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Abstract

Identification of diffuse signals from the chromatin immunoprecipitation and high-throughput massively parallel
sequencing (ChIP-Seq) technology poses significant computational challenges, and there are few methods currently
available. We present a novel global clustering approach to enrich diffuse CHIP-Seq signals of RNA polymerase II and
histone 3 lysine 4 trimethylation (H3K4Me3) and apply it to identify putative long intergenic non-coding RNAs (lincRNAs) in
macrophage cells. Our global clustering method compares favorably to the local clustering method SICER that was also
designed to identify diffuse CHIP-Seq signals. The validity of the algorithm is confirmed at several levels. First, 8 out of a total
of 11 selected putative lincRNA regions in primary macrophages respond to lipopolysaccharides (LPS) treatment as
predicted by our computational method. Second, the genes nearest to lincRNAs are enriched with biological functions
related to metabolic processes under resting conditions but with developmental and immune-related functions under LPS
treatment. Third, the putative lincRNAs have conserved promoters, modestly conserved exons, and expected secondary
structures by prediction. Last, they are enriched with motifs of transcription factors such as PU.1 and AP.1, previously shown
to be important lineage determining factors in macrophages, and 83% of them overlap with distal enhancers markers. In
summary, GCLS based on RNA polymerase II and H3K4Me3 CHIP-Seq method can effectively detect putative lincRNAs that
exhibit expected characteristics, as exemplified by macrophages in the study.
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Introduction

Unlike messenger RNA, non-coding RNAs (ncRNAs) are a class

of RNAs that are not intermediates between DNA and protein

products. Rather than being regarded as ‘‘transcriptional noise’’,

there is emerging recognition and appreciation of the functional

importance of these ncRNAs in health and diseases, such as cancer

[1]. According to the length of transcripts, ncRNAs can be

classified into three categories: small RNA (#25 bp), medium-

length RNA (,30–200 bp), and long RNA (longer than 200 bp)

[2]. The understanding of ncRNA biology is evolving rapidly as

more and more ncRNAs are being discovered. For example, it was

previously thought that ncRNAs lacked evolutionary conservation;

however, recent studies revealed compelling evidence supporting

the conservation of lincRNAs [3,4]. In addition, there is emerging

evidence that lincRNAs play roles in regulation of gene expression,

in part through targeting transcriptional complexes to specific

genomic locations [5,6].

RNA polymerase II (Pol II) plays a central role in transcribing

both coding and non-coding RNAs. The ability of Pol II to initiate

transcription is dependent upon the combinatorial functions of

general and sequence–specific transcription factors that establish an

open chromatin template and mark the site of transcriptional

initiation. This process is dependent on nucleosome remodeling

factors and histone modifying enzymes that mark histone tails with

specific post-translational modifications serving as docking sites for

transcriptional co-regulatory proteins. Trimethylation of histone H3

lysine 4 (H3K4me3) is a well-known marker on promoter regions

correlated to gene activation, and trimethylation of histone H3 lysine

36 (H3K36me3) is another marker along a given transcribed region

[3]. Thus, an RNA transcript can likely be identified by finger

printing the positions of a chain of Pol IIs that are closely adjacent to

each other. H3K4me3 signatures within such boundaries provide

additional information to validate the active transcription status.

High resolution snap shots of active transcription are recently

enabled by chromatin immunoprecipitation (ChIP) combined with

ultra high-throughput massively parallel sequencing technologies,

also known as ChIP-Seq technology [7]. ChIP assay pulls down

the genomic DNA segments where proteins of specific interest are

bound and ultra high-throughput massively parallel sequencing

technology provides digitized readouts of these DNA segments.
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The CHIP-Seq signatures of DNA associated proteins such as of

Pol II and histone markers are diffuse and span a wide range from

several nucleosomes to thousands of bps. Such signals are not

easily detected by existing peak-finding algorithms for transcrip-

tion factor binding, such as FindPeaks [8]. In fact, most current

algorithms have been designed for analyzing sharp peaks from the

transcription factors, but not the diffuse CHIP-Seq signals. One

exception is the study of Guttman et. al, in which they developed a

method to adjoin neighboring diffuse histone modification

signatures of H3K4Me3 and H3K36Me3, in order to discover

long intergenic noncoding RNAs (lincRNAs) [3]. They defined the

putative lincRNAs as the maximum continuous sequences over

multiple windows that have tag counts larger than a predefined

number of tag counts, and have significant P-values based on a

Poisson null model. Zang et al. developed SICER, a clustering

method to find islands of signatures in diffuse signals. In their

method, gaps are allowed to merge neighboring signals with high

island-scores. False discovery rate (FDR) is then used to keep the

regions that have high scores over a randomized back-ground

model or input data [9]. Here, we report a global clustering

approach that identifies correlated diffuse CHIP-Seq peak signals

likely to belong to the same unit based on the distribution of peak

width and inter-peak distance. We run simulations showing the

observed correlation appears to arise from reaction-diffusion

dynamics. We apply this method to Pol II and H3K4Me3 CHIP-

Seq data to find lincRNAs, and compare its performance to

SICER, a publicly available computational method to merge

diffuse CHIP-Seq signals.

The data in this study are obtained from primary macrophage

cells under resting and activated conditions. Deriving from

circulating monocytes in the blood stream, macrophages are

terminally differentiated cells with important innate and adaptive

immune functions [10]. In addition, they contribute to different

pathological conditions, such as arthrosclerosis, diabetes, cancers

and various autoimmune diseases [10,11,12,13]. Lipopolysaccha-

rides (LPS), a component of the outer membrane of Gram-

negative bacteria that activates toll-like receptor 4 (TLR4), can

massively and rapidly change the macrophage gene expression

program, including induction of an acute inflammatory response

that results in the production of large quantities of cytokines and

chemokines [14,15]. Resting and activated macrophages therefore

provide a powerful model system for identification of lincRNAs

that are expressed under basal conditions as well as those that are

regulated by inflammatory stimuli [16].

Results

Emerging pattern of diffuse CHIP-Seq peaks
Unlike the local-clustering approach of Zang et. al [9], we

applied a global approach to explore the patterns of diffuse CHIP-

Seq peaks. We used Pol II CHIP-Seq data as examples, but the

pattern holds in general for histone marker data such as

H3K4me3, H3K4me1 and H3K27me3 (data not shown). From

the density plot of the logarithm-transformed genomic peak width

versus logarithm transformed distance between the nearest

genomic peaks (Figure 1A), we discovered two groups of peaks.

One group had little correlation between peak width and

interpeak distance (blue). The other group had a linear-like

correlation between peak width and interpeak distance (red). This

pattern is maintained when we separately plotted the peaks that

are located within RefSeq genes, and the peaks that reside

intergenically (Figure S1). Interestingly, the K-mean (K = 2)

clustering method with the cosine metric also generated two

clusters separated by a line (Figure S2). These results indicated that

there are two types of peak distributions – one type (Type 1) that

represent a group of peaks that were close together and likely a

part of a larger lincRNA unit, and another type (Type 2) that are

more likely unrelated peaks. We observed a linear relationship for

the Type 1 peaks, which indicated that as these peaks became

wider, the separation between peaks became larger. Conceptually,

one can rationalize that the Type 1 peaks reflect the dynamics of

‘‘diffusion-reaction’’, an emergent picture of limited amount of

enzymes competing for specific genomic loci, assuming that the

enzymes are diffused to targeted loci and that the total loading

capacity of the enzymes within a particular actively transcribed

locus is relatively constant. Due to the stochastic nature, the more

likely one sees some enzymes aggregating closely as one single,

wide peak, the farther apart one would expect to see the other

competing enzymes near that particular locus.

Motivated by this observation, we constructed a simplified

simulation of the Pol II signals modeled over time assuming a

simple one-dimensional reaction-diffusion system, in order to

demonstrate that the above hypothesis is plausible. . We assume

the distribution of Pol II signal to be uniform and the diffusion of

the signal followed Fick’s second law with a selected diffusion

coefficient (D). We carried out several computations in each step,

including determining the potential binding sites, signal amplifi-

cation upon binding, and calculating the simulated Pol II

expression levels. We used the first 300 Mbps of Chromosome 1

for the representative gene data and show a resulting distribution

after a time evolution of these signal peaks in Figure S3. This

distribution is similar to what was found in the observed CHIP-

Seq data, indicating that the reaction-diffusion dynamics may be

responsible for generating the observed distribution. The descrip-

tion of the relevant parameters of the simulation is detailed in the

Methods.

Based on this two-cluster pattern, we implemented an iterative

global-clustering-over-linear-separator (GCLS) algorithm to re-

construct the most correct transcription units from these peak

components (see Methods). Briefly, Type 1 peaks were defined as

the remaining peaks on one side of the best linear separator going

through the point of minimum density between the two groups.

Then the Type 1 peaks were merged with their nearest neighbors.

A new density plot was made after such merging, to calculate a

new best linear separator. This process was iterated until

convergence. H3K4Me3 signatures were clustered similarly. We

define a putative lincRNA transcript as the Pol II clusters that

overlap with at least one H3K4Me3 cluster. The flowchart of

finding lincRNA is shown in Figure 1B, following the similar

filtering scheme as others [3]. We used slightly different minimum

length threshold of 3 Kbp for the lincRNAs (see Methods).

Evaluation of GCLS method using known protein-coding
genes as test sets

Before applying the GCLS method to discover lincRNAs, we

first tested it on Pol II peaks located within RefSeq genes, and

compared the result to that of the comparison method SICER, in

three different gap parameter settings: 600 bp (SICER600),

1200 bp (SICER1200), and 2200 bp (SICER2200). We show

the summary of comparison in Figure 2A. Among the over 18,000

RefSeq regions (overlapping genes are concatenated as one

region), GCLS identifies over 8100 transcriptional regions. By

comparison, SICER with various parameters identify similar but

slightly more regions. However, GCLS has the least discrepancy

between the total number of identified transcriptional regions and

the actual RefSeq gene counts, compared to the results of SICER.

In fact, 64% of the predicted regions correspond to single genes in

GCLS, compared to 63.5% (P = 0.385) in SICER600, 50%

A Global Clustering Algorithm to Identify lincRNA
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(P = 1.67e-08) in SICER1200 and 55% (P = 0.96e-21) in SI-

CER2200. SICER600 produced more regions than actual gene

counts. On the other hand, SICER1200 and SICER2200 allow

too large gap distances that a region found in these conditions can

harbor multiple genes. Nevertheless, there are a large percentage

of genes and regions identified by SICER that overlapped the

genes and regions identified by our GCLS method (Figure 2A),

and vice versa (Figure S4). The Receiver-Operator Curve (ROC)

Figure 1. genome-wide patterns of diffuse CHIP-Seq peaks and their application to lincRNA discovery. A: the emerging patterns of Pol
II CHIP-Seq peaks. Data are displayed as log10 transformation of the width of peaks vs. log10 transformation of the distance between two successive
peak centers. Red data points denote peaks that appear to be linearly correlated between peak width and inter-peak distance. Blue data points
denote peaks that lack the linear correlation between peak width and inter-peak distance. The linear separator that separates the two types of peaks
is determined by iterative computation described in Methods. Insert: the density heat-map plot of data points in Figure 1. B: flowchart to
demonstrate the process of filtering and clustering Pol II and H3K4me3 peaks to identify lincRNAs.
doi:10.1371/journal.pone.0024051.g001
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plot based on the binary classification of known genes identified by

Pol II vs. microarray gene expression prediction also shows that,

GCLS and SICER can extract clusters that overlap with known

genes with very similar trends of true positive rate vs. false positive

rate (Figure S5).

To further evaluate GCLS vs. SICER on the ORF of RefSeq

genes, we investigated the coverage of these two methods in the 59-

upstream of TSS (transcription starting site), TSS-TES (transcrip-

tion ending site) and 39-downstream of TES from the identified

genes (Figure 2B). Interestingly, Pol II coverage presents a bi-modal

distribution under either method, indicating Pol II stalling near the

promoter regions and the TES. The stalling phenomenon was

reported earlier near the promoters [17,18,19,20,21], but minor

stalling near TES has not been shown previously according to our

knowledge. GCLS method and SICER2200 have very similar

coverage profiles in the coding region, better than SICER1200 and

much better than SICER600. GCLS performs even better than

SICER2200 near the TESs. Overall GCLS covers about 80% of

TSS and gradually decreases to about 40% near TESs. In the 59

upstream of TSSs and 39 downstream of TESs, the noise levels

present in the order of SICER600,GCLS,SICER1200,

SICER2200. In summary, GCLS is better than SICER2200 and

SICER1200 in both accuracy and coverage. GCLS is much

superior to SICER600 in terms of the coverage in coding regions,

but not as accurate beyond the ORF. However, due to the much

larger distance between intergenic peaks (Figure S1), SICER600 is

expected to perform much more poorly than GCLS, because

SICER600 is dependent on the gap-distance whereas GCLS is

independent of it. Due to this reason, as well as the least discrepancy

between regions and gene counts shown in Figure 2A, we chose to

rely on our global clustering approach for the lincRNA discovery.

lincRNA prediction with GCLS
We found a total of 374 putative lincRNAs in macrophages

under the no treatment condition and 189 lincRNAs under LPS

treatment (Table S1). We compared the results of GCLS from the

no treatment condition to those of SICER600. Overall GCLS

compares favorably to SICER600. As expected, GCLS found

more putative lincRNAs than SICER600 (251 units). Moreover,

GCLS was capable of recovering putative lincRNAs of larger

average lengths and length variations. The lincRNA units from

GCLS have an average length of 12,474 bp with a standard

Figure 2. Comparison of GCLS and SICER on RefSeq genes. A: comparison of the performance of SICER against GCLS among RefSeq genes.
SICER is parameterized over 3 different gap distances: 600 bp, 1200 bp and 2200 bp. A region is defined as the maximum contig of several
overlapping genes if there are any, or the locus of one single gene if there are no other overlapping genes. The total RefSeq regions and genes are
plotted as the references to illustrate the fraction of regions and genes that are actively expressed in macrophages. B: comparison of the coverage of
GCLS vs. SICER on RefSeq genes spanning from 10 kbp upstream of the transcription start site (TSS) to 10 kbp downstream of the transcription end
sites (TES). The transcription regions (TSS-TES region) of genes of different length are normalized to the same effective length. This region was
subdivided into 50 bins and the coverage was counted in each bin. Similarly, the 10 kbp region upstream of TSS and the 10 kbp region downstream
of TES were also subdivided into 50 bins and counted the coverage in each bin. GCLS has the best coverage in the transcript region, and second
lowest noise level in the upstream of TSSs and the downstream of TES.
doi:10.1371/journal.pone.0024051.g002
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deviation of 13,703 bp, whereas the units from SICER have an

average length of 5215 bp with a standard deviation of 2363 bp.

This indicates that GCLS is more flexible at predicting putative

lincRNAs of a broader range of lengths, comparing to SICER,

which predefines the inter-island gap distance. A majority of the

peaks found through GCLS overlapped with those from SICER

(Figure 3, Table S2). Of the 251 units found by SICER, 159 or

63% overlapped with these found by GCLS. These lincRNA units

from macrophage did not appear to have large overlap with those

reported by Guttman et al. [3], which were found in mouse

embryonic stem cells (ESCs), mouse embryonic fibroblasts (MEF),

mouse lung fibroblasts (MLF) and neural precursor cells (NPC)

(Table S2).

Effect of LPS on lincRNAs and experimental validation
As Toll-like receptor (TLR) activation dramatically alters the

transcription program of protein-coding genes in macrophages

[22,23], we hypothesize that transcription of lincRNAs may also

be TLR responsive. Towards this goal, we tested the Pol II tag

differential distribution in the same putative lincRNA regions from

LPS treatment vs. no treatment. We first normalized the tag

difference between LPS treatment vs. no treatment (see Methods).

We then utilized a binomial model to perform the statistical test.

We detected 45 putative lincRNAs with significantly fewer Pol II

tags, and 126 putative lincRNAs with significantly more Pol II tags

under LPS treatment vs. no treatment (Figure 4A).

We selected 11 regions from the putative lincRNAs for

experimental validation (Table 1). Within these regions, 6 have

increased Pol II tag counts upon the LPS treatment, 4 have

reduced Pol II tag counts by the LPS treatment and one did not

change significantly. LincRNAs have features of exons [3,4,24],

and hence we predicted exons (posterior P-value.0.10 as

suggested in the software. For convenience all the probabilities

in the paper are posterior probabilities, unless noted otherwise)

using GENSCAN software and designed primers spanning the

exons (100–200 bp) in each region. QPCR validation was

performed on RNAs extracted from bone marrow derived primary

macrophages under no treatment, or LPS treatment conditions.

These experiments showed that tested putative lincRNAs had low

to medium expression levels, compared to GAPDH (Figure S6). 5/

6 putative lincRNAs were indeed induced by LPS (except chr11,

whose expression was below detection threshold), and 2/4 putative

lincRNAs were indeed reduced by LPS (except chr3 and chr5,

whose expressions were very low). The fold changes of QPCR

upon the LPS treatment to those of tag counts of Pol II ChIP-Seq

is presented in Figure 4B. The correlation coefficient is as high as

0.86 for the 8 putative lincRNAs that were expressed.

Computational Characterization of lincRNAs
The correlation between lincRNA Pol II tag fold change upon

LPS and its nearest RefSeq gene expression fold change upon LPS

treatment was reasonably good (Pearson’s correlation coeffi-

cient = 0.44, P-value = 2.145624e-26). Based on the idea that

lincRNA would most likely regulate their nearest genes [3], we

associated the lincRNAs with their nearest RefSeq genes, in order

to predict the biological function of these putative lincRNAs. We

performed GO analysis on biological processes with a cut-off

threshold of FDR,0.01. LPS treatment and no treatment both

yield primary metabolic process and regulation of cellular process

(Table 2). lincRNAs expressed in the basal condition were near

genes enriched for metabolic processes. LPS treatment shifts the

genes near lincRNAs towards immune cell specific processes such

as lymphocyte differentiation. Similarly, KEGG pathway analysis

(P-value,0.01) also shows that LPS treatment shifts lincRNA

program to immune response related pathways such as cytokine-

cytokine receptor interaction, as expected (Table 2).

To investigate the evolutionary conservation among the

putative lincRNAs, we carried out analysis in the predicted exons

by GENSCAN as well as their respective predicted promoter

regions labeled by H3K4Me3 signatures. By comparing the

cumulative distribution of PhastCon scores of the predicted exons

of the lincRNA to those of the introns and exons of protein coding

genes, it is clear that overall the predicted exons of lincRNAs are

slightly more conserved than the collective introns of the protein

coding genes on average. They are, however, much less conserved

than the exons of the protein coding genes (Fig. 5B). This result is

consistent with earlier observations [3,4,24]. Furthermore, the

promoters of the putative lincRNAs also show evidence of

conservation (Fig. 5A). H3K4Me3 signatures have been regarded

enriched in the promoter region. Correspondingly, the conserva-

tion scores are significantly higher in this region (Wilcoxon tests P-

value,1e-15).

We next searched for the enriched motifs existing in the

promoter regions that are labeled by H3K4Me3 using the

HOMER software [25]. Impressively, PU.1 motif stands out as

the most enriched motif under no treatment condition, and is

Figure 3. Comparison of the lincRNA overlap among three different methods: GCLS, SICER600 and Guttman’s method in [3]. The
counts of lincRNAs are grouped in the ascending order of chromosomes.
doi:10.1371/journal.pone.0024051.g003
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ranked 2nd under the LPS treatment condition (Fig. 6A). PU.1 is

an Ets family transcription factor required for the generation of

common lymphoid progenitor (CLP) and granulocyte-macro-

phage progenitor (GMP) cells in the hematopoietic lineage system

[19,26]. CLP ultimately gives rise to B cells and GMP to

macrophages. AP-1 is another motif with a significant P-values and

it has been shown to be required for macrophage development

and function [27]. Given the observation that PU.1 motif is highly

enriched, we asked the question whether the putative lincRNA

sites overlap with so-called ‘‘enhancers’’, as reported by De Santa

et al. [28]. We collected the ‘‘enhancer’’ signatures that are

represented by the overlapping PU.1 CHIP-Seq peaks and

H3K4Me1 peaks [29] in enhancer regions. The overlap result

shows that among the 467 putative lincRNAs combined from LPS

treatment and no treatment conditions, over 387 (83%, significant

with a binomial distribution P-value,2.624170e-141) of the

putative lincRNAs have enhancer signatures residing within

(Fig. 6B).

Non-coding RNAs may harbor conserved secondary structures that

can be processed into novel small RNAs, which function as binding

partners for transcription factors [1,30]. Identification of functional

lincRNA secondary structures can facilitate discoveries in these

regards. Therefore, we checked the existence of conserved secondary

structure existing in the transcripts of the putative lincRNAs, using the

RNAz prediction algorithm. We found prevalent, conserved

secondary structures in the H3K4Me3-free regions of the putative

lincRNA transcripts. With a stringent threshold P-value of 0.9, there

are 64 windows (120 bp, slide size = 40 bp) that clustered into 53 loci

in the LPS treatment group, and 36 windows that clustered in 33 loci

in the untreated group. We exemplify two interesting putative

lincRNAs as the following: (1) putative lincRNA located 59 distal side

of Pla2g7. This lincRNA is sensitively stimulated by LPS treatment,

and has high pair-wise identity (90.14) and low free energy of the

thermodynamic 238.03 kcal/mol at position 43006516– 43006636

(Fig. 7A). Pla2g7 mRNA expression was shown to increase in blood

monocytes and plaque macrophages that were under inflammatory

stress [31]. Another example is the putative lincRNA located at 39

distal side of Cxxc5. This lincRNA appears to be negatively affected by

LPS treatment and has a highly conserved secondary structure at

position Chr18: 35994018–35994129 (Fig. 7B). Cxxc5 is reported as

the positive regulator of IKb-kinase, which reciprocally turns on the

NFkB pathway [32]. It will be interesting to test experimentally

whether this lincRNA repress the expression of the nearby Cxxc5 gene.

Discussion

ChIP-Seq with signatures such as histone modifications and

protein binding distributions has emerged as a new trend to

predict critical genomic features. However, most current CHIP-

Seq algorithms have been designed for analysis of sharp peaks

from the transcription factors. There only exist a very few

computational methods, such as SICER, for dealing with diffuse,

broad peaks. One might propose that increasing sequencing depth

could fill the gaps among diffuse peaks, but we argue this strategy

is not practical. First of all, we are not aware of any computational

method capable of predicting tag counts that need to be sequenced

to reach saturation for diffuse CHIP-Seq signals prior to

experiments, second, for lincRNAs that are very long, complete

coverage over the entire transcripts seems very difficult for

experiments such as Pol II CHIP-Seq, and even if saturation

could be achieved so that all lincRNA transcripts have signals, it

will be too costly. GCLS has its unique merit in this regard, and it

complements the other computational methods. Unlikely SICER

that utilizes an ‘‘island approach’’ to merge nearby clusters, GCLS

relies on the global pattern that some neighboring peaks (Type 1

peaks) are highly correlated with the interpeak distance, whereas

others (Type 2 peaks) are not. Type 1 peaks reflect that a limited

amount of enzymes compete for specific genomic loci, assuming

the total loading capacity of the enzymes within a particular

actively transcribed locus is relatively constant. Due to the

stochastic nature, the more likely one sees some enzymes

aggregating closely as one single, wide peak, the farther apart

one would expect to see the other competing enzymes near that

particular locus. These peaks should therefore be merged to create

a single transcription unit. Type 2 peaks appear on the boundaries

of transcription units where there is a larger separation between

successive signals. These peaks do not need to be merged, as that

Figure 4. Effect of LPS on lincRNAs. A: differentially regulated
lincRNAs by LPS. Due to the difference in tags between the LPS vs. no-
treatment conditions, tag counts under the no-treatment condition are
first normalized by a linear regression, and then tested for difference as
described in Methods. Data plotted are the log10 transformation of the
original tag counts in LPS treatment vs. the log10 transformation of the
original tag counts in LPS treatment. Red data points (126) denote up-
regulation and green data points (45) denote down-regulation. B:
experimental validation of 11 lincRNAs. Data are plotted as log2
transformation of fold change on predicted exons by QPCR experiments
vs. log2 transformation of fold change in Pol II tag counts by QPCR
experiments. The lincRNAs that are under-detectable in QPCR are
assigned to have y-values of 0.
doi:10.1371/journal.pone.0024051.g004
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would be more likely to merge different transcription units. The

simulation results based on the diffusion-reaction mechanism

further confirmed the plausibility of our reasoning. Based on this

initial observation, GCLS algorithm aims to reconstruct the most

correct transcription units from these peak components.

GCLS proved effective through validation at several levels. It

displayed superior performance to SICER, which relies on a rigid

cut-off threshold of gap distance, on the known protein coding

genes. GCLS method has the least discrepancy between the total

number of Refseq regions and the actual Refseq gene counts,

compared to the results of SICER. Additionally, The flexibility of

allowing varying inter-peak gaps in GCLS enables the best

coverage in the protein coding regions of RefSeq genes, yet much

lower noise in the 59 upstream of TSSs and 39 downstream of

TESs. This advantage is further manifested by the larger number

of putative lincRNAs and larger length variation found by GCLS,

when compared to SICER. The fact that 8 out 11 putative

lincRNAs identified by GCLS were responsive to LPS from

QPCR results increases our confidence in GCLS.

Additionally, we carried out extensive computational charac-

terization of GCLS with its application to lincRNA. GO analysis

and KEGG analysis on the nearest RefSeq genes associated with

these putative lincRNAs show that they are associated with

fundamental cellular processes without LPS treatment, but upon

LPS treatment, they are shifted to be associated with immune cell

specific processes. Also consistent with other studies, the predicted

Table 1. Experimental validation on 11 regions of lincRNAs.

chrom segment start segment end strand Pol II status
Primary Macrophage
Validation

chr13 55198800 55202000 + LPS_induced Y

chr11 83349000 83361500 + LPS_induced no-detect

chr2 30734000 30755000 2 LPS_induced Y

chr10 18750000 18758500 + LPS_induced Y

chr9 119857500 119863000 + LPS_induced Y

chr17 29119500 29124500 2 LPS_induced Y

chr3 84730000 84735000 2 LPS_reduced Y, low

chr6 48950000 48964000 2 LPS_reduced Y

chr14 62032000 62036800 + LPS_reduced Y

chr5 37283500 37290000 + LPS_reduced Y, low

chr8 87090000 87103500 + no_change Y

doi:10.1371/journal.pone.0024051.t001

Table 2. GO (top) and KEGG pathway (bottom) analysis of RefSeq genes that are nearest lincRNAs.

experiment GO term Genes FDR%

T lymphocyte differentiation 7 0.5

immune system process 19 0.6

B cell differentiation 5 0.9

T|U primary metabolic process 149|81 0|0.7

regulation of cellular process 91|51 0|0.6

U intracellular singaling cascade 40 0

biological regulation 105 0

regulation of biological process 97 0.1

macromolecule metabolic process 131 0.1

protein kinase cascade 16 0.1

cellular metabolic process 143 0.5

metabolic process 156 0.5

MAPKKK cascade 10 0.7

experiment KEGG pathway Genes P-value

T cytokine-cytokine receptor interaction 9 5.00E-03

MAPK signaling pathway 9 6.40E-03

VEGF signaling pathway 5 7.90E-03

U leukocyte transendothelial migration 10 1.80E-04

T: treated with LPS; U: control condition untreated with LPS.
doi:10.1371/journal.pone.0024051.t002
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exons of the putative lincRNAs have modest conservation over

introns of protein coding genes, but appear to be much less

conserved than the exons of protein coding genes [3,4,24,33].

Promoter analysis of the putative lincRNAs shows that they are

conserved and enriched with motifs such as PU.1 and AP.1, which

are important in determining macrophage lineage. Over 80% of

the identified putative lincRNAs overlap with distal enhancers that

are characterized by CHIP-Seq signatures of PU.1 and

H3K4Me1, surprisingly similar to the observation by others that

84.4% of the enhancer-type Pol II clusters are associated with

PU.1 binding [28]. These results strongly suggest that lincRNAs

are functionally important. One possible mechanism is that

lincRNAs serve as ‘‘anchoring’’ points through transcription

factors such as PU.1 to initiate chromosome remodeling and local

epigenetic regulation such as H3K4Me1, which in turn might

regulate nearby gene activation [1,25,28,29]. Although it is

beyond the scope of this paper, some lincRNAs of interest are

subject to experimental tests in the collaboration.

The number of putative lincRNAs identified in our report is

comparable to those from Guttman et al. [24], but only a relatively

small portion of lincRNAs in macrophages overlap with those

previously reported in [3]. This result was not unexpected, as

Guttman et al. also pointed out that the lincRNAs are likely to be

more tissue specific than the protein coding genes, evident by a

relatively small number of overlapping lincRNAs between two

mouse cell types studied in parallel under the same RNA-Seq

platform [24]. Though beyond the scope of this paper, it will be

interesting to evaluate lincRNA discovery by different technolo-

gies, such as CHIP-Seq vs. RNA-Seq. We envision that Pol II

CHIP-Seq, RNA-Seq, and histone chromatin map methods can

Figure 5. Conservation in lincRNA. A: conservation in the promoter region of lincRNA. The promoter region is defined as 23 K to 1 K relative to
TSS that is labeled by the 39 edge of the H3K4Me3 peaks. Averaged phastCon scores are used as measurements of conservation. Random intergenic
sequences without evidence of lincRNAs are plotted as the control. Both LPS and no-treatment have significant higher phastCon scores than the
random sequence (Wilcoxon tests, P-value,1e-15). B: conservation of predicted exons of lincRNA, in comparison to the introns and exons of protein
coding genes. The accumulative fractions of phastCon scores are plotted against the phastCons. The predicted exons of lincRNAs are modestly
conserved compared to the introns of protein coding genes, but are much less conserved compared to the exons of protein coding genes.
doi:10.1371/journal.pone.0024051.g005
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complement each other to convey different facets of lincRNAs,

and further studies on the same cell type are needed for more

comprehensive examination of these experimental methods, as

well as computational methods based on them.

Methods

Generation of ChIP-Seq Data
ChIP-Seq experiments were performed on Genome Analyzers I

and II according to protocols of the manufacturer (Illumina). The

first 23 bps for each sequence tags were used for alignment to

mouse mm8 assembly using ELAND allowing up to 2 mismatches.

Only tags that were uniquely mapped to the genome were

considered for peak analysis. Two lanes of Pol II ChIP-Seq data

were pulled together, under both the Kdo2 lipid A treatment (a

purified LPS lipid) for one hour or no treatment conditions, so

were the H3K4Me3 ChIP-Seq experiments. One lane of input

genomic DNAs (without antibody) was also sequenced as the

control sample.

Identification of intergeneic Chip-Seq Peaks
The data in this study were obtained from primary macrophage

cells under resting and activated conditions [10]. Some raw data

were deposited in GEO with the accession number GSE21512.

The genomic ChIP-Seq peaks were identified similarly to others

using our in-house Perl script [8]. Tags were extended to expected

length (150 bp) prior to sequencing. No peak shift was adjusted

like in CHIP-Seq experiments of transcription factor, due to the

diffuse nature of the Pol II CHIP-Seq peaks. Duplicated tags were

discarded to avoid PCR artifacts. Peak height was defined as the

summit of a continuous region of overlapping tags that are stacked

together. Putative peak regions were selected using two-step

filtering. First, a null Poisson model with the same number of total

mappable tags was used to compute the threshold of peaks height

that has FDR,0.001. Peaks that had heights larger than this

threshold were selected. A second selection was applied against the

input lane (with no antibody) so that the peaks in the experimental

lanes must have at least 3X-normalized height as the peaks at the

same loci in the input lane. For each condition, a ‘‘bed’’ file was

created to visualize the peaks as ‘‘custom track’’ in UCSC genome

browser.

To identify intergenic ncRNAs, peaks that overlapped with all

RefSeq genes and known pre-microRNA regions were excluded.

The mm8 homologs for human (hg18), dog (canFam2), and rat

(Rn4) protein coding genes also were excluded, using the liftOver

tool in UCSC Genome Browser, similar to [3].

Classification and Merging Correlated Pol II Peaks into
Non-coding RNA Units

We implemented an algorithm to reconstruct the most correct

full transcription unit from these peak components. We first

separated out the Type 1 peaks from the remaining peaks by

determining the best linear separator that went through the point

of minimum density between the two groups. The Type 1 peaks

are located upper-left to the linear seperator. The density in this

case is determined by the number of data points in a region where

each data point is plotted based on the log of the base pair width of

the tag versus the log of separation in base pairs of successive tags.

Assume r(x,y) describes the normalized two-dimensional

density of the distribution, and rh(x) represents the projection of

this density distribution onto a line that forms an angle of h with

the x-axis. Also, let peak1(rh(x)) and peak2(rh(x)) represent the

maximum value of the two peaks of the density function and

valley(rh(x)) represent the minimum value between those two

maxima. Similarly, let xpeak1(rh(x)), xpeak2(rh(x)), and

xvalley(rh(x)) represent the x value at which the respective

maxima or minima are reached. Then the slope of the best linear

separator can be found tangential to the angle that leads to the

largest peak-to-valley difference, which can also be represented in

the following formulation:

hmax~
max

h[½0,1800�
max (peak1(rh(x)),

peak2(rh(x))){valley(rh(x))

bmin~
min

x[½xpeak1(rhmax
(x)), xpeak2(rhmax(x))�

rhmax
(x)~xvalley(rhmax

(x))

Using these parameters, the linear separator can be computed

as the array

Figure 6. Association of lincRNAs with enhancer markers. A:
motifs enriched in the promoter regions of lincRNA that are defined as
sequences within the H3K4Me3 clusters of the lincRNAs. B: Venn
diagram overlap between lincRNA and enhancer regions that are
labeled by CHIP-Seq signatures of PU.1 peaks and H3K4Me1 peaks.
doi:10.1371/journal.pone.0024051.g006
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Once we determined the separator, we merged the Type 1 peaks

with their nearest neighbors that were also classified as Type 1

peaks in a given iteration and were located upper-left to the

separation line. After merging, we replotted the peak data and

found there may still be some Type 1 peaks and so we continued to

iterate on merging Type 1 peaks together until the final Pol II units

were constructed. As shown in the pseudocode, the stopping

criteria for the algorithm were selected to be when the total

percentage of peaks merged at each iteration was large enough

(greater than 30% of the total peaks) and the total number of

merged peaks was large enough (greater than five). We clustered

the H3K4Me3 units in the same way. Finally, we ensured that all

the lincRNA units have the overlapping signatures of Pol II units

and H3K4Me3 units. The pseudo-code for forming the clusters is

presented in the Text S2, and the Matlab code for global

clustering is available upon request.

Simulation of the two-cluster pattern as a reation-
diffusion phenomena

To verify the distribution observations, we constructed a

simplified simulation of the Pol II signals modeled over time

Figure 7. UCSC genome browser (mm8) snapshots of lincRNA examples (left), as well as their conserved, thermodynamically stable
2nd structures predicted by RNAz (right). A: lincRNA located 59 distal side of Pla2g7 (phospholipase A2, group VII), whose Pol II tags are
sensitively stimulated by LPS. B: lincRNA located 39 distal side of Cxxc5 (CXXC-type zinc finger protein 5), whose Pol II tags are sensitively repressed by
LPS.
doi:10.1371/journal.pone.0024051.g007
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assuming one-dimensional reaction-diffusion with the Pol II

enzyme (signal) and the binding sites. Initially, the distribution of

signal was assumed to be uniform and represented by an array of

floating point values where each array element represented the

signal over a fixed number of base pairs (nbp). In each time step,

several computations were carried out. First, a number of potential

binding locations (nb) were randomly selected. If a binding activity

occurred because a gene was present at the location, the signal was

amplified in that location by a specified factor (fa). Directionality of

the signal amplification was randomly selected and occurred over

a fixed length of the array (fl). Noise was also simulated by allowing

a fixed percentage (fp) of binding activities not falling on a gene to

also result in a reaction event. The resulting signal expression was

renormalized so that the total signal added up to unity. The

diffusion of the signal followed Fick’s second law with a selected

diffusion coefficient (D). Finally, the simulated Pol II expression

levels are found by taking regions of the signal array that are above

the mean value of the signal array plus a factor (fstd) times the

standard deviation of the signal. Figure S3 shows a resulting

distribution after a time evolution of these signal peaks that reveals

a similar pattern as to what was found in the observed data. The

first 300 Mbps of Chromosome 1 were selected for the

representative gene data for this simulation. nbp = 100,

nb = 1000, fa = 1.05, fl = 7, fp = 0.1, D = 1, fstd = 0.6.

Comparison to SICER Results
The software SICER was downloaded from http://home.gwu.

edu/,wpeng/Software.htm. We also obtained the necessary

Python compiler, numpy and scipy packages for running SICER.

We used the whole genome Pol II peaks information in

experimental lanes against those in the input lane, and chose the

following parameters: window size 200 bp, gap size 600/1200/

2200 bp, and conventionally accepted FDR 0.001. The gap sizes

are designated as the multiplication of the window size, and the

three gap sizes for SICER are intended to cover a reasonably wide

range, based on the observation that average gap size on the

RefSeq genes is about 1200 bp. We filtered out the island clusters

that overlapped with mouse RefSeq genes, and mouse homologs of

human, rat, and dog genes. To estimate the cut-off value of

islands’ span, we also ran SICER to obtain the intergenic islands

from the input lane information alone, with the expected

background island number equal to those in experimental data.

We then chose the 95% upper quintile of the background island

span (3 k bp) as the minimum span for positive Pol II islands. We

did similar clustering with the H3K4Me3 data using SICER. We

used the whole mouse genome microarray gene expression as

testing examples to compare the performance of GCLS vs.

SICER, the results were shown in a Receiver Operator Curve

(ROC) plot. All data are MIAME compliant.

We could not get access to the code of Guttman et al., and relied

on their published coordinates of ,1600 lincRNAs for compar-

ison. These lincRNAs were found in mouse embryonic stem cells

(ESCs), mouse embryonic fibroblasts (MEF), mouse lung fibro-

blasts (MLF) and neural precursor cells (NPC), rather than

macrophages [3].

Validatition of lincRNAs by QPCR
We randomly selected 11 regions (Table 1), to validate whether

they do harbor lincRNAs. Within these regions, 6 have increased

Pol II tag counts by the LPS treatment, and 4 have reduced Pol II

tag counts by the LPS treatment. LincRNAs were reported to have

features of exons [3]. In order to test whether the lincRNAs are

truly expressed, we decided to conduct QPCRs in the exons, but

not the introns of lincRNAs. We used GENSCAN (http://genes.

mit.edu/GENSCAN.html) as a fast approach to predict the exons

computationally (P.0.10) [34]. We tested the accuracy of

GENESCAN with the Refseq genes on the positive strand of

Chromosome 1, and obtained near 80% coverage overall (data not

shown). In most cases, we designed 2–3 pairs of primers spanning

the selected exons (100–200 bp) in each region of a lincRNA

(primer sequences and the predicted exon sequences are in the

Text S1). We then did QPCR validation on RNAs extracted from

both the bone marrow derived primary macrophages under no

treatment, or LPS treatment for 3 hours.

Computational Characterization of lincNAs
We predicted the functions of the lincRNA by assigning its

membership to the nearest RefSeq gene. We then used Database

for Annotation, Visualization and Integrated Discovery (DAVID)

to perform GO analysis and KEGG pathway analysis to find the

terms that are significant [35].

To show the enrichment of H3K4Me3 signals on promoter

regions of the lincRNA, we first determined their +/2 strand

orientation by comparing the mass center of H3K4Me3 on each

Pol II transcription unit, then aligned all sequences [23 k, 1 k] bp

around the putative transcription starting sites (TSS) that are

determined by H3K4Me3 termination position. We counted the

tag frequency in this interval. We also used this interval to find the

positional phastCons17way conservation scores of the lincRNAs.

We averaged the phastCon scores by the total sequence counts.

To examine the motifs of promoter regions, we took the

regions of the lincRNAs that have H3K4Me3 signatures and

subdivided them into 200 bp segments. These segments were

then subject to both known motif and de novo motif analysis by the

HOMER software [25]. The default parameters were chosen for

the motif analysis (motif length = 10 bp, background sequenc-

es = 50,000). To find the conservation in the predicted exons of

the lincRNA, we obtained the phastCons17way conservation

scores from the UCSC table browser. For comparisons, we also

downloaded the coordinates of all the exons and introns of

RefSeq genes, wrote a Perl script that extracted the phastCon

scores in these regions, and calculated the accumulative

distribution of phastCon scores.

To find the secondary structures of the lincRNAs, we first

obtained the putative ‘‘transcription regions’’ from the Pol II units

that are free of H3K4Me3 markers. We downloaded RNAz

(http://www.tbi.univie.ac.at/,wash/RNAz/), a program that

predicts structurally conserved and thermodynamically stable

RNA secondary structures in multiple sequence alignments [36].

We used the multiple alignment files (MAF) of human, rat, dog

aligned to the mouse genome downloaded from the UCSC

genome browser. The MAF file was initially filtered before

running RNAz (P-value.0.9). The output of RNAz was then

clustered over the windows that are partially overlapped.

Detection of lincRNAs Regulated by LPS Treatment
Given that the Pol II tag counts difference between the lincRNA

under LPS treatment and no treatment condition, we first carried

out normalization before performing the statistical tests. We

combined the intergenic regions that have Pol II peaks in LPS

treatment and/or no treatment, and extracted the tags within, and

then determined a linear regression line for normalization. Next

we assumed a binomial distribution bin(n,p) of the Pol II tags in

the same lincRNA regions from LPS treatment vs. no treatment,

where n is the normalized tag sum from LPS treatment and no

treatment, and p = 0.5, similar to [37]. We chose the Bonferroni

corrected P-value 0.05 for the significance threshold.
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Supporting Information

Figure S1 Density heat-map plot of the emerging
genome-wide patterns of Pol II CHIP-seq peaks in
RefSeq genes and intergenic regions. Data are displayed

as log10 transformation of the width of peaks vs. log10

transformation of the distance between two successive peak

centers. A: pattern of Pol II CHIP-Seq peaks in RefSeq genes.

B: pattern of Pol II CHIP-Seq peaks in intergenic regions.

(TIF)

Figure S2 Evidence of two clusters with K-mean clus-
tering methods (K = 2). The ‘cosine’ metric was used for

clustering. Data are displayed as log10 transformation of the width

of peaks vs. log10 transformation of the distance between two

successive peak centers. Red data points (type 1) denote peaks that

appear to be linearly correlated between peak width and inter-

peak distance. Blue data points (type II) denote peaks that lack the

linear correlation between peak width and inter-peak distance.

(TIF)

Figure S3 Reaction-diffusion simulation creates similar
two-cluster CHIP-Seq pattern. The first 300 Mbps of

Chromosome 1 were selected for the representative gene data for

this simulation. We used the following parameters (described in

Methods) run over 80 time-steps: nbp = 100, nb = 1000, fa = 1.05, fl = 7,

fp = 0.1, D = 1, fstd = 0.6. Data are displayed as log10 transformation of

the width of peaks vs. log10 transformation of the distance between two

successive peak centers. The resulting distribution appears similar to

the observed distribution in the data (Figure 1).

(TIF)

Figure S4 The RefSeq genes and regions in GCLS
overlap those in SICER. SICER is parameterized over 3

different gap distances: 600 bp, 1200 bp and 2200 bp. A region is

defined as the maximum contig of several overlapping genes if

there are any, or the locus of one single gene if there are no other

overlapping genes.

(TIF)

Figure S5 The Receiver Operator Curve (ROC) plot
based on the binary classification of known genes
identified by Pol II vs. measured by microarray gene
expression. GCLS and SICER can extract clusters that overlap

with known genes with very similar trends of true positive rate vs.

false positive rate. To make binary classification, a gene is classified

as ‘‘truly expressed’’ when a cluster overlaps the transcription

region of that gene; otherwise, it is classified as ‘‘falsely expressed’’.

To measure the two algorithms, the log2 transformation of the

microarray intensities of genes is further normalized to represent

the probability of gene expression, ranging on [0, 1].

(TIF)

Figure S6 PCR validation of lincRNAs in Table 1, using
bone marrow derived macrophage primary cells under
control or LPS treatment. The notation ‘‘c2a’’ denotes ‘‘exon

a’’ from the lincRNA in Table 1 that is located on the reverse (or

complementary) strand of Chromosome 2. ‘‘5b’’ denotes ‘‘exon b’’

from the lincRNA in Table 1 that is located on the forward strand

of Chromosome 5, and so on. The predicted effect of LPS, based

on the statistical analysis of Pol II tag counts, is listed under each

lincRNA. A region on chrosome 17 (17 d) was used as the negative

control. All expression levels are normalized by GAPDH. The

exon sequences and primer sets are listed in the Text S1.

(TIF)

Table S1 The coordinates of lincRNAs under LPS vs. no
treatment conditions predicted by GCLS.

(XLS)

Table S2 lincRNA overlap among three different com-
putational methods: GCLS, SICER600 and Guttman’s
method in [3].

(XLS)

Text S1 Exon sequences that are predicted by GEN-
SCAN from the 11 regions of lincRNAs as shown in
Table 1, as well as primer sets from these exons that
were used to validate the effects of LPS treatment. The

strand information and chromosome coordinates are shown in the

header of each sequence. The specific primer set is listed right

before each exon The predicted exon sequences are in bold and

located between two arrow signs. Other regions irrelevant to the

exons are omitted. The indices in front of each line in the sequence

are relative to the start position of each range.

(DOC)

Text S2 The pseudo code to separate the clusters.

(DOC)

Acknowledgments

Early aspects of this work were presented at the International Symposium

of IEEE BIBE 2010 [38]. We thank Dr. Joshua Stender for generating

polymerase II CHIP-Seq data and Dr. Sven Heinz for the H3K4Me3

CHIP-Seq data. We sincerely thank Dr. Chris Benner for the insightful

discussion.

Author Contributions

Conceived and designed the experiments: LXG CKG SS. Performed the

experiments: WH JY. Analyzed the data: LXG DG. Wrote the paper:

LXG SS.

References

1. Costa FF (2005) Non-coding RNAs: new players in eukaryotic biology. Gene
357: 83–94.

2. Costa FF (2007) Non-coding RNAs: lost in translation? Gene 386: 1–10. Epub

2006 Oct 2010.

3. Guttman M, Amit I, Garber M, French C, Lin MF, et al. (2009) Chromatin
signature reveals over a thousand highly conserved large non-coding RNAs in

mammals. Nature 458: 223–227. Epub 2009 Feb 2001.

4. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, et al. (2009) Many

human large intergenic noncoding RNAs associate with chromatin-modifying

complexes and affect gene expression. Proc Natl Acad Sci U S A 106:
11667–11672.

5. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, et al. Long noncoding

RNA as modular scaffold of histone modification complexes. Science 329: 689–693.

6. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, et al. (2010) A large

intergenic noncoding RNA induced by p53 mediates global gene repression in

the p53 response. Cell 142: 409–419.

7. Barski A, Zhao K (2009) Genomic location analysis by ChIP-Seq. J Cell
Biochem 107: 11–18.

8. Fejes AP, Robertson G, Bilenky M, Varhol R, Bainbridge M, et al. (2008)

FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel

short-read sequencing technology. Bioinformatics 24: 1729–1730.

9. Zang C, Schones DE, Zeng C, Cui K, Zhao K, et al. (2009) A clustering
approach for identification of enriched domains from histone modification

ChIP-Seq data. Bioinformatics 25: 1952–1958.

10. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin

resistance. Annu Rev Physiol 72: 219–246.

11. Shibata N, Glass CK (2009) Regulation of macrophage function in inflammation

and atherosclerosis. J Lipid Res 50 Suppl: S277–281.

12. Jaiswal S, Chao MP, Majeti R, Weissman IL (2010) Macrophages as mediators

of tumor immunosurveillance. Trends Immunol 31: 212–219.

13. Wermeling F, Karlsson MC, McGaha TL (2009) An anatomical view on

macrophages in tolerance. Autoimmun Rev 9: 49–52.

A Global Clustering Algorithm to Identify lincRNA

PLoS ONE | www.plosone.org 12 September 2011 | Volume 6 | Issue 9 | e24051



14. Eskay RL, Grino M, Chen HT (1990) Interleukins, signal transduction, and the

immune system-mediated stress response. Adv Exp Med Biol 274: 331–343.
15. Maurya MR, Benner C, Pradervand S, Glass C, Subramaniam S (2007) Systems

biology of macrophages. Adv Exp Med Biol 598: 62–79.

16. Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, et al. (2006)
Experimental validation of the regulated expression of large numbers of non-

coding RNAs from the mouse genome. Genome Res 16: 11–19.
17. Gilchrist DA, Nechaev S, Lee C, Ghosh SK, Collins JB, et al. (2008) NELF-

mediated stalling of Pol II can enhance gene expression by blocking promoter-

proximal nucleosome assembly. Genes Dev 22: 1921–1933.
18. Nechaev S, Adelman K (2008) Promoter-proximal Pol II: when stalling speeds

things up. Cell Cycle 7: 1539–1544.
19. Nechaev S, Adelman K (2008) Promoter-proximal Pol II: when stalling speeds

things up. Cell Cycle 7: 1539–1544. Epub 2008 Mar 1527.
20. Adelman K, Kennedy MA, Nechaev S, Gilchrist DA, Muse GW, et al. (2009)

Immediate mediators of the inflammatory response are poised for gene

activation through RNA polymerase II stalling. Proc Natl Acad Sci U S A
106: 18207–12.

21. Zeitlinger J, Stark A, Kellis M, Hong JW, Nechaev S, et al. (2007) RNA
polymerase stalling at developmental control genes in the Drosophila

melanogaster embryo. Nat Genet 39: 1512–1516. Epub 2007 Nov 1511.

22. Huang H, Park CK, Ryu JY, Chang EJ, Lee Y, et al. (2006) Expression profiling
of lipopolysaccharide target genes in RAW264.7 cells by oligonucleotide

microarray analyses. Arch Pharm Res 29: 890–897.
23. Bjorkbacka H, Fitzgerald KA, Huet F, Li X, Gregory JA, et al. (2004) The

induction of macrophage gene expression by LPS predominantly utilizes
Myd88-independent signaling cascades. Physiol Genomics 19: 319–330.

24. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, et al. (2010) Ab

initio reconstruction of cell type-specific transcriptomes in mouse reveals the
conserved multi-exonic structure of lincRNAs. Nat 28: 503–510.

25. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, et al. (2010) Simple
combinations of lineage-determining transcription factors prime cis-regulatory

elements required for macrophage and B cell identities. Mol 38: 576–589.

26. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, et al. (2005)
Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryo-

cytic potential a revised road map for adult blood lineage commitment. Cell 121:
295–306.

27. Friedman AD (2007) Transcriptional control of granulocyte and monocyte

development. Oncogene 26: 6816–6828.

28. De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, et al. (2010) A large

fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS 8:

e1000384.

29. Feng J, Bi C, Clark BS, Mady R, Shah P, et al. (2006) The Evf-2 noncoding

RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a

Dlx-2 transcriptional coactivator. Genes Dev 20: 1470–1484.

30. Pang KC, Dinger ME, Mercer TR, Malquori L, Grimmond SM, et al. (2009)

Genome-wide identification of long noncoding RNAs in CD8+ T cells.

J Immunol 182: 7738–7748.

31. De Keyzer D, Karabina SA, Wei W, Geeraert B, Stengel D, et al. (2009)

Increased PAFAH and oxidized lipids are associated with inflammation and

atherosclerosis in hypercholesterolemic pigs. Arterioscler Thromb Vasc Biol 29:

2041–2046.

32. Matsuda A, Suzuki Y, Honda G, Muramatsu S, Matsuzaki O, et al. (2003)

Large-scale identification and characterization of human genes that activate NF-

kappaB and MAPK signaling pathways. Oncogene 22: 3307–3318.

33. Marques AC, Ponting CP (2009) Catalogues of mammalian long noncoding

RNAs: modest conservation and incompleteness. Genome Biol 10: 6.

34. Burge C, Karlin S (1997) Prediction of complete gene structures in human

genomic DNA. J Mol Biol 268: 78–94.

35. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:

44–57.

36. Washietl S, Hofacker IL, Stadler PF (2005) Fast and reliable prediction of

noncoding RNAs. Proc Natl Acad Sci U S A 102: 2454–2459. Epub 2005 Jan

2421.

37. Ji H, Jiang H, Ma W, Johnson DS, Myers RM, et al. (2008) An integrated

software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26:

1293–1300.

38. Lana X. Garmire, Shankar Subramaniam, David G. Garmire, Chris K. Glass

(2010) A Clustering Approach to Identify Intergenic Non-coding RNA in Mouse

Macrophages. 2010 IEEE International Conference on Bioinformatics and

Bioengineering. Philadelphia, Pennsylvania USA. pp 1–6.

A Global Clustering Algorithm to Identify lincRNA

PLoS ONE | www.plosone.org 13 September 2011 | Volume 6 | Issue 9 | e24051


