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ABSTRACT

Endothelial dysfunction is a key event in the development of vascular disease, and it precedes clinically obvious 
vascular pathology. Abnormal activation of the RhoA/Rho kinase (ROCK) pathway has been found to elevate 
vascular tone through unbalancing the production of vasodilating and vasoconstricting substances. Inhibition 
of the RhoA/ROCK pathway can prevent endothelial dysfunction in a variety of pathological conditions. This 
review, based on recent molecular, cellular, and animal studies, focuses on the current understanding of the 
ROCK pathway and its roles in endothelial dysfunction.
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INTRODUCTION

Vascular disease, particularly atherosclerosis is a major 
cause of  disability and death in patients with diabetes 
mellitus. The pathophysiology of  vascular disease in 
diabetes involves abnormal function of  the vascular 
endothelial and smooth muscle cells (SMC) as well as 
platelets. Endothelial dysfunction may be a critical and 
initiating factor in the development of  diabetic vascular 
disease.[1,2] The broad defi nition of  endothelial dysfunction, 
a systemic pathological state of  the endothelium (the 
inner lining of  the blood vessels), is an imbalance 
between endothelium-derived relaxing factors (EDRF) 
e.g. nitric oxide (NO), and prostacyclin and endothelium-
derived constricting factors (EDCF) e.g. thromboxane 
A2 (TxA2), prostaglandin H2 (PGH2), endothelin-1 and 
angiotensin II.[3]

The small GTPase RhoA and its downstream target Rho 
kinase (ROCK) regulate cellular adherence, migration, and 
proliferation through control of  the actin–cytoskeletal 
assembly and cell contraction.[4] Since their discovery in 
1996, ROCKs have been extensively studied. Much of  
the work has focused on the role of  the RhoA/ROCK 
pathway in endothelial function. For example, among 
Rho GTPase family members, RhoA is noted as having 
a critical role for T cell transendothelial migration.[5] The 
proinfl ammatory lipid mediator, lysophosphatidic acid 
(LPA), has been reported to activate ROCK, p38, JNK, 
and NF-kappa β pathways in human endothelial cells (EC).
[6] Inhibition of  ROCK can prevent thrombin-induced 
intercellular adhesion molecule 1 (ICAM-1) expression and 
can further inhibit nuclear factor (NF)-kappa β activity[7] 
and tissue factor expression in EC, indicating that the 
RhoA/ROCK pathway is involved in the mechanism of  
thrombus formation.[8] Also, RhoA/ROCK activation 
by C-reactive protein has been reported to enhance 
endothelial plasminogen activator inhibitor-1 expression, 
which may result in atherothrombogenesis.[9] Basal Rho 
kinase activity is essential for the regulation of  endothelial 
barrier integrity. [10] However, overactivation of  RhoA/
ROCK by disturbed fl ow can induce phosphorylation of  
LIM kinase 2 and cytoskeletal rearrangement, resulting in 
barrier dysfunction in vascular EC.[11]
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RhoA/ROCK is also involved in endothelial NO synthase 
(eNOS) function, as their activation decreases eNOS 
expression by reducing the eNOS mRNA stability.[12] Also, 
use of  a ROCK inhibitor can reduce vasoconstriction 
caused by acetylcholine (Ach) in vessels with an impaired 
endothelium.[13] Inhibition of  the RhoA/ROCK pathway 
may have signifi cant clinical implications. In this review, we 
describe the current understanding of  ROCK signaling and 
its role in vascular endothelial dysfunction.

STRUCTURE, DISTRIBUTION, EXPRESSION, AND 
FUNCTION OF ROCK ISOFORMS

ROCK is a serine/threonine kinase with a molecular 
mass of  ~160 kDa, which has been identifi ed as the 
first downstream target of  the small GTP-binding 
protein RhoA. [14,15] ROCK mediates RhoA-induced 
actin–cytoskeletal changes through phosphorylating 
the regulatory myosin-binding subunit (MBS) of  the 
myosin light chain (MLC) phosphatase. Phosphorylated 
MBS inhibits the activity of  MLC phosphatase and, 
thereby, promotes MLC phosphorylation and actomyosin 
contractility.[16-18]

Two ROCK isoforms have been identified in the 
mammalian system. ROCK1 (ROKβ or p160ROCK) is 
located on chromosome 18 and encodes a 1354-amino 
acid protein.[19,20] ROCK2 (ROKα or Rho-kinase) is located 
on chromosome 12 and contains 1388 amino acids.[14,21,22] 

ROCK1 and ROCK2 share an overall 65% homology in 
amino acid sequence and 92% homology in their kinase 
domains.[23]

ROCK1 and ROCK2 are ubiquitously expressed in murine 
tissues from early embryonic development to adulthood. 
ROCK1 is widely and highly expressed in most tissues 
except in the brain and muscle, whereas ROCK2 is 
most highly expressed in muscle, brain, heart, lung, and 
placenta tissues.[20,22,24] Both ROCK1 and ROCK2 are 
expressed in vascular EC and SMC.[24-27] Relatively few 
studies have addressed the regulation of  ROCK isoform 
expression. Angiotensin II (via type 1 receptor) and IL-1 
beta upregulate both isoforms of  ROCK at the mRNA 
and protein level in human coronary vascular SMCs. 
This is mediated by protein kinase C and NF-kappa β.[28] 
Compensation of  ROCK1 for the loss of  ROCK2 has not 
been reported in the ROCK2-defi cient mouse.[29] However, 
in vascular SMC, silencing of  either ROCK isoform leads 
to an increased protein expression of  the other isoform, 
suggesting that the expression level of  the ROCK isoforms 
is tightly controlled and interrelated.[30]

Although ROCK1 and ROCK2 are ubiquitously expressed 
and highly homologous, several mechanisms have been 
reported that differentially regulate ROCK isoform 
activities. For example, the overexpression of  ROCK1 
and ROCK2 can both increase MLC phosphorylation, 
but through different mechanisms.[31] ROCK2, but not 
ROCK1, binds directly to the MBS of  MLC phosphatase 
and plays a predominant role in vascular SMC contractility.
[32] ROCK2 is the dominant isoform driving LPA-mediated 
activation of  NF-kappa β and ensuing transcriptional 
upregulation of  ICAM-1 and vascular cell adhesion 
molecule-1 mRNA and protein in human umbilical vein 
EC.[33] However, ROCK1, but not ROCK2, knockout mice 
have a substantially reduced vascular infl ammation and 
neointima formation after fl ow cessation-induced vascular 
injury in the ligated carotid artery.[34]

ENDOTHELIUM-DEPENDENT RELAXATION AND 
RHOA/ROCK PATHWAY

Bioavailability of  nitric oxide and RhoA/Rho kinase

A hallmark of  endothelial dysfunction is reduced 
bioavailability of  NO, which may be caused by reduced 
expression of  eNOS, impairment of  eNOS activation, 
or inactivation of  NO by oxidative stress. Accumulating 
evidence indicates that the expression and activity of  
eNOS is regulated by the RhoA/ROCK pathway. For 
example, activation of  the RhoA/ROCK pathway 
signifi cantly inhibits endothelial NO synthase expression 
and phosphorylation (Ser1177) in the mesenteric arteries 
of  hypertensive profi lin1 transgenic mice.[35] Thrombin is 
reported to decrease the eNOS mRNA level by shortening 
the half-life of  eNOS mRNA via activation of  RhoA and 
ROCK in human EC.[36] Consequently, ROCK inhibitors 
or statins, which inhibit RhoA activity, can increase the 
eNOS mRNA half-life and upregulate eNOS expression in 
animal and human vascular disease. The ROCK inhibitor 
Y-27632 increased normoxia-induced NO production 
in the pulmonary artery of  late-gestation ovine fetuses 
infused with nitro-L-arginine.[37] Prolongation of  eNOS 
mRNA half-life by statins is reversed by geranylgeranyl 
pyrophosphate, which causes the isoprenylation and 
activation of  RhoA GTPase.[12]

Regulation of  signal transduction

There are many signaling molecules involved in the 
pathogenesis of  endothelial dysfunction via impairment 
of  NO bioavailability. Some of  the signaling molecules 
have been reported to have a link with the RhoA/ROCK 
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pathway. These are phosphoinositide 3-kinase (PI3K)/Akt, 
reactive oxygen species (ROS), and arginase.

PI3K/Akt and RhoA/ROCK pathway

Akt (protein kinase B) is a serine/threonine protein 
kinase, which is the key downstream effector of  PI3K. 
PI3K-dependent Akt activation can be regulated through 
the tumor suppressor phosphatase and tensin homolog 
(PTEN), which works essentially as the opposite of  PI3K. 
Akt can directly phosphorylate eNOS on serine 1179 (based 
on the bovine eNOS sequence and equivalent to human 
eNOS-serine 1177) and activate the enzyme, leading to NO 
production.[38] Studies have shown that a crosstalk between 
RhoA–ROCK and Akt regulates eNOS phosphorylation 
independent of  the RhoA/ROCK actions on the 
downregulation of  eNOS expression. The active RhoA/
ROCK pathway not only regulates eNOS gene expression 
but also inhibits eNOS phosphorylation at Ser-1177 and 
cellular NO production via suppression of  Akt activation 
in human umbilical vein EC.[39] Furthermore, inhibition of  
RhoA or ROCK isoforms leads to the rapid activation of  
the PI3K/Akt pathway and phosphorylation of  eNOS.[39,40] 
RhoA and ROCK can directly phosphorylate and activate 
PTEN,[41,42] suggesting that PTEN may be also involved in 
NO regulation via RhoA/ROCK and PI3K/Akt complex.

ROS, arginase, and RhoA/ROCK pathway

It is well known that ROS reduce the bioavailability of  
NO. The reaction between superoxide and NO forms 
peroxynitrite, which oxidizes and decreases the level 
of  tetrahydrobiopterin (BH4), a cofactor required for 
eNOS activity and NO synthesis. Moreover, increased 
peroxynitrite positively correlates with a significant 
upregulation of  the active RhoA in models of  experimental 
diabetes.[43] RhoA plays a signifi cant role in endothelial 
permeability, EC migration, and angiogenesis.[44,45] One 
of  the Rho guanosine nucleotide exchange factors (Rho 
GEF), p115-Rho GEF, is reportedly involved in mediating 
thrombin-induced pulmonary EC dysfunction,[46] and ROS 
have been shown to induce vascular contraction through 
activation of  Rho/Rho kinase.[47] Our previous studies 
demonstrated that peroxynitrite can suppress eNOS 
expression via activation of  RhoA and hence can cause 
vascular dysfunction.[48]

In addition, elevated arginase activity also limits NO 
availability. Arginase is a hydrolytic enzyme that converts 
L-arginine into urea and ornithine. Thus, enhanced arginase 
activity can decrease the tissue and cellular L-arginine 
availability to eNOS,[49] which leads to a decrease in NO 

production and increased superoxide generation due 
to uncoupled eNOS.[43,50] Arginase-induced endothelial 
dysfunction initiates a feed-forward cycle of  diminished 
NO levels and further oxidative stress.[43] Our lab previously 
showed that diabetes and high glucose increase the activity 
of  arginase through enhanced RhoA/ROCK function.[43] 
Signifi cantly greater RhoA and arginase activity has also 
been observed in infl ammatory bowel disease and TNF-α/
lipopolysaccharide-activated human EC.[26] Elevated 
arginase activity/expression is blocked by the inhibition of  
RhoA or ROCK, suggesting that activation of  the RhoA/
ROCK pathway is a critical step toward elevated arginase 
activity and expression in the vasculature.[26,27,43]

ENDOTHELIUM-DEPENDENT CONTRACTIONS 
AND RHOA/ROCK PATHWAY

In vascular diseases, endothelial dysfunction is also due 
in part to the release of  EDCF, which counteracts the 
vasodilator action of  NO or PGI2. The vessel contraction 
mediated by EDCF is widely called endothelium-dependent 
contraction in the scientifi c literature. Although this term 
is somewhat imprecise, it has become widely used.

In blood vessels, endothelium-dependent contraction 
to Ach is not observed under normal physiological 
conditions. However, it is observed under pathological 
conditions, such as in hypertension and in diabetes, in 
which endothelial function is markedly impaired.[51-54] 
TxA2 and/or PGH2, synthesized by cyclooxygenase 
(COX), mediate endothelium-dependent contraction[55-60] 
by activating thromboxane–prostanoid (TP) receptors 
on vascular SMCs.[53,61,62] One of  the signaling molecules 
activated by TP receptor in smooth muscle is Rho 
kinase.[63] Activated RhoA and ROCK result in the 
inhibition of  MLC phosphatase, which decreases the 
dephosphorylation of  the regulatory MLC. The altered 
balance of  MLC induces contraction of  the vascular 
smooth muscle (VSM) layer.[64]

In the presence of  a pathologic vascular endothelial 
layer, EDCFs may prevail over EDRFs, subsequently 
inducing activation of  the RhoA/ROCK pathway in 
the VSM layer, resulting in enhanced vasocontractile 
activity. In clinical studies, the intraarterial infusion 
of  the ROCK inhibitor fasudil lowers blood pressure, 
and this decrement is higher in hypertensive patients 
than in normotensive subjects, suggesting that ROCK 
contributes to endothelium-dependent contraction to 
Ach.[65] In carotid arteries of  spontaneously hypertensive 
rats (SHR), inhibition of  ROCK caused a dose-dependent 
reduction in the endothelium-dependent contraction to 
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Ach.[13] Also, the contractions induced in the aorta of  
SHR and Wistar Kyoto rats by Ach can be abolished by 
inhibitors of  ROCK, either Y27632 or HA1077 (fasudil).
[13] Furthermore, RhoA–ROCK has been reported to 
mediate the enhanced endoperoxide-dependent vascular 
contraction characteristic of  hypertension.[13] These 
fi ndings suggest that inhibition of  ROCK can reduce the 
EDCF-mediated responses and consequently contribute 
to the lowering of  arterial blood pressure in vascular 
disease.

CURRENT STRATEGIES FOR STUDYING ROCKS

RhoA/Rho kinase inhibitors

Although an increasing number of  reports show that ROCK 
plays an important role in endothelial dysfunction, more 
insights into the molecular mechanisms that contribute to 
increased ROCK activity or the downstream targets for 
ROCK are needed. Determination of  the precise role of  
the two ROCK isoforms is limited by the lack of  specifi c 
and selective pharmacological inhibitors currently available. 
Statins are indirect inhibitors of  the RhoA/ROCK pathway, 
which act by decreasing the synthesis of  isoprenoids. An 
intravenous injection of  pravastatin prevents impaired 
NO-dependent vasodilation by blocking the full activation 
of  unprocessed RhoA and Rac1 and the downregulation 
of  Akt/eNOS pathways in Wistar and SHR.[8,66] Fasudil 
was the first ROCK inhibitor approved for clinical 
use, which inhibits ROCK by competing with ATP for 
binding to the kinase,[67,68] but it also inhibits other kinases. 
Hydroxyfasudil (HA-1100), which is an active metabolite, is 
highly selective for ROCKs. When compared with protein 
kinase A, the IC50 value is approximately fi ve-fold lower 
for fasudil and 50-fold lower for hydroxufasudil.[23] Y27632 
is another nonspecifi c inhibitor of  both ROCK isoforms 
by competing with ATP for binding the kinase.[69] At higher 
concentrations, it can also inhibit Rho-dependent kinase C 
and A.[68] Recently, two novel compounds, GSK2699624 
and SB772077B, were reported to have higher potency 
than either Y27632 or fasudil, especially in inhibiting 
ROCK1.[70] More highly specifi c ROCK-2 inhibitors, such 
as SR-715 and SR-899, have also been developed.[71] More 
interest within the pharmaceutical industry will accelerate 
the development of  selective ROCK inhibitors.

ROCK KNOCKOUT ANIMALS

There is no doubt that ROCK1 and ROCK2 knockout mice 
are the most accurate and specifi c way to investigate the in 
vivo distribution/function of  ROCK isoforms. Complete 

loss of  ROCK1 in mice results in the eyelids being open 
at birth and an intestinal protrusion phenotype,[72] whereas 
loss of  ROCK2 results in placental dysfunction leading to 
intrauterine growth retardation and about 90% fetal death.
[29] However, both groups of  haploinsuffi cient ROCK 
mice develop normally and are fertile. Indeed, developing 
studies with ROCK-defi cient mice would have the greatest 
chance of  increasing our understanding of  the function 
of  specifi c ROCK isoforms in various diseases. Better yet, 
development of  conditional knockouts for ROCK would 
be of  great value.

CONCLUSIONS

There is growing evidence that the RhoA/ROCK pathway 
has an important pathophysiological role in vascular 
endothelial dysfunction. Inhibition of  ROCK may be an 
attractive therapeutic target for preventing endothelial 
dysfunction [Figure 1]. However, a better understanding 
of  the physiological role of  each ROCK isoform in the 
cardiovascular system is needed, and can be resolved by the 

Figure 1: Sustained vascular endothelial dysfunction, defi ned as an 
imbalance between endothelium-derived relaxing factors (EDRF) and 
endothelium-derived constricting factors, is induced by various factors 
(reactive oxygen species, ang II, thrombin, TNFα, lysophosphatidic 
acid), which lead to vascular disease. The actions of these vascular 
insult factors observed in diabetes and many other vascular diseases 
involve abnormal function of endothelial cells and smooth muscle 
cells (SMC) with altered vascular contraction through RhoA/ Rho 
kinase (ROCK) pathway activation. This ultimately leads to endothelial 
barrier dysfunction/edema and enhanced SMC contractility and 
hypertension. In addition, the RhoA/ROCK pathway plays a central 
role in impaired production of the EDRF nitric oxide due to multiple 
actions on constitutive endothelial NO synthase (eNOS). This occurs 
by reducing PI3K/Akt activation and subsequent reduction of eNOS 
phosphorylation and downregulation of eNOS mRNA stability. 
Additionally, activation of the RhoA/ROCK pathway causes elevation 
of arginase activity/expression, which results in limited availability of 
the substrate L-arginine for eNOS function. RhoA/ROCK pathway has 
also been also associated with the mechanism of thrombus formation 
and vascular infl ammation
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