with covariates and allows disentangling 
the HLA effect from confounding factors such as population 

Table 1   Statistically independent and genome-wide significant 
(P < 5 × 10−8) HLA susceptibility alleles identified by (hypothesis-
free) GWAS/Immunochip analyses using HLA imputation models for 
classical HLA genes or by full HLA locus genotyping experiments. 
Only the representative allele of the HLA cluster from the respective 
publication is shown. HLA alleles from candidate gene studies are 

not listed. Effect direction refers to whether the minor allele increases 
or decreases the risk of disease. Secondary association signals were 
determined in the respective publication by stepwise logistic forward 
regression analysis, with the lead signals added as covariates. ‡SNP 
association signal near HLA-B gene was reported; no HLA allele 
association analysis was performed 

Disease HLA allele Effect direction Population Lead/secondary signal Reference

AIH DRB1*03:01 Risk Netherlands/Germany Lead De Boer et al. (2014) [27]
AIH DRB1*04:01 Risk Netherlands/Germany Secondary De Boer et al. (2014) [27]
AIH HLA-B‡ Risk China Lead Li et al. (2022) [33]
PBC DQA1*04:01 Risk UK Lead Liu et al. (2012) [34]
PBC DQB1*06:02 Protective UK Secondary Liu et al. (2012) [34]
PBC DQB1*03:01 Protective UK Secondary Liu et al. (2012) [34]
PBC DRB1*04:04 Risk UK Secondary Liu et al. (2012) [34]
PBC DRB1*08 Risk Italy Lead Invernizzi et al. (2012) [38]
PBC DRB1*11 Protective Italy Secondary Invernizzi et al. (2012) [38]
PBC DQB1*06:04 Protective Japan Lead Yasunami et al. (2017) [39]
PBC DQB1*03:01 Protective Japan Secondary Yasunami et al. (2017) [39]
PBC DQB1*03:01 Protective China Lead Wang et al. (2020) [40]
PBC DPB1*17:01 Risk China Secondary Wang et al. (2020) [40]
PBC DRB1*08:03 Risk China Secondary Wang et al. (2020) [40]
PSC B*08:01 Risk Europe and North America Lead Liu et al. (2013) [42]
PSC DQA*01:03 Risk Europe and North America Secondary Liu et al. (2013) [42]
PSC DQA*05:01 Risk Europe and North America Secondary Liu et al. (2013) [42]
PSC DRB1*15:01 Risk Europe and North America Secondary Liu et al. (2013) [42]
PSC DQA*01:01 Risk Europe and North America Secondary Liu et al. (2013) [42]
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stratification, sex, and others. However, conditional forward 
stepwise regression analysis has several methodological 
disadvantages. First, as the number of conditioning steps 
increases, so does the number of statistical tests. If there are 
m alleles in the region of interest, about k*m statistical tests 
are performed after k consecutive steps, which significantly 
increases the probability of a false positive result. Second, 
if m is large, perhaps close to the number of individuals 
in the GWAS study, and if a liberal significance threshold 
is used to include alleles at each step, the forward selec-
tion procedure becomes unstable and is too optimistic about 
the disease variation explained by the selected allele. For 
this reason, I have listed in Table 1 only statistically inde-
pendent and genome-wide significant HLA susceptibility 
alleles (cluster representatives) that are also genome-wide 
significant after conditioning regression analysis. The iden-
tification (fine-mapping) of a complete set of potentially 
“causal” HLA alleles in the overall context of all class I and 
I genes requires the use of high-quality multi-ethnic refer-
ence panels from different genetic backgrounds [46, 47], 
highly accurate HLA type imputation algorithms [31], the 
study of non-additive and interaction effects [48], inclusion 
of amino acid alleles composing HLA alleles [49], and func-
tional fine-mapping approaches [50–52]. Future HLA fine-
mapping studies for AIH, PBC, and PSC therefore have the 
potential to further refine these signals from previous GWAS 
and HLA imputation studies.

Non‑HLA‑related genetic associations 
from GWAS

As the number of GWAS studies for AIH, PBC, and PSC 
increased, it became clear that the effect sizes of non-HLA 
associations were much smaller compared with associations 
with HLA alleles. For AIH, a coding variant rs3184504 
in SH2B3 was identified as a susceptibility variant with 
genome-wide significance in study populations from the 
Netherlands and Germany [27]; two additional non-coding 
variants (rs72929257 near CTLA4 and rs6809477 at SYNPR) 
were recently identified across two study populations from 
China [33]. For PBC, the largest GWMAs of European 
(Asian) case–control populations yielded 45 (12) loci with 
genome-wide significance, with a total of 55 genome-wide 
significant non-HLA susceptibility loci identified in one 
or the other GWMA [53]. GWMAs for PSC identified a 
total of 22 genome-wide significant non-HLA susceptibil-
ity loci in Europeans [42, 54, 55]; non-European as well as 
trans-ethnic GWMAs have not yet been performed for PSC. 
Table 2 summarizes all non-HLA susceptibility variants 
from GWMA studies for AIH, PBC, and PSC. For a review 
of non-HLA susceptibility variants for AIH, PBC, and PSC 
from monocentric studies, including candidate studies, see 

Engel et al. [56], Gerussi et al. [41], and Chung/Hirschfeld 
[57], respectively. For PBC, Bayesian fine-mapping was 
recently performed for the 55 non-HLA PBC susceptibil-
ity loci [53]. Bayesian methods are particularly well suited 
for fine-mapping of non-HLA loci to identify statistically 
“causal” sets of variants [58] and have been successfully 
used, for example, to fine-map inflammatory bowel disease 
(IBD) risk loci to single-variant resolution [59]. For 40 (9) 
of 55 non-HLA PBC susceptibility loci, the association sig-
nal was best explained by a single variant (posterior prob-
ability ≥ 0.5) across European and Asian (Asian only) popu-
lations (Table 2); for AIH and PSC, Bayesian fine-mapping 
for established non-HLA susceptibility regions remains 
to be performed. Chromosome X association analysis has 
unfortunately been neglected in most GWAS studies [60]. 
Recently, a chromosome X-wide association study for PBC 
identified a genome-wide significant locus at Xp11.23 (the 
locus includes the GRIPAP1 gene; see Table 2) in East Asian 
PBC case–control study populations, which also shows an 
association signal (not yet genome-wide significant) across 
European and Asian PBC case–control study sets [61]. 
X-linked inheritance models in GWAS/GWMA for PSC 
and AIH thus have the potential to reveal additional genetic 
associations. Figure 1 summarizes the polygenic landscape 
of genome-wide significant HLA and non-HLA susceptibil-
ity variants (each of which was named in association with a 
nearby candidate gene) for AIH, PBC, and PSC.

SNP‑based (co)‑heritability

The proportion of genetic variance in liability (i.e., herit-
ability explained by individual genetic variants for binary 
outcomes; additive model based on disease prevalence, rela-
tive risks, and allele frequencies [62]) for PBC explained 
by four major HLA alleles [34] (Table 1) and 26 independ-
ent genome-wide significant non-HLA susceptibility vari-
ants (subset from Table 2) was estimated to be 4.9% and 
1.4%, respectively, which account together for 16.2% of 
total PBC heritability [34]. More recent calculations using 
the much larger PBC GWAS sets available today would be 
desirable, as would estimates for AIH. SNP-based herit-
ability for PSC explained by 16 independent genome-wide 
significant loci (including major HLA alleles) account for 
7.3% of total PSC heritability [42]; again, more up-to-date 
estimates would be desirable. The discrepancy between the 
variance caused by common SNPs and the expected herit-
ability of AILDs from twin studies is referred to as missing 
heritability [63]. This gap in heritability can have several 
possible causes: Heritability from twin studies could be 
overestimated because common environmental factors or 
non-additive effects were not taken into account. On the 
other hand, part of the heritability could be due to genetic 
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Table 2   Genome-wide significant (P < 5 × 10−8) non-HLA suscep-
tibility variants identified by two (hypothesis-free) GWAS for AIH 
and several genome-wide meta-analyses (GWMA) for PBC and PSC. 
Susceptibility variants for PBC and PSC from monocentric studies 
and studies with candidate gene are not listed. Variant: dbSNP name 
of the variant. Chromosome:position: human genome build hg37. 

Candidate gene: candidate gene from the respective publication. Fine-
mapped to single variant: In cases where loci could be resolved to a 
single variant by Bayesian fine-mapping with high probability as 
causal (posterior probability > 50%), the name of the variant is indi-
cated. NA: fine-mapping results not yet available

Disease Variant Chromosome:position Candidate gene Population Fine-mapped to 
single variant

Reference

AIH rs3184504 12:111,884,608 SH2B3 Netherlands/Germany NA De Boer et al. (2014) [27]
AIH rs72929257 2:204,982,643 CTLA4 China NA Li et al. (2022) [33]
AIH rs6809477 3:63,563,282 SYNPR China NA Li et al. (2022) [33]
PBC rs867436 1:2,523,723 MMEL1 European ancestry rs867436 Cordell et al. (2021) [53]
PBC rs6679356 1:67,820,194 IL12RB2 European ancestry rs6679356 Cordell et al. (2021) [53]
PBC rs10802191 1:117,065,083 CD58 European ancestry rs10802191 Cordell et al. (2021) [53]
PBC rs945635 1:157,670,290 FCRL3 European ancestry rs945635 Cordell et al. (2021) [53]
PBC rs12123169 1:197,780,966 DENND1B European ancestry rs12123169 Cordell et al. (2021) [53]
PBC rs55734382 1:201,019,059 INAVA European ancestry rs55734382 Cordell et al. (2021) [53]
PBC rs34655300 2:25,514,333 DNMT3A European ancestry rs891058 Cordell et al. (2021) [53]
PBC rs859767 2:135,341,200 TMEM163 European ancestry Several signals Cordell et al. (2021) [53]
PBC rs3771317 2:191,543,962 STAT4 European ancestry Several signals Cordell et al. (2021) [53]
PBC rs9876137 3:16,961,265 PLCL2 European ancestry rs9876137 Cordell et al. (2021) [53]
PBC rs6550965 3:25,383,587 RARB European ancestry rs6550965 Cordell et al. (2021) [53]
PBC rs2293370 3:119,219,934 CD80 European ancestry rs2293370 Cordell et al. (2021) [53]
PBC rs589446 3:159,733,527 IL12A European ancestry Several signals Cordell et al. (2021) [53]
PBC rs7674640 4:103,540,780 NFKB1 European ancestry rs7674640 Cordell et al. (2021) [53]
PBC rs7663401 4:106,128,954 TET2 European ancestry rs7663401 Cordell et al. (2021) [53]
PBC rs35467801 5:35,881,130 IL7R European ancestry rs35467801 Cordell et al. (2021) [53]
PBC rs2546890 5:158,759,900 IL12B European ancestry rs2546890 Cordell et al. (2021) [53]
PBC rs2327832 6:137,973,068 TNFAIP3 European ancestry Several signals Cordell et al. (2021) [53]
PBC rs7805218 7:20,378,801 ITGB8 European ancestry rs7805218 Cordell et al. (2021) [53]
PBC rs60600003 7:37,382,465 ELMO1 European ancestry rs60600003 Cordell et al. (2021) [53]
PBC rs12531711 7:128,617,466 IRF5 European ancestry Several signals Cordell et al. (2021) [53]
PBC rs370193557 7:138,729,543 ZC3HAV1L European ancestry rs370193557 Cordell et al. (2021) [53]
PBC rs11390003 9:100,741,912 TRIM14 European ancestry rs11390003 Cordell et al. (2021) [53]
PBC rs7097397 10:50,025,396 WDFY4 European ancestry rs7097397 Cordell et al. (2021) [53]
PBC rs58523027 11:646,986 IRF7 European ancestry Several signals Cordell et al. (2021) [53]
PBC rs11601860 11:64,110,422 CCDC88B European ancestry rs11601860 Cordell et al. (2021) [53]
PBC rs12419634 11:111,239,365 POU2AF1 European ancestry Several signals Cordell et al. (2021) [53]
PBC rs201150316 11:118,740,104 CXCR5 European ancestry rs201150316 Cordell et al. (2021) [53]
PBC rs1800693 12:6,440,009 TNFRSF1A European ancestry rs1800693 Cordell et al. (2021) [53]
PBC rs35350651 12:111,907,431 SH2B3 European ancestry rs35350651 Cordell et al. (2021) [53]
PBC rs9533122 13:43,055,002 TNFSF11 European ancestry rs9533122 Cordell et al. (2021) [53]
PBC rs9591325 13:50,811,220 DLEU1 European ancestry rs9591325 Cordell et al. (2021) [53]
PBC rs3784099 14:68,749,927 RAD51B European ancestry rs3784099 Cordell et al. (2021) [53]
PBC rs72699866 14:93,114,787 RIN3 European ancestry Several signals Cordell et al. (2021) [53]
PBC rs59643720 14:103,564,807 TNFAIP2 European ancestry Several signals Cordell et al. (2021) [53]
PBC rs9652601 16:11,174,365 CLEC16A European ancestry Several signals Cordell et al. (2021) [53]
PBC rs1119132 16:27,403,469 IL21R European ancestry rs1119132 Cordell et al. (2021) [53]
PBC rs79577483 16:68,036,939 DPEP3 European ancestry rs79577483 Cordell et al. (2021) [53]
PBC rs11117432 16:86,019,271 IRF8 European ancestry Several signals Cordell et al. (2021) [53]
PBC rs33938760 17:38,044,893 IKZF3 European ancestry rs33938760 Cordell et al. (2021) [53]
PBC rs1029464 17:44,149,348 MAPT European ancestry rs1029464 Cordell et al. (2021) [53]
PBC rs1808094 18:67,526,026 CD226 European ancestry rs1808094 Cordell et al. (2021) [53]
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Table 2   (continued)

Disease Variant Chromosome:position Candidate gene Population Fine-mapped to 
single variant

Reference

PBC rs2304256 19:10,475,652 TYK2 European ancestry rs2304256 Cordell et al. (2021) [53]
PBC rs3745516 19:50,926,742 SPIB European ancestry Several signals Cordell et al. (2021) [53]
PBC rs137687 22:39,740,078 SYNGR1 European ancestry Several signals Cordell et al. (2021) [53]
PBC rs10802190 1:117,061,384 CD58 China/Japan rs10802190 Cordell et al. (2021) [53]
PBC rs842349 2:135,342,452 TMEM163 China/Japan rs842349 Cordell et al. (2021) [53]
PBC rs11889341 2:191,943,742 STAT4 China/Japan Several signals Cordell et al. (2021) [53]
PBC rs4675370 2:204,646,499 CD28 China/Japan rs4675370 Cordell et al. (2021) [53]
PBC rs12695386 3:119,209,027 POGLUT1 China/Japan rs12695386 Cordell et al. (2021) [53]
PBC rs230534 4:103,449,041 NFKB1 China/Japan rs230534 Cordell et al. (2021) [53]
PBC rs34463936 5:35,850,149 LOC105374724 China/Japan rs34463936 Cordell et al. (2021) [53]
PBC rs4709148 6:167,521,676 CCR6 China/Japan rs4709148 Cordell et al. (2021) [53]
PBC rs56211063 9:117,585,897 TNFSF15 China/Japan Several signals Cordell et al. (2021) [53]
PBC rs4938534 11:111,275,133 BTG4 China/Japan rs4938534 Cordell et al. (2021) [53]
PBC rs480958 11:118,577,990 LOC105369519 China/Japan Several signals Cordell et al. (2021) [53]
PBC rs12942330 17:37,939,839 IKZF3 China/Japan rs12942330 Cordell et al. (2021) [53]
PBC rs13416555 2:8,441,735 ID2 European + Asian ancestry rs891058 Cordell et al. (2021) [53]
PBC rs10581773 2:204,660,748 CD28 European + Asian ancestry rs10581773 Cordell et al. (2021) [53]
PBC rs60643069 5:100,238,073 ST8SIA4 European + Asian ancestry rs141002831 Cordell et al. (2021) [53]
PBC rs6874308 5:141,506,911 NDFIP1 European + Asian ancestry rs10062349 Cordell et al. (2021) [53]
PBC rs742108 6:106,582,920 PRDM1 European + Asian ancestry Several signals Cordell et al. (2021) [53]
PBC rs968334 6:167,526,096 CCR6 European + Asian ancestry rs3093024 Cordell et al. (2021) [53]
PBC rs4733851 8:129,264,420 PVT1 European + Asian ancestry several signals Cordell et al. (2021) [53]
PBC rs1322057 9:117,578,374 TNFSF15 European + Asian ancestry rs6478109 Cordell et al. (2021) [53]
PBC rs10893872 11:128,325,553 ETS1 European + Asian ancestry rs10893872 Cordell et al. (2021) [53]
PBC rs799469 14:35,444,425 FAM177A1 European + Asian ancestry rs712315 Cordell et al. (2021) [53]
PBC rs7059064 X:48,837,087 GRIPAP1 China/Japan NA Asselta et al. (2021) [61]
PSC rs7556897 2:228,660,112 AC073065.3 European ancestry NA Ellinghaus et al. (2016) [54]
PSC rs17032705 4:103,432,974 NFKB1 European ancestry NA Ellinghaus et al. (2016) [54]
PSC rs12369214 12:107,198,611 RIC8B European ancestry NA Ellinghaus et al. (2016) [54]
PSC rs11649613 16:11,319,357 RP11-396B14.2 European ancestry NA Ellinghaus et al. (2016) [54]
PSC rs3748816 1:2,526,746 MMEL1 European ancestry NA Ji et al. (2016) [55]
PSC rs72837826 2:111,933,001 BCL2L11 European ancestry NA Ji et al. (2016) [55]
PSC rs7426056 2:204,612,058 CD28 European ancestry NA Ji et al. (2016) [55]
PSC rs3749171 2:241,569,692 GPR35 European ancestry NA Ji et al. (2016) [55]
PSC rs3197999 3:49,721,532 MST1 European ancestry NA Ji et al. (2016) [55]
PSC rs80060485 3:71,153,890 FOXP1 European ancestry NA Ji et al. (2016) [55]
PSC rs13140464 4:123,499,745 IL21 European ancestry NA Ji et al. (2016) [55]
PSC rs56258221 6:91,030,441 BACH2 European ancestry NA Ji et al. (2016) [55]
PSC rs4147359 10:6,108,439 IL2RA European ancestry NA Ji et al. (2016) [55]
PSC rs663743 11:64,107,735 CCDC88B European ancestry NA Ji et al. (2016) [55]
PSC rs7937682 11:111,579,939 SIK2 European ancestry NA Ji et al. (2016) [55]
PSC rs11168249 12:48,208,368 HDAC7 European ancestry NA Ji et al. (2016) [55]
PSC rs3184504 12:111,884,608 SH2B3 European ancestry NA Ji et al. (2016) [55]
PSC rs725613 16:11,169,683 CLEC16A European ancestry NA Ji et al. (2016) [55]
PSC rs1788097 18:67,543,688 CD226 European ancestry NA Ji et al. (2016) [55]
PSC rs60652743 19:47,205,707 PRKD2 European ancestry NA Ji et al. (2016) [55]
PSC rs2836883 21:40,466,744 PSMG1 European ancestry NA Ji et al. (2016) [55]
PSC rs1893592 21:43,855,067 UBASH3A European ancestry NA Ji et al. (2016) [55]
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variants that have remained undetected so far, such as rare 
genetic variants or sex chromosome variants. Non-addi-
tive genetic effects, such as dominance effects ( � 2

SNP) or 
additive-by-additive interaction effects ( � 2

SNP; epistasis), 
might describe part of the disease heritability in AILDs. 
In a recent study of 70 (continuous) complex traits from 
the UK Biobank (with more than 60,000 individuals for 
each trait), the average epistatic variance across all traits ( ̂�  
2

SNP = 0.055) was estimated to be significantly higher than 
the average variance for dominance effects ( ̂�  2SNP = 0.001), 
but still significantly lower than the average variance for 
additive effects ( ̂h 2

SNP = 0.208) [64]. Genome-wide inter-
action studies (GWIS) are therefore another interesting 
approach, but GWIS for PBC, PSC, and AIH would require 
many times the current sample size (which is difficult to 
realize) due to the exponential increase in statistical tests 
and extremely longer calculation times [65], although alter-
native computer architectures such as GPUs could help here 
[66, 67].

Because up to 9% and 7% of AIH patients have clinical 
overlap with PBC and PSC [27], respectively, it is reason-
able to assume that there are shared genetic factors for 
AIH, PBC, and PSC [68], and also for other immune-medi-
ated diseases, as shown by Immunochip studies for PBC 
and PSC [34, 38, 42]. In AIH, genetic risk is shared with 
type 1 diabetes for DRB1*04:01 [69] and systemic lupus 
erythematosus for DRB1*03:01 [70]. The association of 
AIH with the SH2B3 locus has also been identified as a 
genetic risk factor for PSC and PBC; more specifically, 
even the same risk variant rs3184504 in SH2B3 has been 
identified for AIH and PSC (see Table 1). Genetic rela-
tionships between disease pairs on a genome-wide level 
can be investigated by genome-wide genetic correlation 
analyses that quantify genome-wide SNP-based heritability 
(hg

2
SNP) in a bivariate model and provide information on 

potential coheritability between diseases [71–73]. Unfor-
tunately, the shared genetics of AIH, PBC, and PSC have 
been studied only to a limited extent genome-wide and 
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Fig. 1   The polygenic landscape of HLA and non-HLA suscepti-
bility variants for AIH, PBC, and PSC. Genome-wide significant 
(P < 5 × 10−8) HLA and non-HLA susceptibility variants were iden-
tified by GWAS and HLA imputation (Table  1) and GWAS meta-
analyses (GWMA; Table  2), respectively. Susceptibility variants 
were broadly categorized as high effect (odds ratio [OR] ≥ 2 for 
risk variants and OR ≤ 0.5 for protective variants), medium effect 
(2 > OR ≥ 1.2 or 0.5 < OR ≤ 0.83), and low effect (1.2 > OR > 1.0 or 
0.83 < OR < 1.0), with the position of the variant on the x axis (on a 

log scale) corresponding to the magnitude of the OR. The popula-
tion frequency indicated on the y axis refers to the minor allele fre-
quency (MAF) of the susceptibility variant in the general population. 
The size of the circles represents the effect size, with a green circle 
border representing statistically protective variants (OR < 1 for the 
minor allele) and a red border representing risk variants (OR > 1 for 
the minor allele). ‡For AIH: association signal near HLA-B is based 
on SNP data only, see also Table 1
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only partially with other immune-mediated comorbidi-
ties. When SNPs from the extended major histocompat-
ibility complex (MHC) region (chromosome 6 region of 
25–34 Mb including HLA genes) were excluded, a signifi-
cant genetic correlation was observed between PSC and 
inflammatory bowel disease (ulcerative colitis, rg = 0.29; 
Crohn’s disease, rg = 0.04). For 196 fine-mapped regions 
of the Immunochip, the genetic correlation between PSC 
and ulcerative colitis (rg = 0.64), PSC and Crohn’s disease 
(rg = 0.35), and PSC and ankylosing spondylitis (rg = 0.33) 
was highest compared with non-immune diseases [54]. 
To accurately identify possible shared causal variants in 
AIH-, PBC-, and PSC-associated regions, Bayesian tests 
of colocalization may be useful [74] and could provide an 
indication of whether there are common or independent 
causal variants for the same genomic regions. For example, 
six of 14 loci associated with both PSC and IBD showed 
strong evidence of a shared causal variant with UC, CD, or 
both [55]; colocalization analyses for AIH, PBC, and PSC 
could provide further insight into shared genetic structure. 
Future genome-wide comparisons between (worldwide) 
study populations with AIH, PBC, and PSC would provide 
the opportunity to identify the potentially shared landscape 
of AILDs.

Polygenic risk scores

Genome-wide SNP-based (co-)heritability estimation pro-
vides information on the proportion of (co-)heritability 
explained for (pairs of) diseases and measures pleiotropy 
(vertical and horizontal [75]) between diseases, but does 
not provide an estimate of individual patient risk based 
on genetic markers. Given the polygenic nature of AILDs 
(Fig. 1) and the fact that individual risk variants from 
GWAS/GWMA describe only a fraction of the heritability, 
a combined genetic burden across all genetic variants can 
be calculated to identify individuals at significant increased 
risk. A polygenic risk score (PRS) is an estimate of an 
individual’s genetic susceptibility to a disease calculated 
based on that individual's genotype profile and relevant 
data from GWAS. A study by Khera and colleagues [76] 
revived the topic of PRS for common complex diseases 
and showed for coronary artery disease (CAD), that a PRS 
identifies 20-times more individuals at comparable or 
greater risk than did previous studies for monogenic muta-
tions. Therefore, identifying individuals with high (low) 
PRS in a population-based sample may provide an oppor-
tunity to identify those with the highest (lowest) genetic 
risk. However, the utility of PRS-based risk estimates for 
AIH, PBC, and PSC is limited by the small effect sizes 
of the identified susceptibility variants (see Fig. 1). Using 

genome-wide data from UK Biobank, Khera and col-
leagues showed that individuals in the top 5% of a PRS for 
CAD had a 3.34-fold risk [OR(CI95%) = 3.34(3.12–3.58)]; 
Plogistic_regression = 6.5 × 10−264] compared with the remain-
ing 95% of the general population. To provide an estimate 
for PSC here (although our GWAS study data here is not 
a population-based sample), I calculated a PRS from the 
summary statistics of the most recent GWMA for PSC 
[55] and determined the distribution of the PRS for 628 
GWMA-independent German PSC cases and 4,272 healthy 
controls (Methods). A PRS for PSC runs the risk of creat-
ing a mixed PRS for PSC and IBD, as patients with PSC 
have a highly increased incidence of IBD (called PSC with 
concomitant IBD or PSC-IBD); however, PSC-IBD has 
clinical differences from classical IBD [77] and appears 
to be genetically distinct from classical IBD phenotypes 
[54] (see below). Individuals in the top 5% of the PRS for 
PSC had a 5.99-fold risk [OR(CI95%) = 5.99(4.52–7.92); 
Plogistic_regression = 1.06 × 10−46 and adjusted for sex and 
genetic ancestry] compared with the remaining 95% of the 
general population (Fig. 2a). The OR should be interpreted 
as the factor by which the chance of developing the disease 
increases if a person has a positive PRS test result (here, 
being in the top 5%). However, with an OR = 5.99 and an 
underlying false positive rate (1-specificity) of 5%, the 
detection rate (sensitivity) is only 24% (Fig. 2b), result-
ing in an OAPR (odds of being affected given a positive 
result) of 1:2087, compared with the overall prevalence of 
1:10,000 for PSC in the general population. On this basis, 
diagnostic genetic testing would be inappropriate. The fact 
that even a very high OR is associated with low predictive 
power of a diagnostic test may seem counterintuitive. It is 
largely explained by the fact that the genetic risk variants 
are widespread in the general population, so almost every-
one can be affected by these causes, even if not everyone 
is or becomes ill because of the genetic burden. Therefore, 
the PRSs for AILDs in their current form are not suitable 
for diagnostic testing. On the other hand, for example, 
a possibly increased PRS for PSC in patients with AIH 
(compared with healthy controls) could indicate shared 
genetic risk factors (pleiotropy) between PSC and AIH, 
but an increased cross-disease PRS could be due to multi-
ple causes such as diagnostic misclassification, molecular 
subtypes, or excessive comorbidity (collectively referred 
to as heterogeneity). Cross-locus correlation analyses of 
loci associated with disease B in cases of disease A (and 
vice versa) can help distinguish pleiotropy from heteroge-
neity. For PSC and IBD, for example, we have shown that 
PSC-IBD is likely to be a distinct disease at the genetic 
level, sharing some genetic factors with IBD, but geneti-
cally distinct from classical IBD phenotypes such as CD 
and UC [54].
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Genetically regulated expression and single 
cell analyses

Susceptibility variants identified by GWAS are often located 
at genomic positions with methylation, expression, and pro-
tein-quantitative trait loci (mQTLs, eQTLs, pQTLs), but it 
remains unclear whether this overlap is due to methylation, 
expression, and protein levels "mediating" genetic effects on 
disease. Cordell and colleagues applied Bayesian tests for 
colocalization between GWMA summary statistics of PBC 
and genome-wide mQTLs, eQTLs, and pQTLs data from 
large-scale consortium projects ALSPAC [78], GTEx [79], 
and INTERVAL [80] and suggested that the genetic architec-
ture of PBC influences susceptibility to the disease primarily 
by affecting the regulation of expression of potentially causal 
genes [53]. To assess whether this might also be expected 
for PSC, I calculated the correlation between GWMA sum-
mary statistics of PSC [55] and summary statistics of large 
tissue-specific eQTL studies from GTEx using an approach 
developed by Yao et al. [81] called mediated expression score 
regression (MESC). I estimated that the heritability for PSC 
mediated by the cis genetic component of gene expression lev-
els (hmed

2/hg
2) averaged 38.4% for 48 tissues used in the GTEx 

project (Methods). This value of 38.4% for PSC is among the 
top of all disease-specific MESC values published in the work 
of Yao et al. who studied 42 diseases and human traits in the 
same 48 tissues, including ulcerative colitis with a similarly 
high published value of 38.2%. Therefore, it is hypothesized 
that in PBC and PSC (perhaps also in AIH), the gap between 
genetic approaches and the resulting disease phenotype can 
be reduced by the transcriptome. Because eQTL data from 
bulk tissues are thought to be a poor surrogate for eQTL data 
in causal cell types/contexts and little is known about the 
composition of intrahepatic immune cells and their contribu-
tion to disease pathogenesis, measurement of context-specific 
expression [82] and expression in single cells may allow the 
identification of genetic variants that impact key regulatory 
networks in AILDs [83]. Using single-cell RNA sequencing 
(scRNA-seq) techniques, Poch and colleagues generated the 
first atlas of intrahepatic T cells in PSC and identified a pre-
viously uncharacterized population of liver-resident CD4 + T 
cells that likely contribute to the pathogenesis of PSC [84]. 
Xiang and colleagues [85] developed a computational frame-
work to integrate GWAS summary statistics with scRNA-seq 
data and revealed genetically modulated liver cell subpopula-
tions for PBC. They found that cholangiocytes show signifi-
cant enrichment with PBC-related genetic association signals, 
with the ORMDL3 gene showing the highest expression level 
in cholangiocytes compared with other liver cells. Such com-
bined genetics/single cell omics studies have the potential 
to identify the causative genes for AIH, PBC, and PSC in a 
disease-specific context.

Fig. 2   Risk gradient for PSC affection status according to the poly-
genic risk score (PRS) percentile and corresponding receiver operat-
ing characteristic curve (ROC) for a resulting (very weak) diagnos-
tic test. a 100 groups of the test data set were derived according to 
the percentile of the PSC-specific PRS. The prevalence indicated on 
the y axis of the graph refers to the ratio of cases to controls in the 
genotyped sample. Odds ratio (OR) was calculated by comparing 
individuals with high PRS (top 5%) with the rest of the population 
(remaining 95%) in a logistic regression model adjusted for sex and 
the first four principal components (PCs) of ancestry from principal 
components analysis (PCA) with GWAS data. b Sensitivity: propor-
tion of affected individuals with positive test results. False-positive 
rate (1—specificity): proportion of unaffected individuals with posi-
tive test results. AUC: area under the curve
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Genome‑wide screenings for drug reuse

More than 25% of drugs entering clinical development 
fail because of lack of efficacy, but drugs with supportive 
genetic evidence are twice as likely to succeed in clinical 
development as drugs without supportive genetic evidence 
[86]. Thus, one potential approach is to test drugs with 
genetic support that have been successfully used in prac-
tice for other immune-mediated diseases for their trans-
ferability to AILDs. To this end, Cordell and colleagues 
have developed an elegant in-silico method for identifying 
drugs that can improve (or exacerbate) PBC in this predic-
tion [53], highlighting the potential of genomic screening 
approaches for drug discovery and prediction of opposing 
drug effects in complex diseases. Briefly, they adapted a 
network-based approach to drug proximity screening from 
Guney et al. [87] for PBC candidate genes from GWAS 
risk loci by calculating a measure of proximity (z-score) 
between candidate genes and known drug targets (from 
agents stored in Drugbank), where a low z-score indicates 
recommended use of these agents (because an agent’s gene 
targets are closer to susceptibility genes than expected by 
chance) and a high z-score represents non-recommended 
use (because an agent’s targets are not closer to suscep-
tibility risk genes than expected by chance). Major drugs 
predicted to improve PBC included ustekinumab, a mono-
clonal antibody against IL-12/23 used to treat psoriasis 
and Crohn's disease [88]; however, a proof-of-concept 
study has not shown benefit of ustekinumab for patients 
with PBC [89]. Major drugs that could exacerbate PBC 
included the pharmacologic interferons interferon alfa-2a 
and interferon beta-1b. The drugs already approved for 
PBC, fenofibrate, bezafibrate, and OCA were confirmed; 
interestingly, UDCA did not achieve a significant result, 
suggesting that genetics does not play a role in this case. 
A similar analysis would be desirable for AIH and PSC.

Conclusion

A GWAS for AIH and several GWMAs for PBC and PSC 
have been successfully conducted and have identified a 
variety of genetic factors associated with AIH, PBC, and 
PSC. Some of these studies have already identified disease-
causing variants by statistical fine-mapping and provided 
important biological insights into pathogenesis. Some 
statistical epidemiological approaches, such as statistical 
fine-mapping, chromosome X-wide association testing, and 
genome-wide screens for drug reuse, that have already been 
successfully performed in PBC, could also be applied to 
AIH and PSC. Large-scale cross-disease GWMAs to explore 

the shared genetic landscape of AIH, PBC, and PSC are still 
lacking. Merging genetic and statistical results with single-
cell transcriptomic data from relevant cell types and liver 
tissue is likely to provide more accurate insights into the 
effects of genetic factors on liver cells and their immunologi-
cal microenvironment.

Software

PRS derivation: The LDPred2 software [90] (https://​
github.​com/​prive​fl/​bigsn​pr) was used to generate a PRS. 
The MESC software [81] (https://​github.​com/​dougl​asyao/​
mesc) was used for estimating heritability mediated by 
assayed gene expression levels.
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