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ABSTRACT

Motivation: Metaproteomic analysis allows studying the interplay of

organisms or functional groups and has become increasingly popular

also for diagnostic purposes. However, difficulties arise owing to the

high sequence similarity between related organisms. Further, the state

of conservation of proteins between species can be correlated with

their expression level, which can lead to significant bias in results and

interpretation. These challenges are similar but not identical to the

challenges arising in the analysis of metagenomic samples and require

specific solutions.

Results: We introduce Pipasic (peptide intensity-weighted proteome

abundance similarity correction) as a tool that corrects identification

and spectral counting-based quantification results using peptide simi-

larity estimation and expression level weighting within a non-negative

lasso framework. Pipasic has distinct advantages over approaches

only regarding unique peptides or aggregating results to the lowest

common ancestor, as demonstrated on examples of viral diagnostics

and an acid mine drainage dataset.

Availability and implementation: Pipasic source code is freely avail-

able from https://sourceforge.net/projects/pipasic/.

Contact: RenardB@rki.de

Supplementary information: Supplementary data are available at

Bioinformatics online

1 INTRODUCTION

In contrast to classical proteomic approaches, metaproteomics

and environmental proteomics studies aim at deciphering the

interplay of different organisms contained within an environ-

mental sample (Muth et al., 2013). Throughout the past years,

this idea has seen increasing application primarily in three fields:

aqueous ecosystems, terrestrial systems and eukaryotic host

microbiomes (Hettich et al., 2013). In addition, metaproteomic

approaches have become of interest also for clinical diagnostics,

e.g. for characterizing the state of an infection (Fouts et al., 2012)

or for identifying and strain-level typing of bacteria (Karlsson

et al., 2012).
Similar to metagenomic approaches (Wooley et al., 2010), the

analysis of environmental samples and the interplay of organisms

offer an enormous potential to further the characterization and

understanding of these systems. At the same time, challenges in

metaproteomics are manifold and relate to all steps of the ana-

lysis. Particularly, this includes the handling of the resulting large

and complex datasets of spectra derived from mass spectrometry

(MS) experiments and their meaningful comparison with refer-

ence proteomes of organisms. It can by no means be generally

assumed that this set of references—in particular for bacteria or

viruses—is complete or representative for the given sample

(Lindner et al., 2013). Depending on the sample of interest, the

number of organisms of interest may vary significantly from tens

to thousands and more. In all cases, it is non-trivial to identify

the correct origin of a spectrum and thereby to allow either the

identification of organisms or the quantification of either organ-

isms or key biological processes.
While many goals and strategies correlate for metagenomic

and metaproteomic approaches, several distinct differences are

noteworthy. In metaproteomic approaches, expression levels are

analyzed and thus quantitative measures differ even for proteins

from a single organism. This can be highly insightful for func-

tional analyses (Muth et al., 2013), but poses an additional chal-

lenge for data analysis. Further, while the method is designed to

be unbiased, it cannot be assumed that all proteins are extracted

and captured by MS in a metaproteomics experiment. However,

as it is an orthogonal technique to metagenomics, metaproteomic

and metagenomic approaches have differing error profiles and

can jointly provide a much deeper insight than each method on

its own (Hettich et al., 2013), even in cases such as the quantifi-

cation of strains when metagenomics is usually preferable owing

to lower demands on material and longer sequences. It should be

noted that metaproteomic approaches require the availability of

reference proteomes or genomes and cannot assemble them from

a given sample as in metagenome protocols [e.g. Lai et al.

(2012)].
While numerous tools have been introduced for

metagenomic data analysis (see Teeling and Glockner (2012)

for an overview), only comparatively few tools exist with

focus on the specific difficulties arising in the analysis of meta-

proteomic data. These cover a broad field ranging from specia-

lized approaches for visualization (Mehlan et al., 2013) to the

scalability of database search algorithms (Jagtap et al., 2013,

2012b) and to metaproteogenomics and the difficulty of identify-

ing a suitable reference database (Rooijers et al., 2011; Seifert

et al., 2013).
One key difficulty that is hindering metaproteomic data ana-

lysis is the ambiguity of peptide identifications (Hettich et al.,

2013; Muth et al., 2013; Seifert et al., 2013). Even more
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pronounced than in classical bottom-up proteomic approaches

(Nesvizhskii, 2010), one spectrum can not only match to several

peptides occurring in multiple proteins of the same organism, but

may match to proteins in different organisms. This is particularly

common for closely related organisms with sufficient sequence
similarity and for well-conserved proteins. Consequently, this

problem hinders the correct identification and quantification of

the species present in a sample. While also common in metage-

nomics (Lindner and Renard, 2013), it is even more challenging

in proteomics because peptides are commonly shorter than

sequencing reads and thereby less likely to be unique.

Furthermore, expression levels are not necessarily uncorrelated
to the state of conservation of a protein and thereby constitute a

potentially large bias when disregarded.

Currently, two major ideas are used to address this difficulty:
either the analysis is based primarily on unique peptides that are

specific for a single organism (Karlsson et al., 2012; Lo et al.,

2007; Rooijers et al., 2011) or the phylogenetic resolution is

reduced. This can be achieved by limiting the analysis to a set

of well-chosen representative species that have no significant

overlap (Chourey et al., 2013) or by dynamically allocating re-

sults to the lowest common ancestor that allows a distinction
(Huson et al., 2007; Jagtap et al., 2012a; Schneider et al.,

2011). When disregarding shared peptides and focusing on

unique peptides, it is feasible to identify the species present in

an organism as long as the coverage is high enough to observe a

sufficient number of these peptides with sufficient confidence.

This can be a challenge in metaproteomic experiments, which

commonly have low coverage for individual species (Hettich

et al., 2013), and resulting difficulties in the reliability of peptide
identifications (Renard et al., 2010) can lead to false conclusions.

Furthermore, quantitative information derived exclusively from

distinct unique peptides is not necessarily representative for the

presence of organisms or functional groups. When using repre-

sentatives or lowest common ancestor, the resolution of the

approach is reduced and it may no longer be possible to distin-

guish strains or related species.
Within this contribution, we introduce Pipasic (peptide inten-

sity-weighted proteome abundance similarity correction) as a

tool for metaproteomic data analysis, which overcomes the

limitations of these two strategies. Pipasic uses all peptide iden-

tifications available, not only unique peptides, and generates a

strain-specific quantitative output without resorting to a lower

phylogenetic resolution. This is possible because Pipasic builds

on a similarity correction approach from metagenomics (Lindner

and Renard, 2013), which implicitly weights and corrects

observed abundances based on the experiment-specific expected

similarity between reference genomes. Further, Pipasic avoids

potential bias by estimating the similarity only for expressed pro-

teins, which may correlate with the state of conservation of

proteins.

We evaluate Pipasic in two settings: a diagnostic setting where

we distinguish two closely related cowpox virus strains at varying
concentrations and a metaproteomic dataset from an acid mine

drainage (AMD) environment. We compare Pipasic to a

MEGAN-based (Huson et al., 2007) analysis as a commonly

used lowest common ancestor approach (Jagtap et al., 2012a)

and analyze the impact of the expression level correction and

unique peptides.

2 METHODS

Pipasic is a method for estimating corrected proteome abundances in a

metaproteomic dataset and builds on the GASiC approach (Lindner and

Renard, 2013), extending it to the specific features of metaproteomic

data. The overall workflow is outlined in Figure 1. As input, Pipasic

takes a metaproteomic dataset containing a set of tandem mass spectra

data and a set of N reference proteomes Pi; i=1::N of organisms or

functional groups that are expected to be potentially contained within

the sample. The goal then is to quantify the contribution of these refer-

ences to the spectral data at hand. The first step is the identification of the

Fig. 1. Method overview. Pipasic involves three main steps: (i) peptide identification: here metaproteomic peptide spectra are identified by a database

search. The number of matches to the proteomes is the observed abundances. (ii) Similarity estimation: the similarities between the reference proteomes

are calculated and stored in a similarity matrix. This incorporates the adjustment to only regard expressed proteins and to weight them according to their

expression level. (iii) Similarity correction: the observed abundances are corrected using the similarity matrix yielding corrected abundances
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metaproteomic spectra with the peptides in the reference proteomes. The

number of identified spectra per proteome is the na€ıve observed abundance

estimate. The second step calculates a matrix containing the pairwise

similarities of the reference proteomes, reflecting only those proteins ex-

pressed in the sample according to their expression level. The results of

the first two steps are then used to estimate the corrected proteome

abundances.

There are two main differences to the genomics-based GASiC ap-

proach: first, expression levels are analyzed in metaproteomics.

Compared with the homogeneous coverage in metagenomic whole

genome sequencing, each protein—even within a single organism—will

have a different expression level. These expression levels directly influence

the similarity estimation. Second, the number of spectra is typically lower

than the number of reads in metagenomics. This requires the proteomes to

have sufficiently high numbers of matching spectra that the probabilistic

correction step works correctly. Therefore, abundance estimates may be

distorted if the coverage is low or the proteome only contains few proteins.

2.1 Peptide identification

The peptide spectra in the metaproteomic dataset are searched separately

against each reference proteome using an appropriate database search

algorithm. The choice of peptide search tool is not restricted; we tested

searches with InsPecT (Tanner et al., 2005), Sequest/Tide (Diament and

Noble, 2011) and BICEPS (Renard et al., 2012). It is crucial for Pipasic

that matches to all reference proteomes are reported instead of a subset of

best hits as commonly done by many search engines. We generally run the

peptide identification and false discovery rate (FDR) computation separ-

ately for each reference proteome to be more independent of database size

and quality effects (Jeong et al., 2012) and further to allow a more fine-

grained probabilistic weighting of peptide identifications against presence

of a species. However, Pipasic can also be run with a joint peptide iden-

tification and FDR computation for all reference proteomes.

To ensure specificity, we apply a standard decoy database strategy

(Bradshaw et al., 2006) using a reverse database. A FDR is calculated

for each identification; identifications below a user-defined FDR thresh-

old are discarded. For each proteome Pi, the number of FDR-controlled

identifications is called the observed proteome abundance. Normalizing

the observed abundances of all proteomes to one yields relative observed

abundances ri.

2.2 Proteome similarity estimation

The similarity of two reference proteins can be computed in various ways,

e.g. based on mismatch statistics or alignment scores. However, for the

application to metaproteomics, the quantity of interest is the similarity

that may lead to an ambiguous spectra-to-species assignment. The equiva-

lent similarity estimation step in themetagenomicGASiCmethod involves

the simulation of short reads for each genome, which are then mapped to

all other genomes. This carefully reflects the risk of incorrectly assigning a

read. One could estimate proteome similarities in the same way by simu-

lating spectra for each proteome and identifying them among all other

proteomes. However, simulating a significant number of spectra using a

simulation method such as the MSSimulator (Bielow et al., 2011) is par-

ticularly time-consuming and practically infeasible.

2.2.1 String comparison As a significantly faster alternative, we thus

regard the reference proteomes as sets of protein sequences, i.e. sets of

strings. Because the proteins in the experiment are typically digested into

tryptic peptides before the spectra are acquired, we perform an in silico

digestion of the reference proteomes, yielding a list of short peptide

strings for each proteome. For a proteome, we search all short peptide

strings in all other proteomes using exact string matching. To account for

the amino acids with indistinguishable masses, we replace all occurrences

of I by L and Q by K. We do not regard any ambiguity arising from

variable modifications (such as oxidized M) because the analysis on the

sequence level cannot incorporate the knowledge whether the potential

modification indeed occurs. The fraction of tryptic peptides in proteome

Pj that can be found in another proteome Pi is denoted the unweighted

similarity âij. Thus, we obtain the—unweighted—similarity matrix

Â=ðâijÞ; i=1::N; j=1::N.

2.2.2 Weighting by the expression level A reference proteome often

contains proteins that were not expressed or measured in the experiment.

This may either result from the fact that not all proteins are expressed or

that expression levels span several orders of magnitude and may be below

the detection limit or from biases in sample preparation or MS acquisi-

tion (Hettich et al., 2013). The similarity of the expressed proteins may

strongly differ from the overall similarity because proteins of key cellular

functions may be better conserved as well as higher expressed than other

proteins of an organism. Thus, we reflect these particular effects in the

similarity estimation by introducing weights for all peptides. The weight

wp for the tryptic peptide p in proteome Pi is calculated as follows:

(1) Assign a preliminary weight ~wp to each peptide p: add 1
Np

to ~wp for

each spectrum that was identified with p, where Np is the number

of peptides the spectrum can be identified with.

(2) For each protein P 2 Pi, set the peptide weights ŵp; p 2 P, to the

average preliminary peptide weight: ŵp=

P
q2P

~wq

jPj .

(3) Normalize the sum of all weights to one: wp=
ŵpP
q2Pi

ŵq
.

The matrix entry aij of the weighted similarity matrix A is calculated by

summing over the weights of the peptides in Pj that were found in Pi:

aij=
X

p2Pj

wp if p 2 Pi:

2.3 Similarity correction

The similarity correction step corrects the relative observed abundance ri
of proteome Pi by estimating the true abundance ci. This step is math-

ematically identical to the GASiC correction step: the relative observed

abundance ri of proteome Pi is assumed to be a mixture of the true

abundances cj weighted with the similarity matrix entry aij and can thus

be written as
X

j

aijcj=ri

In matrix notation, we can write this equation more briefly as

Ac=r

where c=ðc1; c2; . . . ; cNÞ
T and r=ðr1; r2; . . . ; rNÞ

T. Directly solving

the linear system of equations for c may lead to numerically unstable

results. Furthermore, we require the estimated abundances to be� 0

and the sum over all abundances to be� 1. Thus, we formulate the so-

lution for c as a non-negative lasso (Efron et al., 2004; Renard et al.,

2008) problem:

ĉ=argmin
c

jjAc� rjj2

s:t: ĉ i � 0 8i and
X

i

jĉ i j � 1

In our implementation, we solve this problem with the COBYLA

method implemented in SciPy (Oliphant, 2007).

Similarly to the GASiC framework, it is possible to obtain statistically

more robust estimates by bootstrapping from the set of spectra and

iterating the similarity correction step. Statistical tests for the presence

of a proteome as well as error estimates for the obtained abundances can

then be computed from the distribution of abundance estimates.

i151

Pipasic

to 
 -- 
 -- 
very 
very 
false discovery rate (
)
Since 
-
In order 
since 
 -- 
 -- 
mass spectrometry
since 
i
be greater than or equal to zero
less than or equal to
one


2.4 Technical details

Pipasic is implemented as Python scripts where performance-critical parts

are calculated using the scientific computing libraries SciPy and NumPy.

Currently, Pipasic is designed to directly work with either InsPecT or

Sequest/Tide for peptide identification. Pipasic is freely available from

https://sourceforge.net/projects/pipasic/

3 EXPERIMENTS AND RESULTS

To evaluate Pipasic and the impact of the various algorithmic

steps, we conducted two experiments. First, we demonstrate the

accuracy of the method on a mixture of real datasets of cowpox

viruses with a known ground truth. Here, we can identify the

benefits of individual steps and compare Pipasic with a metapro-

teomic analysis based on MEGAN and unique peptides. In a

second experiment, we apply Pipasic to a published AMD data-

set showing that our method is also able to provide corrected

abundance estimates for datasets from a natural environment.

3.1 Performance evaluation

The goal of the first experiment is the quantitative evaluation of

the Pipasic method using gold standard ground truth data. In

this experiment, we first provide evidence that including the ex-

pression information for similarity estimation significantly im-

proves the abundance estimates. Secondly, we demonstrate that

Pipasic provides more accurate results with regard to identifica-

tion and quantification than the analysis with MEGAN and

based on unique peptides.

The idea behind this experiment is to mix two pure proteomic

MS datasets of highly similar proteomes in predefined ratios. The

challenge for the computational method is to correctly estimate

the fraction of each proteome in the dataset. To this end, we rely

on two datasets containing two different but closely related

cowpox virus strains: Krefeld (Kre) and Brighton Red (BR). A

more thorough description of these datasets is available in

(Doellinger et al., unpublished data). HEp-2 (ATCC-CRL-23)

cells were infected with the individual viruses and the viruses

were then purified, collected by centrifugation and washed. The

viral particles were then dissolved in ammonium bicarbonate.

Proteins were digested with trypsin, desalted and fractionated.

The peptide fractions were then analyzed with an Easy-nanoLC

(Thermo Fisher Scientific) coupled online to an LTQ Orbitrap

Discovery mass spectrometer (Thermo Fisher Scientific).
To reduce the number of contaminating spectra, we searched

both datasets against the human reference proteome and

removed all matches below a 5% FDR. To create the reference

proteomes for both viruses, their viral DNA sequences were

assembled and genes were identified based on existing NCBI

annotations for cowpox viruses. The reference proteomes for

both strains were created by translating the identified genes

into proteins (Doellinger et al., unpublished data).
We now mixed the remaining spectra to create 11 artificial

datasets with mixtures ranging from 100% Kre strain to 100%

BR strain by sampling spectra from the original datasets such

that each dataset contained 3000 spectra in total. To ensure a

balanced spectrum quality in all datasets, we sampled high-

and low-quality spectra in a 1:1 ratio from the original data-

sets where high quality was defined as spectra within the 5%

FDR range when searched against the corresponding reference

proteome.

3.1.1 Unweighted versus weighted Pipasic We processed the 11
datasets with Pipasic as described in the Section 2 using InsPecT

for peptide identification and both the unweighted and expres-

sion-weighted similarity matrix. Figure 2 shows the calculated

abundance estimates plotted over the true fraction of Kre spectra

on the x-axis, such that the estimates for one dataset lie in a

column. The dashed lines represent the observed abundances

and emphasize the major challenge with these datasets: high rela-

tive abundance values are assigned to both proteomes, as the

bulk of the spectra could not be identified uniquely. Although

the unweighted correction (dash-dotted lines) clearly improves

on the observed abundances, we can still see the discrepancy to

the ground truth (solid circles). The expression-weighted correc-

tion (solid lines) yields the best approximation of the true abun-

dances. The error bars show the 95% confidence interval of our

estimates, which was estimated by 100-fold bootstrapping from

our datasets. In particular, the weighted correction estimates zero

or low abundances if a proteome was not or almost not con-

tained in the metaproteomic dataset.
Furthermore, we repeated the experiment using the 20%

BR/80% Kre dataset, but successively increased the number of

reference proteomes by adding proteomes of other DNA viruses

to the database (BR and Kre proteomes were always present).

We used up to 20 proteomes (see Supplementary Text) and mea-

sured the Pipasic run time and estimation accuracy by calculating

the root mean squared error. Both metrics are shown in Figure 3.

The most time-consuming step of Pipasic is peptide identifica-

tion, and therefore, its linear contribution is stronger than the

contribution of the similarity matrix calculation with quadratic

complexity. We also see that the error of the estimated abun-

dances is low for all considered database sizes and only increases

slightly with the number of proteomes.

3.1.2 Comparison to MEGAN To compare Pipasic with cur-
rently used approaches, we also applied MEGAN to the data,

which parses the results of a BLAST (Altschul et al., 1990) search

against a reference database. An underlying phylogenetic tree

allows assigning of shared identifications to lowest common an-

cestor nodes in the tree, expressing the degree of ambiguity in the

results. In this way, MEGAN raises the significance of the

unique identifications for the evaluation of the experiment.

We searched all 11 mixed cowpox virus datasets against the

Kre and BR reference proteome databases using InsPecT to

identify each spectrum with a peptide sequence. Then we

searched the peptide sequences with BLASTP in the reference

proteomes, such that all identifications could be placed to the cor-

rect position in the phylogenetic tree with MEGAN. Figure 4a

shows the output of MEGAN for the dataset containing 10%

Kre and 90% BR spectra. The size of the circles is log-propor-

tional to the number of assigned spectra, visualizing that the

majority of spectra was assigned to the higher level

Orthopoxvirus node. The leaves, representing Kre and BR, ob-

tained relatively few spectra: only 8.4% of all matches were

unique. In Figure 4b, we plotted for each dataset both the

unique matches to each proteome as well as the sum of shared

Cowpox virus and unique matches. Because the number of
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shared matches is much higher than the number of unique

matches, the sum of unique and shared (dashed lines) is not

informative, as both proteomes obtain close to 50% relative

abundance. The number of unique matches (dash–dotted lines)

contains more information, and the resulting relative abundances
are closer to the ground truth. However, in the case of pure

datasets, still a significant number of spectra is matching

uniquely to the absent species (about 15%). Here, the Pipasic

estimates (solid lines) are much closer to the ground truth.

3.2 AMD experiment

In the second experiment, we demonstrate the applicability of

Pipasic to metaproteomic data originating from a natural envir-

onment, which is more complex than our in silicometaproteome.

With this experiment, we show that Pipasic automatically cor-
rects abundances of highly similar reference proteomes without

affecting the abundances of other unrelated proteomes. For that

purpose, we used metaproteomic spectra of an AMD biofilm

dataset described in Denef et al. (2010). AMD biofilms are bac-

terial communities in a highly acidic environment. Thus, AMD

communities are not as complex as other microbial communities

and their composition is well understood.
We downloaded the metaproteomic spectra of sample 20 run 2

and the corresponding protein database from the authors’ Web

site (http://compbio.ornl.gov/biofilm_amd_PIGT/ accessed in

March 2013). As the protein database contained sequences for

all dominant organisms, we manually divided the database into

six reference proteomes: Leptospirillum group II and III (Lepto2

and Lepto3), Ferroplasma acidarmanus Type I and II (Fer1 and

Fer2), G-plasma and others, like contaminants and unassigned

archaea and bacteria. Then we searched the spectra in the refer-

ence proteomes with Tide and counted the number of matching

spectra. We applied Pipasic with data weighting on the results to

obtain the corrected abundance estimates.
The results of this experiment are shown in Table 1. Here,

the effect of the correction is not as pronounced as in the

previous experiment owing to the relatively low similarity

values (maximum 0.21 compared with 0.92). Lepto3 receives

the strongest absolute correction (�359 PSMs) owing to the

protein sequence similarities with Lepto2, which receives low

relative correction. Fer1 and Fer2 have the highest proteome

similarities in this experiment (0.21/0.19); their abundances

were reduced in sum by 48.3%. G-plasma has the least simi-

larity to the other proteomes (50.04) and therefore receives

only little correction by 3%. Notably, the correction within

the Lepto group is asymmetric: Lepto3 receives stronger rela-

tive correction than Lepto2. Two opposing factors contribute

to this effect: first, the number of peptide spectrum matches to

Lepto2 is more than twice as high as to Lepto3 (Table 1) and,

second, the probability to find a Lepto2 spectrum in Lepto3

(Fig. 5) is �30% higher than vice versa. Taken together, the

difference in abundance dominates the correction in the

Lepto group, such that the absolute number of Lepto2 pep-

tides that can also be found in Lepto3 is much higher than

vice versa.
This experiment demonstrates that the proposed Pipasic

method can handle real metaproteomic data and the calculated

estimates are in agreement with the expectation. The two main

groups Fer1/2 and Lepto2/3 receive abundance corrections

within each group, but not between the groups. This is note-

worthy because we did not require any prior information other

than the reference proteomes and shows that the similarity esti-

mates reflect the nature of the microbial community.

Fig. 2. Effect of Pipasic correction: the relative abundances of 11 mixed

cowpox virus Kre/BR datasets were corrected with Pipasic without and

with expression correction. The observed abundances (dashed lines) are

insufficient estimates for the true abundances (solid dots): in the extreme

cases of pure Kre or BR datasets the absent virus still receives 45%

abundance. The unweighted correction (dash–dotted line) improves on

this, but best results are obtained using the expression-weighted similarity

matrices (solid line). The error bars indicate the 95% confidence interval

after 100-fold bootstrapping

Fig. 3. Influence of reference database size on Pipasic prediction accuracy

and run time. A dataset containing 20% BR and 80% Kre was searched

against a reference proteome database with increasing size. Prediction

accuracy was measured using the root mean squared error of the BR

and Kre estimates. The run time was measured for the complete

Pipasic run, including peptide identification with InsPecT and abundance

correction, but without bootstrapping. The error is low for all database

sizes and only increases slightly with the database size. The run time

increases linearly with the number of reference proteomes, as peptide

identification is the most time-consuming step in the pipeline
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4 DISCUSSION

The experiments indicate that Pipasic allows the reliable separ-

ation of highly similar strains in metaproteomics experiments. It

can be used for reliably identifying and quantifying the contri-

butions of organisms and functional units even in cases when—

as in the cowpox virus data experiment—92% of all expressed

tryptic peptides are identical. In particular, Pipasic allows having

a phylogenetic resolution down to the strain level, which is in-

herently not feasible for lowest common ancestor approaches for

highly related species. This is also clearly visible in the compari-

son with MEGAN on the cowpox virus strain data (Fig. 4).
Given its reliability, Pipasic is preferable to approaches relying

solely on the analysis of unique peptides. Figure 4 indicates the

risk of analyzing unique peptides for highly related strains. Even

though the overall number of identified peptides per species is

above 1000, which is high for a metaproteomic setting, the

number of unique peptides remains low owing to the sequence

similarity. Thus, only few peptide identifications out of a thou-

sand decide on the identification of a species when relying on

unique peptides. The example in Figure 4 highlights the risk:

even in cases when the ground truth contains 0% spectra of

the Kre strain, MEGAN finds 17 unique peptides; this effect

was also observed when using the more conservative OMSSA

(Geer et al., 2004) search engine instead of InsPecT. These may

incorrectly be interpreted as proof of the presence of the Kre

strain. However, given that the original peptide identification

search was conducted at a 5% FDR and given the large

number of spectra searched, these identifications are incorrect.

Because Pipasic leverages the computed similarity and the shared

(a) (b)

Fig. 4. Comparison of Pipasic and MEGAN on the cowpox virus datasets. (a) MEGAN output for the 10% Kre/90% BR dataset. (b) Comparison of

MEGAN and Pipasic on all 11 mixed cowpox virus datasets. For MEGAN, the number of unique and shared matches (dashed lines) shows almost no

difference between the two proteomes because the number of unique matches is low. The number of unique matches (dash–dotted lines) provides

abundances closer to the ground truth, but Pipasic (solid lines) yields the best estimates

Fig. 5. Pipasic similarity matrix with data weighting for the AMD experi-

ment. The matrix entries encode the probability that a peptide in a source

proteome can be found in a target proteome, modulated by the metapro-

teomic data (see Section 2). Here we see that the intra-group matrix

coefficients for the Fer and Lepto group are greater than the inter-

group coefficients. This means in practice that Pipasic corrects abun-

dances within but not between the two groups. It is noteworthy that

the matrix coefficients can be asymmetric, which has the effect that abun-

dance can be shifted from one proteome to another rather than correcting

both proteomes equally

Table 1. AMD dataset abundance estimation

Proteome Fer1 Fer2 Lepto2 Lepto3 G-Plasma Other

Observed PSMs 195 189 4470 2014 692 87

Pipasic estimate 111 88 4281 1655 671 32

Relative correction (%) 43.1 53.4 4.2 17.8 3.0 63.2

Note: The peptide spectrum matches (PSM) were counted for each proteome and

subsequently corrected with Pipasic using a weighted similarity matrix. The results

show a strong relative correction for the highly similar Fer 1/2 and only small

relative correction for Lepto 2/3 and G-Plasma.
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peptides into the analysis, it is less at risk to overvalue these
incorrect identifications and correctly reduces the presence of
the Kre strain in this example down to a level where it cannot

be distinguished from a 0% presence.
This example also indicates that the statistical model behind

Pipasic contains and quantifies uncertainty. A bootstrapping

strategy in the abundance estimation step allows us to obtain
confidence statements for all estimates, and thereby the defin-
ition of cutoffs for diagnostic decisions can be supported by

statistical statements. The reliability of an estimate obviously
primarily depends on data abundance—the number of support-
ing spectra—as well as on the computed and weighted similarity

of the species of interest.
Pipasic computes its similarity correction adjusted to the ex-

pression level of proteins. The cowpox virus data experiment

clearly indicates the significance of this step for the results.
This step highlights a major difference between metaproteomics
and metagenomics: although the main idea of the metagenomic

method could be applied in metaproteomics, the method itself
must be tuned to the underlying difference in the biological data.

The expression level correction should also be applicable and
helpful in metatranscriptomics settings where also expression
level information can be confounded with the state of conserva-

tion. Here, we applied the correction only for complete prote-
omes of species because the number of spectra per species was
limited. In large-scale experiments, it should also be feasible to

adjust for protein groups separately.
With regard to quantification, Pipasic currently relies exclu-

sively on spectral counts. While we observe positive results for

both the expression level correction and the quantification in the
cowpox virus experiment, spectral counts have been shown to
have limitations with regard to the quantitative range and preci-

sion that they cover. Methods combining the intensity of mass
spectra with spectral counts, e.g. Dicker et al. (2010), could in
principle be integrated into the Pipasic framework and further

improve the quantification exactness.
One general difficulty for metaproteomics is that all analyses

depend on the completeness of the provided reference proteomes

because purely de novo peptide identification approaches are not
yet sufficiently reliable (Hettich et al., 2013). Thus, any quanti-

fication or identification by Pipasic is also at risk of only reflect-
ing the available reference proteomes. Using an error-tolerant
peptide search strategy such as BICEPS (Renard et al., 2012),

peptides containing up to two amino acid substitutions can be
included and thereby this risk can be reduced.
Pipasic is currently not optimized for large-scale datasets and

can become computationally expensive because peptide identifi-
cations need to be performed separately against all reference
proteomes and all pairwise string comparisons need to be

computed and accounted for. To overcome this, a two-step pro-
cedure may be helpful to first identify all species having unique
identifications with existing methodology and then to run Pipasic

on those subsets that are expected to have a high sequence simi-
larity to ensure specificity of results.

5 CONCLUSION

With this contribution, we introduced Pipasic as a tool for iden-

tification and quantification in metaproteomics. Pipasic focuses

on correcting observed proteome abundances without having to

exclusively assign ambiguous peptide spectrum matches to their

correct origin among a potentially large number of reference

proteomes. Its particular strength is that it computes the peptide

level similarity between reference proteomes and thereby can re-

liably distinguish on the strain level. Further, Pipasic includes the

expression level in the analysis and thereby avoids bias resulting

from the correlation of conservation and expression in metapro-

teomics. Pipasic is implemented in Python and freely available as

an open-source project.
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