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Abstract

Background: Gene Set Enrichment Analysis (GSEA) is a powerful tool to identify enriched functional categories of
informative biomarkers. Canonical GSEA takes one-dimensional feature scores derived from the data of one
platform as inputs. Numerous extensions of GSEA handling multimodal OMIC data are proposed, yet none of them
explicitly captures combinatorial relations of feature scores from multiple platforms.

Results: We propose multivariate GSEA (MGSEA) to capture combinatorial relations of gene set enrichment among
multiple platform features. MGSEA successfully captures designed feature relations from simulated data. By applying
it to the scores of delineating breast cancer and glioblastoma multiforme (GBM) subtypes from The Cancer
Genome Atlas (TCGA) datasets of CNV, DNA methylation and mRNA expressions, we find that breast cancer and
GBM data yield both similar and distinct outcomes. Among the enriched functional categories, subtype-specific
biomarkers are dominated by mRNA expression in many functional categories in both cancer types and also by
CNV in many functional categories in breast cancer. The enriched functional categories belonging to distinct
combinatorial patterns are involved different oncogenic processes: cell proliferation (such as cell cycle control,
estrogen responses, MYC and E2F targets) for mRNA expression in breast cancer, invasion and metastasis (such as
cell adhesion and epithelial-mesenchymal transition (EMT)) for CNV in breast cancer, and diverse processes (such as
immune and inflammatory responses, cell adhesion, angiogenesis, and EMT) for mRNA expression in GBM. These
observations persist in two external datasets (Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) for breast cancer and Repository for Molecular Brain Neoplasia Data (REMBRANDT) for GBM) and are
consistent with knowledge of cancer subtypes. We further compare the characteristics of MGSEA with several
extensions of GSEA and point out the pros and cons of each method.

Conclusions: We demonstrated the utility of MGSEA by inferring the combinatorial relations of multiple platforms
for cancer subtype delineation in three multi-OMIC datasets: TCGA, METABRIC and REMBRANDT. The inferred
combinatorial patterns are consistent with the current knowledge and also reveal novel insights about cancer subtypes.
MGSEA can be further applied to any genotype-phenotype association problems with multimodal OMIC data.
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Background
Mapping the relation between genotypes and phenotypes is
a classical problem in biology. Much of the progress in the
post-genomic era lies in the direction of resolving the
generalized genotype-phenotype problems. Typically, high-
throughput molecular features (genomes, transcriptomes,
proteomes, epigenomes, etc.) and physiological traits (cell
types, disease risks, prognostic prospects, ethnicity, etc.) of
a population of subjects are measured. Scientists aim for

identifying a limited number of biomarkers from the mo-
lecular features that can predict/categorize the phenotypes.
Individual markers are often difficult to interpret and sub-
jected to variations from measurements and targeted
cohorts. To alleviate these problems, it is mandatory to
combine multiple markers and place them in the context of
biological knowledge.
Gene Set Enrichment Analysis (GSEA) [1] is one of

the most popular bioinformatics tools toward this end.
In the setting where GSEA applies, the “scores” of a
large number of genes (typically all protein-coding
genes) and a much smaller “gene set” with a known
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function are provided. The goal is to assess whether the
high-scoring genes are enriched with members in the
gene set. To achieve this goal, GSEA sorts genes in
terms of their scores and establishes a random walk
along the sorted genes. It advances one step when hit-
ting a member from the gene set and reverses one step
otherwise. The level of enrichment and its statistical
significance are quantified by the maximum positive
distance from the origin during the random walk. This
simple yet powerful method is applicable to a wide range
of bioinformatics problems. For instance, one may evalu-
ate the scores of differential expressions between the
transcriptomic data of tumor and normal samples and
find the enriched functional categories of top-ranking
biomarkers.
Despite its strength, GSEA has a major limitation: the

score of each gene has to be a scalar. This implies either
only one molecular feature is probed or information
from multiple features is synthesized into one score
prior to the enrichment analysis. When GSEA was first
proposed, high-throughput OMIC data were dominated
by single-modal measurements such as genome sequen-
cing or DNA microarrays alone. With advance of
high-throughput technologies and reduction of their costs,
multi-modal OMIC data become increasingly common
today. A remarkable example is the Cancer Genome Atlas
[2, 3], where the data of 7 molecular features of the same
cohort of patients are provided (DNA sequence muta-
tions, mRNA transcripts, microRNA transcripts, CNVs,
single nucleotide polymorphisms (SNPs), DNA methyla-
tions, protein quantifications and phosphorylations). Nu-
merous methods have been proposed to extend GSEA to
multi-platform data (see the literature review below).
However, none of them explicitly captures the combina-
torial relations of enrichment information from multiple
platforms. For instance, differentially expressed and differ-
entially methylated genes between tumors and normal
tissues may be both enriched with the cell cycle control
pathway. Yet multiple combinatorial relations may yield
this enrichment outcome: (1) differentially methylated cell
cycle control genes are subsumed to differentially expressed
cell cycle control genes, (2) differentially expressed cell
cycle control genes are subsumed to differentially methyl-
ated cell cycle control genes, (3) differentially expressed and
differentially methylated cell cycle control genes are
marginally overlapped, (4) differentially expressed and dif-
ferentially methylated cell cycle control genes are nearly
identical. It is not obvious how these combinatorial
relations can be distinguished from the canonical GSEA
outcomes.
To resolve this problem, we generalize GSEA to multi-

dimensional scores. The method, termed Multivariate
Gene Set Enrichment Analysis (MGSEA), constructs
similar random walks by counting the union of gene set

members from the sorted genes in multiple platform fea-
tures. Relations between features in gene set enrichment
are quantified by comparing the empirical random walks
from the joint features and the expected random walks
conditioned on subsets of those features. We further
derived the combinatorial functions that map multiple
features to enrichment outcomes according to the com-
parison results. To prove the concept, we first demon-
strated that MGSEA successfully captured the designed
combinatorial relations of gene set enrichment from
simulated data. We then applied MGSEA to the multi-
modal data of TCGA breast cancer and glioblastoma
multiforme (GBM). We calculated the mutual informa-
tion scores of each gene’s mRNA expression, CNV and
DNA methylation profiles in delineating known cancer
subtypes, and assessed the combinatorial relations of
gene set enrichments among the mutual information
scores in those three platforms. In breast cancer, the
combinatorial patterns dominated by each single plat-
form appeared in comparative numbers of functional
categories, while those dominated by mRNA expression
moderately surpassed those by CNV and DNA methyla-
tion. In GBM, the combinatorial patterns dominated by
mRNA expression far exceeded those by the other two
platforms. The functional categories belonging to distinct
combinatorial patterns were also involved in different
oncogenic processes: cell proliferation for mRNA expres-
sion in breast cancer, invasion and metastasis for CNV in
breast cancer, and diverse processes for mRNA expression
in GBM. These findings sustained in two external datasets
(METABRIC and REMBRANDT for breast cancer and
GBM respectively).
Numerous extensions of GSEA were previously pro-

posed. The SetRank algorithm [4] calibrated the statis-
tical significance of multiple gene sets by considering
their overlap and hence reduced false positives. Kim and
Volsky [5] developed a modified gene set enrichment
analysis method based on a parametric statistical model,
which substantially reduced computation time compared
to the expensive permutation operations of GSEA. Kle-
banov et. al. treated the expression of each member of
the gene set as a random variable and developed a novel
test statistic to model the correlations of multiple genes
[6]. In the same vein, Clark et. al. proposed a dimension
reduction method in the expression space spanned by
members of a gene set [7]. Those multivariate extensions
tackled the dependency between gene sets or members
within gene sets but kept unimodal feature scores
derived primarily from mRNA expressions.
Several other approaches integrated multi-OMIC data

in the gene set enrichment analysis. GeneTrail2 handled
data from transcriptomics, proteomics, miRNomics, and
genomics but reported the enriched pathways for each
platform separately [8]. MONA considered regulatory
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relations between multimodal measurements (such as
inhibitory relations between a microRNA expression and
its target mRNA expressions) and applied Bayesian in-
ference to assess gene set enrichment probabilistically
[9]. moGSA reported a gene set enrichment score by
integrating multi-platform data [10]. Despite the merits
of each method, none of them explicitly captures
combinatorial relations of feature scores from multiple
platforms. A more detailed comparison of MGSEA with
these methods is reported below.

Methods
Overview of univariate GSEA
We first give a brief summary of univariate GSEA
reported in Subramanian et al., [1]. To facilitate cal-
culation of statistical significance we modify the def-
inition of a random walk and make it equivalent to
the cumulative distribution function of a random vari-
able. The inputs are a universe gene set L with N
genes and a smaller functional gene set S ⊂ L with K
<N genes. Each gene in L has a scalar feature score
(e.g., the t-test score of differential expression
between tumor and normal samples). The output is a
p-value quantifying the statistical significance that
top-scoring genes are enriched with members of S.
The following procedures are executed.

1. Sort genes in L according to their scores in a
descending order (from the best to the worst ones).

2. Define x as the rank of genes in terms of their
scores, and y(x) as the number of genes above/equal
to rank x that belong to the functional gene set S.
y(x) can be viewed as a random walk along the
sorted genes. Starting with 0, y(x) increments by 1
if the gene of rank x is a member of S, and 0
otherwise.

3. If a feature is informative about S, then the top-
ranking genes are anticipated to be enriched with
members in S. Therefore, the random walk would
quickly gain a high value and remain stable
subsequently.

4. The null hypothesis is that the feature is
uninformative about S, and thus members of S
are uniformly distributed in the sorted list. The
random walk of the null model thus
approximates a straight line yϕðxÞ ¼ K

N ∙x.
5. The significance of the gene set enrichment is

quantified by the positive deviation of the empirical
y(x) from the null model y (x). Specifically, we
normalize random walk curves to 0 ≤ y(x) ≤ 1 and
treat them as cumulative distribution functions
(CDFs) of random variables. P-values are calculated
by non-parametric such as the Kolmogorov-

Smirnov test, the Mann-Whitney U test, or the
permutation test.

A toy example of univariate GSEA is illustrated in Fig. 1.
Suppose there are totally 1000 genes (|L| = 1000) and 50
of them belong to a functional gene set (| S | = 50). In case
1 (solid red line), the gene set members are all concen-
trated in the top 50 genes. The normalized y(x) thus
linearly ascends from 0 to 1 in a small range (x =1–50)
and remains at 1 through the remaining ranks. In case 2
(dotted black line), we randomly permute the gene ranks
in case 1 10,000 times and plot the mean of the y(x)′s
from all permutations. The mean random walk resembles
a diagonal line connecting (0,0), (1000,1). Cases 1 and 2
represent two extreme conditions where the ranks are ei-
ther perfectly aligned with or independent of the gene set.
Therefore, the random walk of case 1 possesses the
maximal positive deviation from the diagonal line, while
the mean random walk of case 2 coincides to the diagonal
line and has a zero deviation.

Bivariate GSEA
We then consider the simplest extension of GSEA to
two features. Two features F1 and F2 give rise to two
scores for each gene. We sort genes in terms of the two
sets of feature scores separately and establish two
random walks yF1(x) and yF2(x) respectively according to
univariate GSEA. The random walk yF1F2(x) capturing
the joint enrichment of two features can be constructed
in a similar fashion. At rank x, yF1F2(x) is the number of
functional genes in the union of the top x genes accord-
ing to F1 and F2 feature scores. This procedure is illus-
trated in Fig. 2a. A positive deviation of yF1F2(x) from
the diagonal line implies that the union of top-ranking
genes according to F1 and F2 are enriched with the func-
tional genes. However, multiple combinatorial relations
may arise from the same enrichment outcome. Analo-
gous to univariate GSEA, a legitimate bivariate GSEA
should decipher these relations by comparing the
random walks derived from single and double features.
An immediate question for bivariate GSEA is whether

the two features jointly provide more enrichment informa-
tion than each single feature alone. Similar procedures are
found in many statistical problems such as nested model
selection [11] and stepwise regression [12]. Direct com-
parison between the random walks of the joint features
(yF1F2(x)) and each single feature (yF1(x) or yF2(x)) is inad-
equate, since yF1F2(x) is constructed by taking the union of
two sorted gene lists, whereas yF1(x) or yF2(x) is obtained
from one sorted gene list. yF1F2(x) thus always lies above
or on yF1(x) and yF2(x) regardless of whether the joint fea-
tures are more informative than each single feature or not.
A fair test for the additional enrichment information of
joint features F1F2 relative to a single feature F1 is to
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Fig. 1 Univariate GSEA random walks of two extreme cases. Case 1: all the gene set members are concentrated at the top 50 genes (solid red line).
Case 2: the gene set members are uniformly distributed along all the genes (dashed black line)

A B C

Fig. 2 Illustration of bivariate GSEA. Panel A depicts the assessment of yF1F2(x) at x = 20. The two bars on top represent the distributions of functional
genes along F1 and F2 ranks, where each vertical line with a unique color denotes a distinct functional gene. Here yF1F2(20) =9. Panel B illustrates
estimation of yF2 ∣ F1(x). F1 is fixed; F2

1, F2
2, …, F2

n represent distinct random permutations of F2 ranks. The dashed black line denotes the mean of the
random walks over permutations. Panel C elucidates the relations of genes selected from the sorted F1 and F2 lists at a given rank n. Black and red
circles denote the top-n genes according to F1 and randomized F2 ranks. The blue ellipse denotes the gene set members among the union of genes
in the F1 (black) and F2 (red) circles. Both F1 and F2 circles have the size of n. The intersection of the functional genes and F1 genes (the purple area)
has the size of k. By taking the union of F1 and F2 genes nextra genes are appended (the brown and yellow areas combined), among them there are
kextra gene set members (the yellow area)
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compare yF1F2(x) to a null model curve yF2 ∣ F1(x) that ran-
domizes the enrichment outcomes of F2 conditioned on
the empirical enrichment outcome of F1. More precisely,
at each rank x, yF2 ∣ F1(x) counts the expected number of
functional genes in the union of the top x genes from the
sorted list according to the empirical F1 scores and the
sorted list obtained by random permutations of F2 scores.
The conceptual procedures of constructing a conditional
random walk yF2 ∣ F1(x) are illustrated in Fig. 2b.
Rather than undertaking time-consuming random per-

mutations, a conditional random walk can be evaluated
analytically. At rank n there are n top-ranking genes and
k functional genes from the F1 list. Suppose by incorpo-
rating n genes from a randomly sorted F2 list nextra genes
and kextra functional genes are added. The probability
that randomly selected n genes adds nextra genes to the
sorted F1 list of n genes is given by a hyper-geometric
distribution

Pnextrajn ¼ P nextra genes contributed by top n genes in F2j F1ð Þ

¼
N−n
nextra

� �
n

n−nextra

� �

N
n

� �

ð1Þ

The denominator denotes the number of possible
combinations for choosing n genes according to the ran-
domized F2 list. The two terms in the numerator denote
the numbers of possible combinations for choosing nextra
genes outside the sorted F1 list and n − nextra genes
within the sorted F1 list.
Furthermore, conditioned on those nextra genes, the

probability that kextra of them are functional genes is
given by another hypergeometric distribution

Pkextra jnextra ¼ P kextra cancer genes by F2 jnextra genes by F2ð Þ

¼
K−k
kextra

� �
N−n−K þ k
nextra−kextra

� �

N−n
nextra

� �

ð2Þ

The denominator denotes the number of possible
combinations for choosing nextra genes outside the
sorted F1 list. The two terms in the numerator denote
the numbers of possible combinations for choosing kextra
functional genes and nextra − kextra non-functional genes
outside the sorted F1 list.
The expected number of extra cancer genes included

in the union of the two top- n lists then becomes

yF2jF1 nð Þ−yF1 nð Þ ¼
Xmin n;N−nð Þ

nextra¼0

Xmin nextra;K−kð Þ

kextra¼0

Pnextrajn

� Pkextrajnextra � kextra
ð3Þ

Figure 2c elucidates the relations of genes selected
from the sorted F1 and F2 lists at a given rank n.
We compare the maximum positive deviation between

the random walk of the joint features yF1F2(x) and the
expected random walk conditioned on F1yF2 ∣ F1(x). A
large deviation implies that F2 provides additional infor-
mation about gene set enrichment after F1 is taken into
account, and a small or negative deviation implies that
either F2 is uninformative about gene set enrichment or
its enrichment information is contained in F1. We quan-
tify the statistical significance of the positive deviation
by a one-sided Mann-Whiney U test, and use the no-
tation yF1F2(x) > yF2 ∣ F1(x) to denote that yF1F2(x) signifi-
cantly and positively deviates from yF2 ∣ F1(x), and
yF1F2(x) ≤ yF2 ∣ F1(x) otherwise . Reciprocally, we compare
yF1F2(x) and yF1 ∣ F2(x) to verify whether F1 provides
additional enrichment information conditioned on F2.
Combining the results of univariate and bivariate

GSEA, we derive the following rules for possible rela-
tions of the two features:

� yF1(x) ≤ y (x) – F1 is uninformative about gene set
enrichment.

� yF2(x) ≤ y (x) – F2 is uninformative about gene set
enrichment.

� yF1(x) > y (x), yF1F2(x) > yF1∣ F2(x), yF1F2(x) ≤ yF2∣
F1(x) – F1 is superior to F2 in gene set enrichment
(illustrated in Additional file 1: Figure S1A).

� yF2(x) > y (x), yF1F2(x) > yF2∣ F1(x), yF1F2(x) ≤ yF1∣
F2(x) – F2 is superior to F1 in gene set enrichment.

� yF1(x) > y (x), yF2(x) > y (x), yF1F2(x) > yF1∣ F2(x),
yF1F2(x) > yF2∣ F1(x) – F1 and F2 both provide
indispensable enrichment information (illustrated in
Additional file 1: Figure S1B).

� yF1(x) > y (x), yF2(x) > y (x), yF1F2(x) ≤ yF1∣ F2(x),
yF1F2(x) ≤ yF2∣ F1(x) – F1 and F2 are largely
overlapped in gene set enrichment (illustrated in
Additional file 1: Figure S1C).

Multivariate GSEA
The aforementioned procedures can be extended to
m > 2 features. There are m sorted gene lists according
to scores of features F1, …, Fm respectively. The
random walk of the joint features yF1⋯Fm(x) is con-
structed by counting the functional genes in the union
of m top- x gene lists. The conditional random walk
y
FijFiðxÞ is obtained by fixing m − 1 top-ranking gene
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lists from features Fi ≡ fF1;⋯; Fi−1; Fiþ1;⋯; Fmg and

randomly permuting the gene list from feature Fi. yFijFi
ðxÞ can be calculated with the same formulas of equa-
tions 1, 2 and 3 by substituting the conditioned features
Fi for F1. In principle, one can construct a conditional

random walk by permuting the scores of an arbitrary
subset of features and fixing all the remaining ones.
However, the union of multiple permuted gene lists
gives rise to very complicated inclusion-exclusion rela-
tions and cannot be reduced to simple forms like equa-
tions 1, 2 and 3. Therefore, we only allow the
conditional random walks with one feature subjected to
random permutations (e.g., yF1 ∣ F2F3(x)), and discard all
the remaining conditional random walks (e.g., yF2F3 ∣
F1(x)).
More combinatorial relations of gene set enrichment

will also arise when multiple features are considered. Yet
these combinatorial relations can be reduced to two sim-
ple rules according to multivariate joint and conditional
random walks. We define a feature dominant among a
collection of features if its gene set enrichment infor-
mation is not subsumed to any other subset of features.
Likewise, a subset of features are redundant if they carry
significant gene set enrichment information but their in-
formation is largely overlapped. We adopt the following
rules to determine whether a feature is dominant or
whether two features are redundant:

� F1 is dominant if yF1(x) > y (x) and yF1FI(x) > yF1∣
FI(x) for all subsets of features FI that do not contain
F1.

� F1 and F2 are redundant if yF1(x) > y (x), yF2(x) >
y (x), yF1F2FI(x) ≤ yF1∣ F2FI(x), yF1F2FI(x) ≤ yF2∣
F1FI(x) for all subsets of features FI that do not
contain F1 and F2.

Redundant relations are transitive: if F1 and F2 are re-
dundant and F2 and F3 are redundant, then F1 and F3
are redundant. The aforementioned combinatorial rules
of bivariate GSEA can also be simplified in terms of
dominance and redundancy of features. Condition 1: F1
is not dominant. Condition 2: F2 is not dominant. Con-
dition 3: F1 is dominant. Condition 4: F2 is dominant.
Condition 5: F1 and F2 are dominant. Condition 6: F1
and F2 are redundant.

Results
We justified the utility of MGSEA by four studies. First,
we simulated feature scores and gene set memberships
according to several combinatorial relations and demon-
strated that MGSEA could recover these relations. Sec-
ond, we defined feature scores of multimodal cancer
OMIC data (CNV, DNA methylation, mRNA expression)

in terms of their capabilities to delineate tumor subtypes
and applied MGSEA to the breast cancer and glioblast-
oma multiforme (GBM) data from The Cancer Genome
Atlas (TCGA). Analysis results indicated that mRNA ex-
pression was a dominant feature in many functional cat-
egories of both cancer types, and CNV was a dominant
feature in many functional categories of breast cancer.
Third, we validated these combinatorial relations by ap-
plying MGSEA to external breast cancer and GBM data.
Analysis results derived from external data were sub-
stantially compatible with those derived from TCGA.
Fourth, we compared MGSEA with several integrative
methods of gene set enrichment by both listing the com-
mon and distinct characteristics for each method and
quantitatively contrasting their data analysis outcomes.

Analysis from simulated data
We generated random scores of 1000 genes on 3 fea-
tures (x1, x2, x3) and created binary indicators (y) for
the gene set membership. Feature scores were sampled
from a uniform distribution over [0, 1]. Four models
were employed to specify the relation between (x1, x2,

x3) and y: (1) y was sampled from logistic regression P

ðy ¼ 1jx1; x2; x3Þ ¼ expð20x1Þ
1þ expð20x1Þ , (2) Pðy ¼ 1jx1; x2; x3Þ

¼ expð20ðx1þx2ÞÞ
1þ expð20ðx1þx2ÞÞ , (3) Pðy ¼ 1jx1; x2; x3Þ ¼

expð20ðx1þx2þx3ÞÞ
1þ expð20ðx1þx2þx3ÞÞ, (4) z was uniformly sampled over [0,

1], Pðy ¼ 1jzÞ ¼ expð20zÞ
1þ expð20zÞ , and x1 = t[0, 1](z + e1), x2 =

t[0, 1](z + e2), where t[0, 1](.) is a truncation function that
sets values >1 to 1 and values <0 to 0, and e1,
e2~N(0,0.1). In brief, models 1–3 specify that x1, x1x2,
and x1x2x3 are the dominant features respectively, and
model 4 specifies that x1 and x2 are redundant
features.
Figure 3 displays the random walks of two features

(the left column) and three features (the right column)
for the four models (four rows). For model 1 (the first
row), the univariate random walk of x1 (C(1), the left
column) is superior to the null model (the undisplayed
diagonal line), the univariate random walk of x2 (C(2)) is
not superior to the null model, the joint random walk of
x1x2 (C(12)) is superior to the conditional random walk
given x2 (C(1| 2)), but is not superior to the conditional
random walk given x1 (C(2| 1)), indicating x1 is superior
to x2 in gene set enrichment. The joint random walk of
x1x2x3 (C(123), the right column) is superior to the con-
ditional random walk given x2x3 (C(1| 23)), but is not su-
perior to the conditional random walks given x1x3 (C(2|
1 3)) and x1x2 (C(3| 12)), indicating again that x1 is the
only dominant feature. For model 2 (the second row),
both C(1) and C(2) are superior to the null model, and
C(12) is superior to both C(1| 2) and C(2| 1), indicating
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that both x1 and x2 provide indispensable enrichment in-
formation. C(123) is superior to C(1| 23) and C(2| 13),
but is not superior to C(3| 12), suggesting that x3 is
uninformative of gene set enrichment given x1 and x2.
For model 3 (the third row), the random walks pertain-
ing to two features x1 and x2 (the left panel) are similar
to those of model 2. C(123) is superior to C(1| 23), C(2|
13), and C(3| 12), indicating that x1, x2 and x3 all provide
indispensable information in gene set enrichment. For
model 4 (the fourth row), both C(1) and C(2) are su-
perior to the null model, but C(12) is not superior to
either C(1| 2) or C(2| 1), indicating that x1 and x2
provide redundant information about gene set enrich-
ment. The random walks pertaining to three features
suggest that no feature is dominant.

Analysis from TCGA trimodal data of breast cancer and
glioblastoma patients
We further employed MGSEA to analyze the integrated
OMIC data from the TCGA database. The goal of this
analysis was to (1) identify the informative markers in
each platform that distinguish tumor subtypes, (2) find
the functional gene sets enriched with these informative
markers, (3) for each selected gene set infer the com-
binatorial relations of enrichment information among
the platforms, (4) deduce the patterns of those combi-
natorial relations from all selected gene sets. Two can-
cer types – breast cancer [2] and glioblastoma multiforme
[3] were selected. For each cancer type, we downloaded the
data of CNV (CNV-SNP microarrays), DNA methylations
(450 K BeadChip), and mRNA expressions (microarrays

Fig. 3 GSEA random walks of simulated data generated from four models. Each row shows the results from one model. The left and right
columns display the random walks pertaining to two features (x1 and x2) and three features (x1, x2 and x3) respectively
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and RNASeq). 340 breast cancer samples and 63 GBM
samples possess all three types of data with sporadic
missing values.
The level-2 data downloaded from the TCGA data-

base were converted into a standard format with the
following procedures [13]. First, probe-level data (CNV,
mRNA microarray) and gene-level data (RNASeq) were
rank-transformed into CDF values for each probe/gene
separately. The normalized CDF values fell in the range
[0, 1] and reflected the relative orders of feature values.
For CNV data, the normalized CDF values were ad-
justed to reduce over-estimation of amplification and
deletion events. DNA methylation data did not need
normalization as their outputs (β values) were already
in [0, 1]. Second, probe-level data were converted into
gene-level data by averaging over the probe values for
each gene. Third, we filtered out the genes whose
feature values were dominated by either missing entries
or zeros (more than half of the samples possess invalid
values). For breast cancer, the processed data covered
21,501 genes for CNV, 13933 genes for DNA methy-
lations and 20,764 genes for mRNA expressions; while
for GBM, the corresponding numbers of genes were
21,491, 14,307, and 19,024 respectively. 10,400 and
10,562 genes possessed all three types of data for breast
cancer and GBM, respectively.
As a proof-of-concept demonstration, we chose a

well-known task of delineating cancer subtypes with
CNV, DNA methylation and mRNA expression data.
There are four breast cancer subtypes – basal-like, lu-
minal A, luminal B, and HER2-enriched [14], and four
GBM subtypes – classical, neural, proneural, and mesen-
chymal [15]. For each feature, we defined a gene score
as the mutual information between subtype labels and
feature values (CNV level, DNA methylation level, or
mRNA expression level) of a gene over the samples:

I X;Yð Þ ¼
X4
i¼1

P y ¼ ið Þ
Z

p xjy ¼ ið Þ log p xjy ¼ ið Þ
p xð Þ

� �
dx

ð4Þ
X and Y denote feature values and subtype labels

respectively. X is a continuous random variable, and its
marginal probability density function (p(x)) and con-
ditional probability density function (p(x ∣ y)) were
inferred from kernel density estimation. Y is a discrete
random variable, and its probability mass function (P(y))
was empirically estimated by counting the fraction of
samples belonging to each subtype. The mutual infor-
mation score captures the dependency of subtype labels
and feature values for each gene.
It is curious to know whether the data of each plat-

form provides indispensable information about cancer

subtype delineation or the information from some plat-
forms is redundant given those from other platforms. To
uncover the correlation structure of information from
multiple platforms, we sorted genes in terms of the mu-
tual information scores from one platform (e.g., CNV)
and compared the distributions of the mutual infor-
mation scores from another platform (e.g., mRNA expres-
sion) between the top-ranking genes and all the genes.
Additional file 2: Figure S2 displays the comparison results
for all pairs of platforms. Overall, there is low correlation
between the information from distinct platforms, as the
mutual information scores of one platform are not signifi-
cantly different between the top-ranking genes and all the
genes in terms of the mutual information scores of
another platform.
The purpose of gene set enrichment in this task is to

find the functional categories of genes that are infor-
mative about the cancer subtypes. For each cancer type,
we sorted genes in a decreasing order according to their
mutual information scores of each platform separately
and selected the union of top-ranking genes from all 3
platforms so that 5000 valid genes were included in the
universe gene set. We solicited Gene Ontology (GO)
categories (http://www.geneontology.org/) [16, 17] that
contained at least 50 genes in the universe gene set
(resulting in 1073 and 1099 gene sets for breast cancer
and GBM, respectively) and 50 hallmark gene sets from
MSigDB [1, 18]. Both Gene Ontology and Hallmark gene
sets were downloaded from the Molecular Signatures
Database (MSigDB) (http://software.broadinstitute.org/
gsea/msigdb). We then performed univariate and multi-
variate GSEA on those functional categories. This re-
quires evaluations of equations 1, 2 and 3 at 5000 ranks
over 2172 gene sets. To reduce computation time, we
down-sampled the ranks by ten folds, evaluated the ran-
dom walk displacements at 500 equally distanced “knot”
ranks, and constructed a piecewise linear function
connecting the knot values as the approximated ran-
dom walk. Denote features 1, 2 and 3 as CNV, DNA
methylation, and mRNA expression respectively. The
Mann-Whitney p-values of 16 comparisons of GSEA
random walks were reported: C(1) vs C(ϕ), C(2) vs
C(ϕ), C(3) vs C(ϕ), C(12) vs C(ϕ), C(23) vs
C(ϕ), C(13) vs C(ϕ), C(123) vs C(ϕ), C(12) vs C(1|
2), C(12) vs C(2| 1), C(23) vs C(2| 3), C(23) vs C(3|
2), C(13) vs C(1| 3), C(13) vs C(3| 1), C(123) vs C(1|
23), C(123) vs C(2| 13), C(123) vs C(3| 12).
To judge whether each comparison gave rise to a

significant positive deviation, we set the threshold of
Mann-Whitney p-values to 10−10 and labeled a compa-
rison significant if the p-value was ≤ the threshold. The
threshold was determined by the following procedures.
For any given p-value cutoff, we calculated the false
discovery rate (FDR) for detecting significantly enriched
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gene sets. From the empirical data, we assessed the
p-values of univariate GSEA for all gene sets and
counted the number of significantly enriched gene sets
according to the given p-value threshold. We then ran-
domly permuted the mutual information scores of the
genes 1000 times. In each random trial, the number of
significantly enriched gene sets was counted in the same
fashion. The FDR was the expected number of signifi-
cantly enriched gene sets arising from randomized data
divided by the number of significantly enriched gene sets
derived from the empirical data:

False Discovery Rate

¼ min
total#Signficant gene sets in the permuted data

#Significant gene sets in the empirical data� 1000
; 1

� �

FDR according to this definition is a function of the
p-value threshold. Additional file 3: Figure S3 shows the
FDRs for the three feature scores in TCGA breast cancer
and GBM data (the left column). The FDRs of all
features generally declined with decreasing p-value
thresholds. In breast cancer, at the p-value cutoff 10− 10,
the FDRs of both mRNA and CNV were around 0.4,
while DNA methylation had a considerably higher FDR
(around 0.7). In GBM, at the same p-value cutoff the
FDRs of mRNA, DNA methylation, and CNV were
about 0.2, 0.5, and 0.8 respectively.
The poor FDRs for DNA methylation in both cancers

and CNV in GBM data indicate that the top-ranking
genes in terms of these feature scores are enriched with
fewer functional gene sets. We selected the top 100
genes in terms of each feature score and counted the
number of significantly enriched gene sets according to
the Fisher exact test (p-value cutoff 0.05, Additional file 4:
Table S1). Indeed, the number of significantly enriched
gene sets according to mRNA expressions was substan-
tially higher than those according to CNV and DNA
methylation in GBM data, and comparable to CNV in
breast cancer data.

Functional enrichment of breast cancer subtype biomarkers
434 functional categories contained at least one domin-
ant feature or one pair of redundant features in the
breast cancer enrichment outcomes. CNV, DNA methy-
lation and mRNA expression were dominant in 147, 137
and 179 functional categories respectively. (CNV, DNA
methylation), (DNA methylation, mRNA expression),
and (CNV, mRNA expression) pairs were dominant in 3,
8 and 18 functional categories respectively. Many func-
tional categories either were highly overlapped or had
nested subsumption relations. The GO terms from breast
cancer data were summarized using REVIGO [19] and
were reduced into 212 groups. The parameter setting of

running REVIGO is reported in Additional file 5: Table S2.
The Mann-Whitney p-values of all 16 pairwise random
walk comparisons among the 434 functional categories are
reported in Additional file 6: Table S3. The combinatorial
relations of the three features in the 434 functional
categories are reported in Additional file 7: Table S4 and
the combinatorial relations of the three features in the 212
reduced functional categories are reported in Table 1.
CNV, DNA methylation, and mRNA expression

appeared in single dominant or dominant combinatorial
relations in 68, 75 and 90 reduced functional categories
respectively, indicating informative marker genes in
terms of mRNA expression were moderately more
enriched with known functional categories than CNV
and DNA methylation. About 90% of the reduced func-
tional categories possessed one dominant feature: 54, 65,
72 for CNV, DNA methylation, and mRNA expression
respectively. In contrast, only a small number of reduced
functional categories possessed multiple dominant
features: 3, 7, 11 for CNV-DNA methylation, DNA
methylation-mRNA expression, and CNV-mRNA ex-
pression pairs respectively.
Many reduced functional categories appeared in Table 1

were involved in well-known cancer-related processes.
Furthermore, functional categories belonging to different
combinatorial patterns tended to concentrate on distinct
underlying processes. For instance, many reduced func-
tional categories involved in cell proliferation (e.g., cell
cycle control, epithelial cell development, MYC targets,
E2F targets, estrogen response, and DNA repair) pos-
sessed mRNA expression as the only dominant feature.
In contrast, several reduced functional categories involved
in cell invasion and metastasis (e.g., cell adhesion,
epithelial-mesenchymal transition (EMT), and immune
response) possessed CNV as the only dominant feature.
Positive regulation of cell division possessed mRNA
expression and CNV as the dominant features; Notch sig-
naling and TP53 signaling possessed mRNA expression
and DNA methylation as the dominant features.
We illustrate the interpretation of the MGSEA out-

comes with a functional category of positive regulation
of cell division. It possessed the dominant features of
CNV and mRNA expression. Figure 4 shows the
MGSEA random walks of positive regulation of cell
division. When comparing the joint random walks of two
features with the corresponding conditional random walks
(the left column), we found that C (CNV,MRNA) (Fig. 4e,
red) was superior to both C (CNV|MRNA) (blue) and C
(MRNA|CNV) (green), while C (CNV,MET) (Fig. 4a, red)
was superior to C (CNV|MET) (blue) but not superior to
C (MET|CNV) (green), and C (MET,MRNA) (Fig. 4c, red)
is superior to C (MRNA|MET) (green) but not superior to
C (MET|MRNA) (blue). The results indicated that the en-
richment information of DNA methylation was subsumed
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Table 1 Combinatorial relations of enrichment information in 126 reduced functional classes of breast cancer data

Combinatorial Pattern Gene set

CNV MET MRNA CNV
and
MET

MET
and
MRNA

CNV
and
MRNA

CNV
and
MET
and
MRNA

0 0 1 0 0 0 0 Carbohydrate biosynthetic process, Cellular response to DNA damage stimulus, Chromatin
remodeling, Chromosome, Chromosome organization, DNA recombination, Epidermis
development, Extracellular matrix, Heparin binding, Microtubule based movement, Morphogenesis
of a branching structure, Nuclear chromosome segregation, Organic acid catabolic process,
Pallium development, Positive regulation of growth, Regulation of neuron apoptotic process,
Regulation of protein complex disassembly, Response to purine containing compound, Response
to radiation, Second messenger mediated signaling, Sex differentiation, Signal release,
Supramolecular fiber, Tubulin binding, Aminoglycan metabolic process, Anatomical structure
homeostasis, Apical plasma membrane,Cell cycle, Cell division, Cell proliferation, Cellular response
to acid chemical, Chromosome segregation, Digestive system development, DNA metabolic
process, Gland development, Growth, Lyase activity, Mammary gland development, Microtubule
based process, Midbody, Negative regulation of locomotion, Nuclear membrane, Organelle
localization, Ossification, Protein homodimerization activity, Regulation of cell division, Regulation
of ligase activity, Regulation of neurotransmitter levels, Regulation of ossification, Regulation of
transmembrane receptor protein serine threonine kinase signaling pathway, Response to drug,
Response to ketone, Response to toxic substance, Response to transition metal nanoparticle, Stem
cell differentiation, Tube development, Apical surface, DNA repair, E2F targets, Estrogen response
early, Estrogen response late, Fatty acid metabolism, G2M checkpoint, Glycolysis, Hedgehog
signaling, Hypoxia, Mitotic spindle, MTORC1 signaling, MYC targets v1,MYC targets v2,Peroxisome,
Spermatogenesis

0 1 0 0 0 0 0 Apoptotic signaling pathway, Cell substrate adhesion, Central nervous system neuron
differentiation, Core promoter binding, ER to Golgi vesicle mediated transport, Interaction with
host, Macromolecular complex disassembly, Negative regulation of phosphorylation, Peptidase
inhibitor activity, Peptidyl Serine modification, Protein catabolic process, RAS protein signal
transduction, Regulation of binding, Regulation of protein import, Response to carbohydrate,
Response to endoplasmic reticulum stress, Small molecule biosynthetic process, Transcription
corepressor activity, Transferase complex, Ubiquitin like protein ligase binding, WNT signaling
pathway, Actin filament organization, Aging, Binding bridging, Cell cortex, Cell junction assembly,
Cell junction organization, Cellular carbohydrate metabolic process, Cellular component
disassembly, Cellular response to abiotic stimulus, Coenzyme binding, Cofactor binding,
Cytoplasmic region, Energy derivation by oxidation of organic compounds, Establishment or
maintenance of cell polarity, Heart morphogenesis, Hormone receptor binding, In utero embryonic
development, Ligase activity, Lytic vacuole membrane, Macromolecule methylation, Mitochondrial
matrix, Myelin sheath, Placenta development, Protein folding, Protein stabilization, Regulation of
autophagy, Regulation of gene expression epigenetic, Regulation of protein stability, Regulation of
response to extracellular stimulus, Regulatory region nucleic acid binding, RNA splicing,
Transcription factor activity protein binding, Transcription factor binding, Transcription factor
complex, Ubiquitin like protein transferase activity, Vacuole organization, Adipogenesis,
Angiogenesis, Cholesterol homeostasis, Coagulation, Complement, Oxidative phosphorylation,
TGF beta signaling, Unfolded protein response

0 1 1 0 1 0 0 Positive regulation of apoptotic signaling pathway, Magnesium ion binding, Negative regulation of
protein serine threonine kinase activity, Positive regulation of cellular protein localization, Signal
transduction by p53 class mediator, Telencephalon development, Notch signaling

1 0 0 0 0 0 0 Adaptive immune response, Anion transport, Cell-cell adhesion via plasma membrane adhesion
molecules, Clathrin coated vesicle, Cognition, Excitatory synapse, Formation of primary germ layer,
Growth factor receptor binding, GTPase activity, Hormone mediated signaling pathway, Muscle cell
differentiation, Organic acid transmembrane transporter activity, Organic cyclic compound
catabolic process, RAS guanyl nucleotide exchange factor activity, Regulation of body fluid levels,
Regulation of cytokine production, Regulation of ion homeostasis, Regulation of stat cascade,
Ribosome biogenesis, Transcriptional repressor activity RNA polymerase II transcription regulatory
region sequence specific binding, Wound healing, Anterior posterior pattern specification, Cardiac
chamber development, Cation channel complex, Cell activation, Cell adhesion molecule binding,
Cell-cell signaling, Cell fate commitment, Cell junction, Cytosolic transport, G protein coupled
receptor signaling pathway coupled to cyclic nucleotide second messenger, Intermediate filament
cytoskeleton, Multi organism reproductive process, Muscle structure development, Muscle tissue
development, Negative regulation of response to external stimulus, Organic acid transport,
Receptor complex, Regulation of response to biotic stimulus, Regulation of transporter activity,
Respiratory system development, Ribosome, rRNA metabolic process, Single organism behavior,
Site of polarized growth, Skeletal system development, Synaptic signaling, Transmembrane
receptor protein serine threonine kinase signaling pathway, Transporter complex, Androgen
response, Epithelial mesenchymal transition, Il6 JAK STAT3 signaling, Pancreas beta cells, Reactive
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to both CNV and mRNA expression, while CNV and
mRNA expression were both indispensable. Comparison
of the joint random walks of three features with the corre-
sponding conditional random walks (the right column)
also corroborated this conclusion. C (CNV,MET,MRNA)
(Fig. 4f, red) was not superior to C (MET|CNV,MRNA)
(green), suggesting that randomizing DNA methyla-
tion did not lose extra information. In contrast, C
(CNV,MET,MRNA) was superior to both C (MRNA|CNV,-
MET) (Fig. 4b, green) and C (CNV|MET,MRNA) (Fig. 4d,
green), suggesting that CNV and mRNA expression
provided indispensable enrichment information.
The combinatorial relations of features can also be

revealed in their mutual information scores. Figure 5a
displays the mutual information scores of three features
on positive regulation of cell division. High-scoring
genes in terms of CNV and mRNA expression were not
highly overlapped. In contrast, high-scoring genes in
terms of DNA methylation were mostly contained in
high-scoring genes in terms CNV and mRNA expres-
sion. Therefore, both CNV and mRNA expression were
dominant and DNA methylation is subsumed to them.

Functional enrichment of glioblastoma subtype biomarkers
676 functional categories contained at least one domi-
nant feature or one pair of redundant features in the
GBM enrichment outcomes. We again performed
REVIGO analysis on the membership vectors of these
functional categories and reduced them to 272 groups.
The Mann-Whitney p-values of 16 pairwise random walk
comparisons among the 676 functional categories are re-
ported in Additional file 8: Table S5. The combinatorial
relations of the three features in the 676 functional
categories are reported in Additional file 9: Table S6 and
the combinatorial relations of the three features in the 272
reduced functional categories are reported in Table 2.
Unlike breast cancer data, the majority of the func-

tional categories (and reduced functional categories)

were dominated by mRNA expression: CNV, DNA
methylation and mRNA expression were dominant in
92, 150 and 493 functional categories and 57, 74 and
177 reduced functional categories. The top 4 most abun-
dant combinatorial relations were mRNA expression
dominant (147 reduced functional categories), DNA
methylation dominant (47 reduced functional categor-
ies), CNV dominant (44 reduced functional categories),
and DNA methylation and mRNA expression dominant
(23 reduced functional categories). All the other com-
binatorial relations were rare.
The reduced functional categories possessing mRNA

expression as a dominant feature were quite different
between breast cancer and GBM data. There were 72 and
147 such reduced functional categories in breast cancer
and GBM data respectively, and only 8 of them appeared in
both datasets. In GBM data, these reduced functional
categories were involved in distinct cancer-related processes
from breast cancer data, such as angiogenesis, cell-cell
adhesion, immune response, inflammatory response, and
EMT. The reduced functional categories that appeared in
both datasets included mitotic spindle, apical surface,
Hedgehog signaling, hypoxia, and G2M checkpoint.
We also illustrate the interpretation of the MGSEA

outcomes with a functional category of EMT. Figure 6
shows the MGSEA random walks pertaining to two
and three features of EMT. The random walks of the
joint features including mRNA expression (e.g., C
(MET,MRNA), Fig. 6c, red) were superior to the con-
ditional random walks randomizing mRNA expression
(e.g., C (MRNA|MET), Fig. 6c, green), indicating the
dominance of mRNA expression. In contrast, CNV
and DNA methylation were both subsumed to mRNA
expression. The dominance of mRNA expression was
also manifested in the mutual information scores in
Fig. 5b. High-scoring genes were populated in mRNA
expression, and the high-scoring genes in CNV and
DNA methylation scores were overlapped with the
high-scoring genes in mRNA expression scores.

Table 1 Combinatorial relations of enrichment information in 126 reduced functional classes of breast cancer data (Continued)

Combinatorial Pattern Gene set

CNV MET MRNA CNV
and
MET

MET
and
MRNA

CNV
and
MRNA

CNV
and
MET
and
MRNA

oxygen species pathway

1 0 1 0 0 1 0 Kidney epithelium development, Meiotic cell cycle process, Response to alcohol, Voltage gated ion
channel activity, Lipid modification, Nuclear periphery, Positive regulation of cell division, Potassium
ion transport, Regulation of organ morphogenesis, Urogenital system development, Bile acid
metabolism

1 1 0 1 0 0 0 Core promoter proximal region DNA binding, Response to nutrient, RNA polymerase II
transcription factor activity sequence specific DNA binding
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Validation with external datasets
To verify whether the gene set enrichment outcomes of
subtype-informative markers were preserved in other
multi-OMIC cancer data or idiosyncratic in TCGA,
we analyzed external datasets of METABRIC [20]
(https://www.synapse.org/#!Synapse:syn2133309) and
REMBRANDT (GSE6109 [21] and GSE68848 [22]) for
breast cancer and GBM respectively. Both datasets con-
sisted of CNV and mRNA expression measurements on
the same cohort of patients. We handled mRNA datasets

with the same procedures as TCGA data processing, and
pre-processed CNV data was directly used in our analysis.
The processed METABRIC data contained 16,120 genes
with valid entries for both platforms and 1775 samples,
while the processed REMBRANDT data contained 6593
genes and 127 samples. 935 and 1143 GO gene sets were
selected for METABRIC and REMBRANDT respectively,
together with 50 Hallmark gene sets, for MGSEA analysis.
Reproducibility of the gene-level information in exter-

nal datasets was validated by several methods. First, we
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Fig. 4 MGSEA random walks of positive regulation of cell division on breast cancer data. Panels A, C, E display comparisons of two features with
the corresponding conditional random walks. Panels B, D, F display comparisons of three features with the corresponding random walks. Each
row shows the comparison results of distinct combinations of the features
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sorted genes by their mutual information scores and
counted the fractions of overlap between top ranking
genes from TCGA and external data with varying rank
thresholds (Additional file 10: Figure S4). In general, top
ranking genes of both mRNA expression and CNV
exhibited reasonable levels of overlap, while mRNA
expression achieved higher agreements than CNV. For
mRNA expression, about 50% of the top 5000 genes
appeared in TCGA and external data for both cancer
types. For CNV, the overlap fractions of the top 5000
genes were about 40% for breast cancer and 60% for
GBM. The higher overlap fraction in GBM was due to
the smaller number of CNV genes in REMBRANDT
data. The CNV overlap fraction dropped considerably
when the rank threshold decreased, indicating its infer-
ior reproducibility. For instance, in breast cancer data
the overlap fraction among the top 2000 genes was
about 50% for mRNA expression and 20% for CNV.
Second, we solicited several genes undergoing significant
subtype-specific copy number alterations according to
TCGA references ([2] for breast cancer and [3] for
GBM) and checked whether they encountered the same
alterations in external data (Additional file 11: Table S7).
For breast cancer, HER2-enriched specific amplification
of ERBB2, basal-specific amplification of CCNE1, and
luminal B specific amplification of CCND1 were remark-
ably salient in both TCGA and METABRIC data. For
GBM, proneural specific amplification of PDGFRA and
classical specific amplification of EGFR were strong in
TCGA but only moderate in REMBRANDT, while mes-
enchymal specific deletion of NF1 was inconspicuous in
REMBRANDT data. The weak signal of NF1 CNV in
REMBRANDT was probably due to limited coverage of
NF1 on the platform used by REMBRANDT as previ-
ously reported [23]. Third, we plotted the FDR curves of
the two external datasets (Additional file 3: Figure S3,

the right column) and compared them with their
TCGA counterparts. In both datasets, mRNA expres-
sion had a much lower FDR than CNV through the
entire range of the p-value threshold. At the p-value
threshold 10− 10, the FDRs of mRNA expression were
lower than 0.3 in both datasets; the CNV FDR was
around 0.8 in METABRIC, while the CNV FDR was
close to 1.0 in REMBRANDT.
Additional file 12: Table S8 and Additional file 13: Table S9

report the combinatorial relations of mRNA expression
and CNV in 278 functional categories and 143 reduced
functional categories for METABRIC breast cancer
data. Similar to the TCGA breast cancer data, mRNA
expression was a dominant feature in considerably more
reduced functional categories than CNV (96 vs 45).
However, unlike TCGA the dominant combination of
CNV and mRNA expression was only found in 2 re-
duced functional category. We also counted the identities
and numbers of overlapped functional categories for each
combinatorial relation between TCGA and METABRIC
and report them in Additional file 14: Table S10 and
Additional file 15: Table S11. Intriguingly, about half of
the reduced functional categories possessing mRNA
expression as the only dominant feature appeared in
both datasets (161, 199 and 90 reduced functional
categories in TCGA, METABRIC and both), as well as
for CNV (129, 77 and 36 reduced functional categories
in TCGA, METABRIC and both).
Additional file 16: Table S12 and Additional file 17:

Table S13 report the combinatorial relations of mRNA
expression and CNV in 381 functional categories and 161
reduced functional categories for REMBRANDT GBM
data. Similar to TCGA GBM data, the vast majority of re-
duced functional categories possessed mRNA expression
as a dominant feature (341), whereas only a small frac-
tion of reduced functional categories possessed CNV as

Fig. 5 Mutual information scores of three features on (A) Positive regulation of cell division on breast cancer data, and (B) EMT on GBM data.
Warm colors indicate high values. Top: CNV, middle: DNA methylation, bottom: mRNA expression
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Table 2 Combinatorial relations of enrichment information in 128 reduced functional classes of GBM data

Combinatorial Pattern Gene set

CNV MET MRNA CNV
and
MET

MET
and
MRNA

CNV
and
MRNA

CNV and
MET and
MRNA

0 0 1 0 0 0 0 Actin based cell projection, Actin cytoskeleton, Antigen processing and presentation, Apoptotic
signaling pathway, Bone development, Carbohydrate derivative catabolic process, Cell cycle
arrest, Cell growth, Cell junction assembly, Cell substrate adhesion, Cell substrate junction,
Cellular response to external stimulus, Cellular response to nitrogen compound, Coated vesicle,
Covalent chromatin modification, Cytoplasmic side of membrane, Endocytosis, Endoplasmic
reticulum lumen, Interaction with host, Membrane organization, Morphogenesis of a branching
structure, Negative regulation of transferase activity, Organelle localization, Organic acid
biosynthetic process, Poly a RNA binding, Positive regulation of cell proliferation, Positive
regulation of cytoplasmic transport, Protein autophosphorylation, Protein dephosphorylation,
Protein heterodimerization activity, Regulation of cell activation, Regulation of ossification,
Regulation of peptide secretion, Regulation of protein stability, Regulation of synapse
organization, Regulation of synaptic plasticity, Response to carbohydrate, Response to
temperature stimulus, Second messenger mediated signaling, Somatodendritic compartment,
Telencephalon development, Transferase activity transferring glycosyl groups, Transmembrane
receptor protein tyrosine kinase signaling pathway, Tubulin binding, Ubiquitin like protein ligase
binding, Vacuolar lumen, Vesicle membrane, Vesicle organization, Wound healing, Actin filament
based process, Aging, Autophagy, Binding bridging, Biological adhesion, Calmodulin binding,
Carbohydrate binding, Cell activation, Cell adhesion molecule binding, Cell body, Cell cortex,
Cell death, Cell junction, Cell junction organization, Cell leading edge, Cell projection, Cell
surface, Chromatin modification, Circulatory system development, Connective tissue
development, Cysteine type peptidase activity, Cytokine production, Cytoplasmic region,
Cytoskeletal protein binding, Endomembrane system organization, Enzyme binding, Excitatory
synapse, Extracellular matrix component, Extracellular structure organization, Glycosaminoglycan
binding, Growth, Growth factor binding, Homeostasis of number of cells, Identical protein
binding, Immune system process, Kinase regulator activity, Locomotion, Macromolecular
complex binding, Movement of cell or subcellular component, Multicellular organism metabolic
process, Nuclear body, Organelle subcompartment, Ossification, Perinuclear region of cytoplasm,
Plasma membrane organization, Positive regulation of proteolysis, Posttranscriptional regulation
of gene expression, Protein complex binding, Protein dimerization activity, Protein domain
specific binding, Protein folding, Receptor binding, Receptor complex, Receptor signaling
protein activity, Regeneration, Regulation of autophagy, Regulation of gene expression
epigenetic, Regulation of reactive oxygen species metabolic process, Regulation of stem cell
differentiation, Regulation of synapse structure or activity, Respiratory system development,
Response to biotic stimulus, Response to transition metal nanoparticle, Sarcolemma, Sh3
domain binding, Side of membrane, Site of polarized growth, Sphingolipid metabolic process,
Sulfur compound biosynthetic process, Sulfur compound metabolic process, Symporter activity,
Trans Golgi network, Transcription coactivator activity, Ubiquitin ligase complex, Vacuole,
Allograft rejection, Angiogenesis, Apical junction, Apical surface, Apoptosis, Cholesterol
homeostasis, Coagulation, Complement, Epithelial mesenchymal transition, G2M checkpoint,
Hedgehog signaling, Hypoxia, Il2 stat5 signaling, Il6 JAK STAT3 signaling, Inflammatory response,
Interferon gamma response, KRAS signaling up, Mitotic spindle, Myogenesis, P53 pathway, TNFa
signaling via NFkB, Unfolded protein response, UV response down

0 1 0 0 0 0 0 Anion transmembrane transport, Calcium ion transmembrane transporter activity, Cellular
response to inorganic substance, Cilium, Epidermis development, Hindbrain development,
Negative regulation of cell growth, Negative regulation of secretion, Nephron development,
Post synapse, RAS guanyl nucleotide exchange factor activity, Regulation of lipid biosynthetic
process, Regulation of muscle cell differentiation, Regulation of reproductive process, Response
to ketone, Sensory perception of mechanical stimulus, Signaling receptor activity, Skeletal
system morphogenesis, Ameboidal type cell migration, Amide biosynthetic process, Ammonium
ion metabolic process, Anchored component of membrane, Cation channel complex, Cell
maturation, G protein coupled receptor signaling pathway, Growth factor activity, GTPase
binding, Intrinsic component of plasma membrane, Membrane protein complex, Membrane
region, Mitochondrial transport, Multi multicellular organism process, Multicellular organismal
signaling, Pattern specification process, Positive regulation of cell division, Regionalization,
Regulation of camp metabolic process, Regulation of membrane potential, Regulation of
transmembrane receptor protein serine threonine kinase signaling pathway, Response to
estrogen, Response to light stimulus, Response to starvation, Stem cell differentiation, Structural
molecule activity, Transporter complex, Urogenital system development, UV response up

0 1 1 0 1 0 0 Cell part morphogenesis, Cytokine receptor binding, Extrinsic component of plasma membrane,
Inositol lipid mediated signaling, Negative regulation of nervous system development,
Regulation of epithelial cell proliferation, Regulation of wound healing, Vasculature
development, Extracellular matrix, Extrinsic component of membrane, Membrane microdomain,
Peptidyl tyrosine modification, Positive regulation of peptidase activity, Protein tyrosine kinase
activity, Regulation of chemotaxis, Regulation of extrinsic apoptotic signaling pathway,
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a dominant feature (39). We also counted the identities
and numbers of overlapped functional categories for
each combinatorial relation between TCGA and REM-
BRANDT and report them in Additional file 18: Table
S14 and Additional file 19: Table S15. The extent of
overlap for TCGA-REMBRANDT comparison was
weaker than TCGA-METABRIC comparison but exhi-
bited the same trend. About 60% of the reduced func-
tional categories possessing mRNA expression as the
only dominant feature appeared in both datasets (478,
341 and 202 functional categories in TCGA, REM-
BRANDT and both), whereas the overlap sizes for CNV
was about a quarter (77, 39 and 11 functional catego-
ries in TCGA, REMBRANDT and both).
We also examined whether the cancer-related pro-

cesses appeared in each combinatorial enrichment pat-
tern of the two TCGA datasets were retained in external
datasets. Intriguingly, most aforementioned observations
about the processes in mRNA-dominant and CNV-dom-
inant combinatorial patterns sustained in the external
datasets. In METABRIC, mRNA expression was the sole
dominant feature in reduced functional categories in-
volved in cell proliferation (such as cell cycle control,
DNA replication, estrogen response, MYC targets, and
E2F targets), and CNV was the sole dominant feature in
reduced functional categories involved in cell invasion

and metastasis (e.g., cell adhesion, EMT) (Additional file
14: Table S10). In REMBRANDT, mRNA expression was
the only dominant feature in diverse functional categor-
ies such as cell adhesion, angiogenesis, EMT, and inflam-
matory response (Additional file 18: Table S14). In
contrast, only a few reduced functional categories pos-
sessed CNV as the only dominant feature in both TCGA
GBM and REMBRANDT data. Combinatorial patterns
with multiple dominant features had no common
functional categories between TCGA and external
data.

Comparison with other GSEA extensions
As alluded in Background, there are numerous exten-
sions of canonical GSEA, yet to our knowledge none of
them explicitly intends to capture the combinatorial
relations between the enrichment information from
multiple platforms. Therefore, directly comparing the
performance of MGSEA with other methods is not quite
meaningful. Instead we compared MGSEA with six
other GSEA extensions in two aspects. First, we con-
trasted qualitative characteristics of those methods and
discussed the pros and cons as well as the adequate uti-
lity for each one. Second, we applied one of those
methods, moGSA, to the TCGA breast cancer and GBM

Table 2 Combinatorial relations of enrichment information in 128 reduced functional classes of GBM data (Continued)

Combinatorial Pattern Gene set

CNV MET MRNA CNV
and
MET

MET
and
MRNA

CNV
and
MRNA

CNV and
MET and
MRNA

Regulation of receptor activity, Synapse organization, Interferon alpha response, Notch signaling,
WNT beta catenin signaling

1 0 0 0 0 0 0 Cell cycle phase transition, Chromosomal region, Circadian rhythm, Hexose metabolic process,
MRNA metabolic process, Negative regulation of cellular catabolic process, Negative regulation
of hydrolase activity, Peptidase inhibitor activity, Positive regulation of DNA metabolic process,
Positive regulation of homeostatic process, Regulation of cation transmembrane transport,
Regulation of protein modification by small protein conjugation or removal, Regulatory region
nucleic acid binding, RNA splicing via transesterification reactions, Sex differentiation, Adenylate
cyclase modulating g protein coupled receptor signaling pathway, B cell activation, Coenzyme
metabolic process, Cofactor metabolic process, Cytosolic part, Endocrine system development,
Hemostasis, Hepaticobiliary system development, Hormone metabolic process, Hormone
receptor binding, Iron ion binding, Lipid localization, Metallopeptidase activity, Methylation,
ncRNA metabolic process, Nucleic acid binding transcription factor activity, Organic hydroxy
compound biosynthetic process, Oxidoreductase activity acting on paired donors with
incorporation or reduction of molecular oxygen, Positive regulation of WNT signaling pathway,
RAS protein signal transduction, Response to calcium ion, Response to drug, Rhythmic process,
Tetrapyrrole binding, Transcription factor complex, Transferase activity transferring acyl groups,
Transferase complex transferring phosphorus containing groups, Bile acid metabolism, Protein
secretion

1 0 1 0 0 1 0 Adaptive immune response based on somatic recombination of immune receptors built from
immunoglobulin superfamily domains, Positive regulation of binding, Regulation of endocytosis,
Negative regulation of cell-cell adhesion, Negative regulation of cellular response to growth
factor stimulus, Phosphatase binding, Regulation of leukocyte proliferation

1 1 0 1 0 0 0 Cell fate commitment, G protein coupled receptor signaling pathway coupled to cyclic
nucleotide second messenger, Mesenchymal cell differentiation, Negative regulation of
canonical WNT signaling pathway

1 1 1 1 1 1 1 Pancreas beta cells, TGF beta signaling
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data and compared their outputs with the inference
results of MGSEA.
We chose 6 GSEA extension methods for comparison:

moGSA [10], MONA [9], GeneTrail2 [8], Klebanov et. al.
[6], SetRank [4], and PAGE [5]. Table 3 summarizes the
qualitative characteristics of MGSEA and the comparison
methods. SetRank, PAGE, and Klebanov et al. address
different statistical and computational limitations of the
canonical GSEA, and introduce novel algorithms to

reduce false positives, to decrease computation time along
with increased statistical sensitivity, and to improve multi-
variate significance testing through multivariate statistics,
respectively. The input of these algorithms is identical to
that of the canonical GSEA, namely the high-throughput
data from one platform (most likely transcriptomic mea-
surements). GeneTrail2 consists of a collection of useful
tools to handle GSEA of genomic, proteomic, miRNomics,
and transcriptomic data separately. The enrichment
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corresponding conditional random walks. Panels B, D, F display comparisons of three features with the corresponding random walks. Each row
shows the comparison results of distinct combinations of the features
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outcomes are reported separately and not integrated.
Therefore, all those four methods are unimodal in nature.
In contrast, both MONA and moGSA incorporate

multimodal OMIC measurements. MONA incorporates
the regulatory relations between mRNA, microRNA
expressions and protein levels in a Bayesian inference al-
gorithm for GSEA. moGSA utilizes multivariable latent
variable decomposition to determine the most infor-
mative features in each OMIC measurements and calcu-
lates an integrated score for each gene set.
Each method has merits and shortcomings as well as

adequate utility for its application. SetRank is preferred
in reducing the false positives of the resulting gene set,
with possible issues regarding sensitivity. PAGE is pre-
ferred for increased statistical sensitivity and reduced
computational intensity, but possible gene-dependency
due to co-regulation of genes might violate the assump-
tions of the statistical model (normal distribution) used
by PAGE. The method by Klebanov et al. is useful when
correlation between multiple genes is concerned, but the
method is less accessible due to lack of readily available
programs/packages. GeneTrail2 offers convenient GSEA
analysis for different types of data, but an integrated
interpretation of the results from different platforms is
not readily available. The strength of MONA lies in its
ability to integrate pre-existing knowledge of regulatory
relations between features on GSEA, but given the wide-
spread context dependency of such relations [24], out-
puts based on computationally predicted regulatory
relations (such as microRNA and its predicted targets)

need to be more cautiously interpreted. moGSA is par-
ticularly suited for integrated assessment of GSEA using
multiplatform data. However, since only the most in-
formative measurements were incorporated, the relative
strength of each feature is not evident in its output.
MGSEA explicitly reports the combinatorial relations of
enrichment information from multiple platforms, yet it
does not generate an aggregate outcome by synthesizing
the enrichments from multiple platforms. In this regard,
moGSA and MGSEA serve complementary functions.
In order to further elucidate the difference between

MGSEA and other methods, we compared the outputs
of MGSEA and moGSA by applying both to analyze the
breast cancer and GBM TCGA data. The other multi-
modal method, MONA, was not chosen as it required
protein and microRNA expression data, which were be-
yond the scope of the current analysis. moGSA was run
with default parameters, and the outputs were sorted
gene sets in terms of their enrichment significance. We
varied the threshold of choosing the top-ranking gene
sets from moGSA and reported the counts of overlapped
gene sets with MGSEA in Table 4. A substantial portion
of the functional categories selected by MGSEA were
also detected by moGSA (78 and 166 gene sets in
breast cancer and GBM data when the top 20% gene
sets from moGSA were chosen). Furthermore, MGSEA
provides annotations of the combinatorial relations
between features in the selected gene sets. These anno-
tations are unique in MGSEA and cannot be generated
by moGSA.

Table 3 A comparison of MGSEA with other GSEA extensions

Algorithm MGSEA moGSA MONA GeneTrail2 Klebanov et.
al.

SetRank PAGE

Data
modality

Multimodal Multimodal Multimodal Unimodal Unimodal Unimodal Unimodal

Input List of sorted
genes based on
mutual
information
scores for each
feature (CNV,
methylation, or
mRNA)

Different
measurements
of gene activity
(CNV, mRNA,
protein)

Lists indicating
whether genes are
differentially
expressed based on
distinct
measurement
methods (mRNA,
protein, microRNA)

A GSE file with data
from both sample and
reference group, or two
GDS files for sample
and reference group,
or a list of genes and
their scores

Single
measurement
of gene
activity

Single
measurement
of gene activity

Single
measurement of
gene activity

Output Graphical
display of
conditional
random walk
and its statistical
significance

List of pathways
and its statistical
significance, and
inferred activity
in individual
samples

List of pathways
and its statistical
significance

List of pathways and its
statistical significance

List of
pathways
and its
statistical
significance

List of pathways
and its statistical
significance

List of pathways
and its statistical
significance

Main
Features

Evaluates the
combinatorial
enrichment
relation between
biological
features

Integration
of multiple
measurements
of a gene into a
single score for
gene set
enrichment
analysis

Regulatory relations
between features
(such as microRNA
and its targets) are
considered

Each feature (gene,
protein, microRNA, and
SNP) is tested
independently
for pathway enrichment

Multivariate
N-statistic for
multivariate
significance
testing

Reduces false
positives by
discarding gene
sets identified as
significant due to
high overlap with
another significant
gene set

Parametric
analysis of GSEA
which is less
computational
intensive and
more statistically
sensitive
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Discussion
In this study, we propose MGSEA, an extension of the
gene set enrichment analysis to the data from multiple
platforms. MGSEA can unravel the combinatorial re-
lations of enrichment information from multiple plat-
forms. For a given gene set, we can tell whether the
phenotype-delineating information of a feature is indis-
pensable or subsumed to other features by comparing
the random walks of joint features and the correspon-
ding conditional random walks.
MGSEA successfully captured designed feature

relations from simulated data. We further investigated a
problem of delineating cancer subtypes with biomarkers
extracted from multi-OMIC data, and applied MGSEA to
TCGA breast cancer and GBM data to identify the com-
binatorial relations of gene set enrichment information
from multiple platforms. The major combinatorial pat-
terns and enriched functional categories in both cancer
types possessed both common properties and unique
characteristics. In both cancer types, mRNA expression
appeared more frequently as a dominant feature than
CNV or DNA methylation. In breast cancer, the number
of enriched functional categories possessing mRNA
expression as a dominant feature (179) moderately sur-
passed those for CNV (147) and DNA methylation (137).
In GBM, the contrast of those numbers for mRNA ex-
pression (493), CNV (90) and DNA methylation (150) was
much more salient. Furthermore, the enriched functional
categories belonging to distinct combinatorial patterns
were quite different. In breast cancer, mRNA expression
was the only dominant feature in functional categories
primarily involved in cell proliferation, such as cell cycle
control, estrogen response, DNA repair, MYC targets, and
E2F targets, while CNV was the only dominant feature in
functional categories primarily involved in invasion and
metastasis, such as cell adhesion and EMT. In GBM,
mRNA expression was the only dominant feature in
diverse functional categories such as cell adhesion, inflam-
matory response, angiogenesis, and EMT. In contrast, the
combinatorial patterns with multiple dominant or redun-
dant features were much less abundant among enriched
functional categories and seemed not concentrated on
certain cancer-related processes.
These findings were validated in two independent

datasets: METABRIC for breast cancer and REM-
BRANDT for GBM. For both cancer types (breast
cancer and GBM) and the two features (mRNA expression
and CNV), about half of the top 5000 genes in terms of
mutual information scores occurred in both TCGA and
external datasets. The combinatorial patterns of (mRNA
expression alone dominant) and (CNV alone dominant)
were over-represented in METABRIC, and the com-
binatorial pattern of (mRNA expression alone dominant)
was over-represented in REMBRANDT. The functional

Table 4 Comparison of MGSEA with moGSA. Overlap of
significant gene sets at various cutoffs between moGSA and
MGSEA as shown for (A) breast cancer and (B) GBM

Cutoff (%) Number of gene sets in moGSA Overlap with MGSEA

A. Breast cancer

5 56 9

10 112 34

15 168 51

20 225 78

25 281 105

30 337 130

35 393 150

40 449 174

45 505 197

50 562 221

55 618 244

60 674 266

65 730 285

70 786 313

75 842 335

80 898 354

85 955 370

90 1011 393

95 1067 409

100 1123 434

B. GBM

5 57 44

10 115 80

15 172 124

20 230 166

25 287 207

30 345 240

35 402 277

40 460 308

45 517 338

50 575 367

55 632 398

60 689 424

65 747 452

70 804 481

75 862 517

80 919 550

85 977 577

90 1034 614

95 1092 649

100 1149 676
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categories belonging to those combinatorial patterns were
involved in the cancer-related processes analogous to the
TCGA data: cell proliferation for mRNA expression and
invasion/metastasis for CNV in breast cancer, and diverse
processes for mRNA expression in GBM. Furthermore,
the functional categories belonging to those combinatorial
patterns were largely overlapped between the inferred
outcomes of TCGA and external datasets (about 40–60%).
The inferred and validated combinatorial patterns were

overwhelmingly concentrated in two scenarios: mRNA
expression alone is a dominant feature (for both cancer
types), and CNV alone is a dominant feature (for breast
cancer). Lack of combinatorial patterns with multiple
dominant features implies that in the same functional
category informative markers of multiple platforms rarely
cover disjoint subsets of members. Rather, informative
markers of distinct platforms seem to be enriched in
different collections of functional categories.
The abundance of mRNA expression dominant com-

binatorial patterns and their enriched functional catego-
ries are supported by prior studies of cancer subtype
classification. Breast cancer and GBM subtypes were
originally inferred from mRNA expression data alone
(PAM50 genes for breast cancer [25] and a selected
panel of 840 genes for GBM [15]). Furthermore, the
consensus functional categories of the mRNA expression
dominant combinatorial patterns between TCGA and
external datasets reflect the underlying biological pro-
cesses differentiating cancer subtypes, such as cell cycle/
proliferation activities [26] and sex hormone activities
[27] in breast cancer, and lymphocyte infiltration levels
[28] and EMT [29] in GBM. In contrast, the prominence
of CNV in subtype delineation and functional enrich-
ment is more striking. CNV and DNA methylation are
known to exhibit subtype-specific variations and hence
are informative about subtype delineation (such as
subtype-specific CNVs reported in TCGA breast cancer
[2] and GBM [3] papers, and the overlap of massive
CpG island DNA methylation and proneural phenotypes
in GBM [30]). However, enrichment of breast cancer
CNV biomarkers in cell invasion and metastasis is un-
expected. In breast cancer, mRNA expression and CNV
seem to alter the two complementary oncogenic pro-
cesses respectively – cell proliferation and invasion/me-
tastasis – and jointly determine the cancer subtypes.
The FDRs of CNV were generally higher than those of

mRNA expression, and were close to 1.0 in REM-
BRANDT data (Additional file 3: Figure S3). High FDRs
of CNV are likely attributed to two causes. First, a
chromosomal segment undergoing copy number alte-
ration typically harbors a few driver genes and many
more passenger genes. The functional enrichment of
the driver genes was therefore considerably diluted.
Second, the CNV-subtype associations were much less

reproducible than the mRNA expression-subtype asso-
ciations in external datasets (Additional file 10: Figure S4).
In particular, subtype-specific copy number alterations of
several well-known driver genes in TCGA GBM were
weakly or not reproducible in REMBRANDT data
(Additional file 11: Table S7). Despite the poor FDRs,
there was still a non-negligible level of overlap between
the CNV dominant combinatorial patterns from TCGA
and external datasets (about 50% for breast cancer and
25% for GBM). Some of the consensus functional ca-
tegories likely capture the real associations.
There are many integration algorithms for multi-

OMIC data and numerous extensions of the canonical
GSEA. However, relatively few methods extend GSEA
from a multi-platform data integration perspective, and
none of them attempts to capture the combinatorial
relations of enrichment information from multiple plat-
forms. MGSEA complements with other integrative
GSEA extension algorithms and provides unique anno-
tations (combinatorial relations of multiple platforms) to
the enriched gene sets.
The combinatorial patterns inferred from MGSEA

specify relations of informative biomarkers in a func-
tional category between multiple platforms. Intuitively, a
feature is dominant if its informative biomarkers are not
largely contained in informative biomarkers of other fea-
tures, and two features are redundant if their informative
biomarkers are largely overlapped. These simple rela-
tions give rise to an exponential number of possible
combinatorial patterns when the data of multiple plat-
forms are provided. Among those combinatorial patterns
only one of them requires indispensable importance of
all platforms – that all features are significantly enriched
and dominant. Although this special case clearly demon-
strates the benefit of combining all platforms for gene
set enrichment, it is only one of many possible combina-
torial patterns that can happen. The purpose of this
study is to develop a quantitative tool that identifies the
combinatorial pattern(s) best supported by the empirical
data, rather than verifying a particular hypothesis re-
garding combinatorial patterns such as the case where
all features are dominant. The special case of dominance
of all features is not prominent in the cancer
multi-OMIC data in this study. Nevertheless, MGSEA
identifies several other combinatorial patterns which
have important functional implications. For instance, al-
though most functional categories are dominated by sin-
gle features in breast cancer data, mRNA expression
dominates in the functional categories involved in cell
proliferation, while CNV dominates in the functional
categories involved in invasion and metastasis. Further-
more, without restricting to particular functional cat-
egories, the three platforms still provide indispensable
information about cancer subtype classification, as the
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distributions of mutual information scores from the
three platforms are generally independent (Additional
file 2: Figure S2).

Conclusions
MGSEA addresses the challenge of integrating multi-
modal OMIC data and delineating their combinatorial
relations. We showed that MGSEA was able to recapitu-
late known properties regarding cancer subtypes when
applied to TCGA breast cancer and GBM data, as well
as external METABRIC and REMBRANDT datasets.
However, utility of MGSEA is not restricted to cancer

subtype classification. It can be applied to any genotype-
phenotype association problem with multimodal geno-
type data. The same framework can also be generalized to
a reciprocal problem where there are multiple phenotype
labels and one OMIC feature (such as PheWAS), or an
even broader problem where there are multiple phenotype
labels and OMIC features. Extension in these directions
can help organizing complicated information extracted
from those multiple-high dimensional problems.
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