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The sensitivity analysis model is widely used to describe the impacts of condition parameters on structural 
reliability. However, the classical sensitivity analysis model is limited to the small number of influence 
parameters and has no high prediction accuracy. Integrating the response surface function - Kriging model 
with Sobol sensitivity algorithm, a revised sensitivity model is proposed in this paper. And the quantitative 
sensitivity analysis for the influence of condition parameters on structural reliability are achieved through 
combining the revised sensitivity model with the experimental design of coupling parameters, range verification, 
the multi-body dynamics analysis and the structural statics analysis. The proposed analysis model is mainly 
applied in large structures with multiple influence parameters. Finally, a typical port crane is adopted to verify 
the accuracy and effectiveness of the proposed model. The results reveal that among the multiple parameters, 
the biggest sensitivity influence is the trolley position, while the least one is the lifting speed. The average 
prediction accuracy of the quantitative structural reliability index for the influencing parameters is up to 95.91%. 
The revised sensitivity model enables the accurate assessment of structural relativity with plenty of coupling 
condition parameters.
0. Introduction

Large mechanical equipment is developing in the direction of intelli-

gent operation, lightweight structure and large-scale operation, and its 
operation safety is becoming more and more prominent [1, 2, 3]. With 
the increase of service time, tiny cracks may bring huge risks to the 
structure safety. The complicate operating conditions and external ran-

dom parameters become more and more significant for the structural 
reliability [4, 5, 6] and operation safety [7, 8]. Therefore, the quan-

titative identification of the reliability influence degree becomes the 
research focus [9, 10].

In industrial applications, the structure reliability is normally af-

fected by lots of parameters [11, 12, 13, 14, 15, 16, 17, 18]. The coupled 
effects could be crucial for the safe operation. For optimized operation 
settings of a brake system, Du [19] considered the relation between 
the operation parameters and working conditions. Wooram [20] used 
finite element simulation to analyze the dynamic failure of both simi-

lar and different combinations of spot welded automotive steel plates. 
Taking the mechanical properties as the reference condition and con-
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sidering the influence of other conditions, the dynamic lap shear and 
coach peeling sample tests are carried out to evaluate the dynamic 
failure behavior. Heredia [21] proposed a nonparametric prediction ap-

proach for the influence of key parameters on output parameters, based 
on the bootstrap-based bias correction theory and the aggregated first-

order index. Ren [22] established a revised analysis model by the partial 
differential constraint equations to sort the operation conditions. Then 
a memetic algorithm was proposed to achieve the high-precision re-

sults. The validation case also illustrated the computational efficiency. 
However, the above research only considers the qualitative influence 
relationship of individual factors, and does not fully consider the quan-

titative influence degree of parameters.

Kriging optimization algorithm is widely applied in multidisci-

plinary optimization design problems for complex systems [23, 24, 25, 
26, 27, 28, 29]. It can accurately converge to the real optimal solu-

tion, and has the ability of accurate constraint processing. Costas [30] 
enhanced the performance of frontal impact absorber through multi-

objective optimization technology by nearly 50%, and validated result 
by the drop tower test. Zhang [31] proposed a new penalty blind like-
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lihood Kriging method, which uses the grid search of cross validation 
to select good regularization parameters. The effectiveness was veri-

fied by two engineering examples. Mallik [32] proposed an aeroelastic 
gust response analysis method at high angle of attack based on Krig-

ing method, and verified its accuracy through many examples. Deng 
[33] used the multi-objective optimization design method to study the 
crash worthiness of the system, and used the Kriging method to con-

struct the alternative model of specific energy absorption (SEA) and 
initial peak force. However, Kriging surrogate model only considered 
the fitting of the influence degree of individual parameters, and does 
not deeply investigate the quantitative relationship of global sensitivity 
between different parameters.

Sensitivity analysis, an approach to quantify the influence levels un-

der complex working condition, plays an important role in the in-depth 
study of reliability indicators [34, 35, 36, 37, 38, 39, 40]. Lu [41] pro-

posed a reliability sensitivity model using the moment-based saddle 
point approximation theory and the random perturbation technology, 
through which the influence impact of random variables on the output 
parameter were quantified. Xiao [42] studied the local sensitivity anal-

ysis by proposing a direct integration method based on Sobol’ theory. 
Through the direct integration of the optimal polynomial model, the ac-

curate first-order and interactive sensitivity index can be obtained. Liu 
[43] proposed a new moment-independent sensitivity index to quantify 
the impact of individual input variable on the dependent output param-

eter of model. A multi-response Gaussian process (MRGP) proxy method 
with separable covariance estimated the multi-response and the sensi-

tivity index effectively. Zhang [44] studied the sensitivity influence of 
the input variable distribution parameters on structural failure prob-

ability based on the Kriging model. The newly developed sensitivity 
index was compared with the classic sensitivity index to illustrate the 
effectiveness and accuracy.

Literature [41, 42, 43, 44] can quantitatively realize the sensitivity 
relationship between influencing parameters and structural reliability. 
However it lacks the consideration of global sensitivity, without consid-

ering the integrated effects of external influencing parameters [45, 46, 
47, 48, 49, 50, 51]. It is challenging to evaluate the structural reliabil-

ity under complex conditions precisely. Not only the local sensitivity, 
but also the global sensitivity should be taken into account.

Integrating the optimal response surface function - Kriging model 
and the Sobol sensitivity model, this paper proposed a revised sensitiv-

ity model to investigate the structural reliability comprehensively. And 
the quantitative sensitivity analysis results of various coupling influence 
parameters are achieved through the experimental design of coupling 
parameters, the range verification, the multi-body dynamics analysis, 
the structural statics analysis and the revised sensitivity calculation. Fi-

nally, the feasibility and accuracy of the proposed approach are verified 
by an industrial case.

1. Sensitivity model based on response surface function-Kriging 
model

1.1. Response surface function - Kriging model

The optimal polynomial response surface function is a complete 
combination of parameters, expressed as

𝑓 (𝑥) = 𝑎0 + 𝑎1𝑥1 + ...+ 𝑎𝑛𝑥𝑛 + 𝑎𝑛+1𝑥21 + 𝑎𝑛+2𝑥1𝑥2 + ...+ 𝑎𝑁−1𝑥
𝑚
𝑘

=
𝑁−1∑
𝑖=0

𝑎𝑖𝑢𝑖 (𝑥) (1)

𝑢𝑖 (𝑥) is the complete polynomial of variable x =
(
𝑥1, 𝑥2, ...𝑥𝑛

)
; 𝑎𝑖 is 

the undetermined coefficient; Eq. (2) is the total number of polynomial 
terms, defined as

𝑁 = (n +m)!
(2)
𝑛! ⋅𝑚!

2

Eq. (1) can be transformed into an orthogonal form

𝑓 (𝑘) =
𝑁−1∑
𝑖=0

ℎ𝑖𝑝𝑖 (𝑘) (3)

𝑓 (𝑘) is the target response value for the 𝑘𝑡ℎ sampling, 𝑘 = 1, 2, ..., 𝐿; 
𝑝𝑖 (𝑘) is the orthogonal term under the 𝑘𝑡ℎ sampling, which can be ob-

tained by orthogonal transformation in Eq. (3); ℎ𝑖 is the coefficient of 
the orthogonal term.

According to the orthogonality of each item in Eq. (3), Eq. (4) can 
be deduced into

1
𝐿

𝐿∑
𝑘=1

𝑝𝑖 (𝑘)𝑝𝑗 (𝑘) = 0 (4)

By using the Gram-Schmidt orthogonalization process [52], Eq. (5) 
can be further expressed as

𝑝𝑖 (𝑘) = 𝑢𝑖 (𝑘) −
𝑖−1∑
𝑗=0

𝛼𝑖𝑗𝑝𝑗 (𝑘) (5)

𝑢𝑖 (𝑘) is the 𝑘𝑡ℎ sampling polynomial.

And the coefficient 𝛼𝑖𝑗 Eq. (6) can be expressed as

𝛼𝑖𝑗 =
∑𝐿

𝑘=1 𝑢𝑖 (𝑘)𝑝𝑗 (𝑘)∑𝐿

𝑘=1 𝑝
2
𝑗
(𝑘)

(6)

The error function 𝑀𝑆𝐸 is defined as

𝑀𝑆𝐸 = 1
𝐿

𝐿∑
𝑘=1

(𝑓 (𝑥) −
𝑁−1∑
𝑖=0

ℎ𝑖𝑝𝑖 (𝑘)
)2

(7)

Take the derivative of ℎ𝑖 in Eq. (7), and set it equal to 0, the coeffi-

cient of the orthogonal term ℎ𝑖 can be expressed as

ℎ𝑖 =
∑𝐿

𝑘=1 𝑓 (𝑘)𝑝𝑖 (𝑘)∑𝐿

𝑘=1 𝑝
2
𝑖
(𝑘)

(8)

Substituting Eq. (8) into Eq. (5), the error function 𝑀𝑆𝐸 can be 
reformulated as:

𝑀𝑆𝐸 = 1
𝐿

𝐿∑
𝑘=1

(𝑓 (𝑘))2 −
𝑁−1∑
𝑖=1

ℎ2
𝑖

(
1
𝐿

𝐿∑
𝑘=1

𝑝2
𝑖
(𝑘)

)
(9)

The maximum value of 𝑀𝑆𝐸 is

𝑀𝑆𝐸max =
1
𝐿

𝐿∑
𝑘=1

(𝑓 (𝑘))2 −

(
1
𝐿

𝐿∑
𝑘=1

𝑓 (𝑘)

)2

(10)

According to Eq. (9) and Eq. (10), the contribution of orthogonal 
term 𝑝𝑖 (𝑘) to the reduction of 𝑀𝑆𝐸 can be written as

𝐶𝑀𝑆𝐸 = 1
𝐿

𝐿∑
𝑘=1

ℎ2
𝑖
𝑝2
𝑖
(𝑘) (11)

According to Eq. (11), then the error reduction ratio 𝐸𝑅𝑅𝑖 is de-

fined to quantify the contribution rate of each orthogonal term to the 
reduction of the error function 𝑀𝑆𝐸, expressed as

𝐸𝑅𝑅𝑖 =
100 ⋅

∑𝐿

𝑘=1 ℎ
2
𝑖
𝑝2
𝑖
(𝑘)∑𝐿

𝑘=1 (𝑓 (𝑘))2 − 1
𝐿

(∑𝐿

𝑘=1 𝑓 (𝑘)
)2 (12)

After the orthogonal transformation, the contribution rate 𝐸𝑅𝑅𝑖 can 
be calculated. The largest error reduction rate is selected in the calcula-

tion process. The remaining items are orthogonalized according to the 
above approach, and the contribution rate is evaluated until the maxi-

mum 𝐸𝑅𝑅𝑖 of remaining function items are less than the set threshold. 
Then the remaining items are discarded. Further the coefficient of re-

served term in Eq. (12) can be achieved through the inverse orthogonal 
transformation, Eq. (13) and Eq. (14) written as
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𝑎𝑖 =
𝑁−1∑
𝑗=1

ℎ𝑗𝑞𝑗 (13)

𝑞𝑗 = −
𝑗−1∑
𝑟=𝑖

𝛼𝑗𝑟𝑞𝑟 (14)

When multiple parameters are considered to solve the sensitivity 
model, the traditional Sobol method based on the response surface func-

tion requires high computational cost [53, 54, 55]. Moreover, the reli-

ability problem of the actual engineering equipment structure is more 
complicated caused by lots of parameters and their coupling effects. To 
cope with these challenges, an optimal modified polynomial response is 
constructed through fitting the samples optimized based on Kriging al-

gorithm. Then the sensitivity value can be achieved through the direct 
integration.

According to Kriging theory [56, 57, 58, 59], the relationship be-

tween output response 𝐺 (𝑥) and input variable 𝑥 can be formulated 
as

𝐺 (𝑥) = 𝑓T (𝑥)𝛽 + 𝑧 (𝑥) (15)

In Eq. (15), 𝑓 (𝑥) is the basis function vector of regression polyno-

mial; 𝛽 is the vector of regression coefficient; 𝑧 (𝑥) is a Gaussian random 
process with zero mean. Eq. (16) is defined as

cov
[
𝑧
(
𝑥𝑖
)
, 𝑧

(
𝑥𝑗
)]

= 𝜎2
𝑧

𝑚∏
𝑘=1

exp
[
−𝜃𝑘

(
𝑥𝑘
𝑖
− 𝑥𝑘

𝑗

)2
]

(16)

𝜎2
𝑧

is the variance of Gaussian process; 𝑅 
(
𝑥𝑖, 𝑥𝑗 , 𝜃

)
is a vector with 

parameters 𝜃, 𝑥𝑘
𝑖

is the kth element of vectors 𝑥𝑖, 𝑥𝑘𝑗 is the kth element 
of vectors 𝑥𝑖.

Given a set of training samples with capacity 𝑁 , the unbiased esti-

mation and prediction error of 𝐺 (𝑥) is defined as follows

𝜇𝐺 (𝑥) = 𝑓T (𝑥)𝛽 + 𝑟T (𝑥)𝑅−1 (𝑌 − 𝐹𝛽
)

(17)

𝜎2
𝐺
(𝑥) = 𝜎2

[
1 + 𝑢T (𝑥)

(
𝐹 T𝑅−1𝐹

)−1
𝑢 (𝑥) − 𝑟T (𝑥)𝑅−1𝑟 (𝑥)

]
(18)

In Eq. (17) and Eq. (18), 𝛽 is the estimated value of 𝛽; 𝑟 (𝑥) is the 
correlation function vector between the training sample point and the 
prediction point; 𝑌 is the training sample response

1.2. Principle of Sobol global sensitivity analysis

When identifying the model parameters, the 𝑘 dimensional unit vol-

ume Ω𝑘 is defined as the spatial domain of the input factor.

Ω𝑘 = {𝑥 |0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2, ..., 𝑘} (19)

In Eq. (19), Ω𝑘 is the unit body; 𝑥𝑖 is the parameter and 𝑘 is the 
dimension.

According to the Taylor expansion, any function 𝑓 (𝑥) can be ex-

pressed as the sum of sub-items.

𝑓
(
𝑥1, 𝑥2, ..., 𝑥𝑘

)
= 𝑓0 +

𝑘∑
𝑖=1

𝑓𝑖
(
𝑥𝑖
)

+
∑

1≤𝑖<𝑗≤𝑘
𝑓𝑖𝑗

(
𝑥𝑖, 𝑥𝑗

)
+ ⋅ ⋅ ⋅+ 𝑓1,2,...,𝑘

(
𝑥1, 𝑥2, ..., 𝑥𝑘

)
(20)

The total number of decomposition term in Eq. (20) is 2𝑘. Sobol 
proposed a decomposition approach using the multiple function inte-

gration [60]. The characteristics of Sobol sensitivity algorithm can be 
summarized as:

➀ 𝑓0 is a constant term. The integration of each sub-item for any 
contained factor in Eq. (20) is 0, Eq. (21) can be expressed as

1

∫ 𝑓𝑖1
,𝑖2
, ...,𝑖𝑠

(
𝑥𝑖1
, 𝑥𝑖2

, ..., 𝑥𝑖𝑠

)
𝑑𝑥𝑖𝑗 = 0 (21)
0

3

➁ The sub-items are orthogonal. If 
(
𝑖1, 𝑖2, ⋅ ⋅ ⋅, 𝑖𝑠

) ≠ (
𝑗1, 𝑗2, ⋅ ⋅ ⋅, 𝑗𝑙

)
ex-

ists, the Eq. (22) must exists.

∫
Ω𝑘

𝑓𝑖1 ,𝑖2 ,⋅⋅⋅𝑖𝑠
⋅ 𝑓𝑗1 ,𝑗2 ,...,𝑗𝑠 𝑑𝑥 = 0 (22)

The decomposition form of Eq. (3) is unique, and each sub-item can 
be obtained by multiple integration, Eq. (23) can be written as

𝑓0 = ∫
Ω𝑘

𝑓 (𝑥)𝑑𝑥 (23)

𝑓𝑖
(
𝑥𝑖
)
= −𝑓0 +

1

∫
0

⋅ ⋅ ⋅

1

∫
0

𝑓 (𝑥)𝑑𝑥−𝑖 (24)

𝑓𝑖𝑗
(
𝑥𝑖, 𝑥𝑗

)
= −𝑓0 − 𝑓𝑖

(
𝑥𝑖
)
− 𝑓𝑗

(
𝑥𝑗
)
+

1

∫
0

⋅ ⋅ ⋅

1

∫
0

𝑓 (𝑥)𝑑𝑥−(𝑖𝑗) (25)

In Eq. (24) and Eq. (25), there exist 1 ≤ 𝑖 < 𝑗 ≤ 𝑘. 𝑥−𝑖 represents the 
input parameters other than 𝑥𝑖; 𝑥−(𝑖𝑗) represents the input parameters 
other than 𝑥𝑖 and 𝑥𝑗 .

The total variance of the above model is expressed as Eq. (26).

𝐷 = ∫
Ω𝑘

𝑓 2 (𝑥)𝑑𝑥− 𝑓 2
0 (26)

The variance of the sub-terms for each order in Eq. (27) is the partial 
variance for each order, and its s order partial variance can be expressed 
as

𝐷𝑖1 ,𝑖2 ,⋅⋅⋅𝑖𝑠
=

1

∫
0

⋅ ⋅ ⋅

1

∫
0

𝑓𝑖1 ,𝑖2 ,⋅⋅⋅,𝑖𝑠

(
𝑥𝑖1
, 𝑥𝑖2

, ⋅ ⋅ ⋅, 𝑥𝑖𝑠

)
𝑑𝑥𝑖1

𝑑𝑥𝑖2
⋅ ⋅ ⋅ 𝑑𝑥𝑖𝑠 (27)

From Eq. (20) and Eq. (27), the relationship between the total vari-

ance and the partial variance of each order can be expressed as Eq. (28).

𝐷 =
𝑘∑
𝑖=1

𝐷𝑖 +
∑

1≤𝑖<𝑗≤𝑗
𝐷𝑖𝑗 + ⋅ ⋅ ⋅+𝐷1,2,⋅⋅⋅,𝑘 (28)

The sensitivity coefficient is defined as the ratio of the deviation 
variance of each order 𝐷i1 ,𝑖2 ,⋅⋅⋅,𝑖𝑠 over the total variance 𝐷, expressed as 
Eq. (29).

𝑆𝑖1 ,𝑖2 ,⋅⋅⋅,𝑖𝑠
=
𝐷𝑖1 ,𝑖2 ,⋅⋅⋅,𝑖𝑠

𝐷
(29)

𝑆𝑖 is the first-order sensitivity coefficient of factor 𝑥𝑖, which repre-

sents the influence of independent condition parameters on the struc-

tural reliability; 𝑆𝑖𝑗 (𝑖 ≠ 𝑗) is the second-order sensitivity coefficient, 
which represents the cross-influence between two condition parame-

ters; 𝑆1,2,⋅⋅⋅,𝑘 is the 𝑘 order sensitivity, which represents the crossover 
influences between multi condition parameters.

Response surface function - Kriging model and coefficients of the 
target response function with respect to the design parameters can be 
determined by the above model. And the sensitivity of each parameter 
can be directly calculated by the integration.

The flow chart for solving response surface function - Kriging model 
is shown in Fig. 1, which include mainly three sessions, the construction 
of response surface function, the error distribution function fitting and 
the sensitivity analysis.

2. Structural reliability analysis of the port crane

2.1. Structural reliability analysis based on modified sensitivity model

The sensitivity analysis using Kriging modified response surface 
function sensitivity model can be implemented through the flow chart 
shown in Fig. 2.
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Fig. 1. Flow chart for solving RSF-Kriging model.

Fig. 2. Flow chart of sensitivity analysis of port crane.
The structural influencing parameters, the conventional value range 
of influencing parameters, the number of sample points and the variable 
space are determined, based on the working condition analysis. And 
the experimental scheme of coupled influencing parameters is obtained. 
Then the load value of each experimental group is solved through the 
multi-body dynamics simulation, and which further be imported into 
the structural statics analysis step to complete the static analysis. At 
4

the same time, the rationality of the experimental design is evaluated 
through the range verification. When the assessment is effective, the rel-

evant analysis data is imported into the revised sensitivity model based 
on Kriging modified response surface function, and the sensitivity of 
each influencing factor can be analyzed. Then the influencing parame-

ters that affect structural reliability and the cross influence degree can 
be quantitatively identified.
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Table 1. Design scheme of experimental parameters.

Trolley position 
F1

Forward speed 
F2/(m/s)

Lifting speed 
F3/(m/s)

Lifting load 
F4/(t)

Sea wind pressure 
F5/(N/m2)

1 1.26 0.36 0 500

2 1.33 0.42 10 600

3 1.50 0.48 20 700

4 1.67 0.54 30 800

5 1.84 0.60 40 900

6 2.00 0.67 44 1000

7 2.17 0.73 48 1100
Fig. 3. Structural diagram of port crane.

2.2. Structural numerical analysis

2.2.1. Multibody dynamics analysis

A typical port crane structure is selected to carry out the case study, 
in order to verify the feasibility and analytical accuracy of the proposed 
approach. Taking into account of the operating conditions for girder 
structure, the controllable influencing parameters mainly include [61]: 
trolley position F1, forward speed F2, lifting speed F3, lifting load F4, 
and sea wind pressure F5, as shown in Fig. 3. The influencing parame-

ters above are taken as the experimental parameters, and the maximum 
equivalent stress of the girder structure is selected as the experimental 
index.

According to the existing experimental research data, the common 
value of the controllable working parameters are obtained, shown in 
Table 1. Using the orthogonal experimental design [62], 49 sets data 
are determined through the combination of different experimental pa-

rameters.

Under the 49 sets of testing conditions, the multi-body dynamics 
simulation of the port crane is implemented by using ADAMS software. 
The reaction force components imposed on the girder structure in the 
Cartesian coordinates are extracted correspondingly, shown in Fig. 4.

2.2.2. Structural statics analysis

As shown in Fig. 5 (a), the obtained 49 sets of dynamic reaction 
forces are imposed on the port crane model, respectively. The material 
properties of the structure are listed in Table 2.

Among the results, the maximum stress and displacement are shown 
in Fig. 5(b) and Fig. 5(c).

The simulation and experimental results of 49 sets are shown in 
Fig. 6. The average numerical prediction is 93.47%.

2.2.3. Experimental range verification

In order to further judge the effectiveness of multi factor test design 
under different working conditions, range analysis model is used to ver-

ify it. When using 𝐿𝑛 (𝑆𝑟) to arrange the design scheme, the sum of the 
solution results of factor 𝑆 in column 𝑗 is 𝐾𝑠𝑗 , 𝐾𝑠𝑗 is the average value 
of 𝐾𝑠𝑗 , and 𝑅𝑗 is the range of column 𝑗 factor, that is, the difference be-
5

Fig. 4. Force components extracted by dynamic simulation.

Table 2. The material parameters of port crane.

Material E/GPa 𝜎y/GPa 𝜎b/GPa 𝜈

Q235A 206 235 375 0.3

tween the maximum and minimum value of the index value under each 
level of column 𝑗 factor.

𝑅𝑗 =max
{
𝐾1𝑗 ,𝐾2𝑗 , ...,𝐾𝑠𝑗

}
−min

{
𝐾1𝑗 ,𝐾2𝑗 , ...,𝐾𝑠𝑗

}
(30)

The larger 𝑅𝑗 is, the larger impact indicates the parameter. Through 
the range analysis of the experimental and numerical data shown in 
Fig. 6, the parameters range are shown in Table 3.

Taking the influences of the fatigue damage as the control target, 
the trolley position A shall take the 1st level; the lifting load D as the 
7th level, the sea wind pressure E as the 4th level, the forward speed B 
as the 3rd level, and the lifting speed C as 5th level, respectively. And 
the horizontal combination is A1D7E4B3C5. With the comparison of the

simulation data, it can be observed that the accuracy of the data is 
96.34%, which verifies the effectiveness of the multi factor experimen-

tal design.

2.2.4. Establishment of optimal agent model

According to the results from the multi factor experimental design, 
the polynomial response surface function between the structural re-

liability model of port crane and multiple influencing parameters is 
established, and the error of the proposed preliminary response surface 
function is fitted based on Kriging optimization algorithm, as shown in 
Fig. 7. And a modified response surface function - Kriging model is pro-

posed through the integration of the response surface function and its 
error Kriging fitting model.

Combined with multi factor test analysis, it is obvious that there 
is a coupling relationship between the influencing parameters of port 
crane structure. The error values between two influencing factors fitted 
based on Kriging optimization algorithm can be achieved, as shown in 
Fig. 7(a-j). The relative error between trolley position and lifting load 
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Fig. 5. Maximum stress and displacement case.

Table 3. Range analysis results of influencing parameters.

Factor Trolley position Forward speed Lifting speed Lifting load Sea wind pressure

A B C D E

𝐾1𝑗 129.22 96.50 96.94 84.58 95.76

𝐾2𝑗 120.41 99.72 99.20 90.64 100.07

𝐾3𝑗 106.39 101.77 101.55 95.55 97.28

𝐾4𝑗 91.48 96.89 96.73 101.18 101.65

𝐾5𝑗 82.65 100.50 101.65 105.45 98.96

𝐾6𝑗 80.80 100.22 97.74 107.47 101.06

𝐾7𝑗 83.07 98.43 100.20 109.15 99.23

𝑅j 48.42 5.27 4.92 24.57 5.89

Ranking 1 4 5 2 3
Fig. 6. Static simulation and test results.

is the largest, shown in Fig. 7(c), and the relative error between lifting 
speed and sea wind pressure is the smallest, shown in Fig. 7(i).

According to the above solution results, the contour map of the 
response surface function error between the two of the structural influ-
6

ence parameters of the port crane is obtained, as shown in Fig. 8. The 
relative error between trolley position and lifting load is the largest. It 
increases with the increase of lifting load, while it decreases with the 
increase of trolley position. The relative error between the lifting speed 
and the sea wind pressure is the smallest, and the degree of change is 
not so obvious.

3. Results and discussion

3.1. Local sensitivity analysis

The sensitivity value of different influencing parameters, shown in 
Table 4, is performed based on the proposed model in Section 2.

When single influencing factor is studied, as shown in Fig. 9, with 
the increase of level change, the sensitivity value is decreasing for trol-

ley position, increasing for lifting load, while almost unchanged for the 
forward speed, lifting speed and wind pressure.

In order to quantify the sensitivity distribution range of the influ-

encing parameters, the results as shown in Fig. 10 can be obtained after 
the data summarizing. As shown in Fig. 10, the sensitivity value range 
of the trolley position is the largest, and the sensitivity value range of 
the lifting speed is the smallest.
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Fig. 7. Response surface function error fitting three-dimensional diagram.
7
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Fig. 8. Response surface function error fitting contour diagram.
8
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Table 4. Sensitivity value of corresponding level of each influencing factor.

Different influencing 
parameters

Corresponding level

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

Trolley position 0.4545 0.4178 0.3816 0.3308 0.2429 0.1651 0.1804

Forward speed 0.1131 0.1146 0.115 0.1152 0.1157 0.1167 0.1177

Lifting speed 0.093 0.0936 0.0941 0.0947 0.0952 0.0956 0.0961

Lifting load 0.1204 0.1428 0.1732 0.2408 0.2981 0.3187 0.338

Sea wind pressure 0.1148 0.1174 0.1202 0.123 0.1258 0.1286 0.1314
Fig. 9. Sensitivity range of single factor.

Fig. 10. Sensitivity variation range of each factor.

Table 5. Global sensitivity value of influenc-

ing parameters.

Influence factor Global sensitivity value

Trolley position 0.5318

Forward speed 0.0501

Lifting speed 0.0494

Lifting load 0.3156

Sea wind pressure 0.0524

3.2. Global sensitivity analysis

The local sensitivity analysis is mainly to judge the influence of 
single factor, but it cannot effectively identify the specific influence de-

gree of coupling relationship among the influencing parameters [63]. 
So the global sensitivity analysis and the second-order solution result 
are needed. The global sensitivity coefficients as shown in Table 5 are 
obtained.

In addition, to further verify the sensitivity and accuracy of the pro-

posed model, a variety of different methods and agent models are used 
9

Fig. 11. Global sensitivity corresponding to different parameters.

Fig. 12. Different parameters correspond to the solution accuracy of different 
methods.

for calculation. The sensitivity value distribution obtained from differ-

ent models are shown in Fig. 11.

As shown in Fig. 11, the trolley position (F1) and lifting load (F4) ac-

count for a large proportion of the sensitivity, while the forward speed 
(F2), lifting speed (F3) and sea wind pressure (F5) are not sensitive to 
the structural reliability.

Then the above solution results can effectively identify the spe-

cific influence degree of different parameters. Through the comparative 
analysis of the sensitivity values obtained by different methods and the 
test values, the solution accuracy of different methods can be obtained, 
as shown in Fig. 12. The average accuracy of the proposed agent model 
is the highest, up to 95.91%.

To study the coupling relations among different parameters, the 
second-order sensitivity value is computed, as shown in Table 6. S𝑖𝑗
denotes the coupling of factor F𝑖 and F𝑗 (𝑖 ≠ 𝑗).

Fig. 13 presents the sensitivity value distribution of the coupling pa-

rameters. The coupling degree between the trolley position (F1) and the 
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Table 6. Second-order sensitivity of two factor 
coupling.

Coupling factor Second-order sensitivity value

F1&F2 → S12 0.0055

F1&F3 → S13 0.005

F1&F4 → S14 0.0499

F1&F5 → S15 0.0094

F2&F3 → S23 0.0036

F2&F4 → S24 0.0037

F2&F5 → S25 0.0037

F3&F4 → S34 0.0039

F3&F5 → S35 0.0031

F4&F5 → S45 0.0093

Fig. 13. Sensitivity distribution of coupling parameters.

lifting load (F4) is the most obvious, and the coupling degree between 
the lifting speed (F3) and the sea wind pressure (F5) is the least obvi-

ous. The analysis results show that the total order sensitivity index of 
the analysis object is produced by the interaction between the influenc-

ing parameters.

Considering the different degrees of influencing parameters affect-

ing port crane operation under the analysis of global sensitivity, the 
dangerous operation parameter range is defined as below:

𝜌min = −
|||| 𝑛− 𝑛min
𝑛max − 𝑛min

|||| ⋅
[
(1 − S𝑗 )(1 −

R𝑗∑5
𝑗=1 R𝑗

)
] 1
𝜆

𝛽𝜆
× 100%

𝜌max =
|||| 𝑛max − 𝑛
𝑛max − 𝑛min

|||| ⋅
[
(1 − S𝑗 )(1 −

R𝑗∑5
𝑗=1 R𝑗

)
] 1
𝜆

𝛽𝜆
× 100%

(31)

𝜌min and 𝜌max are the minimum and maximum parameter range of 
dangerous operation of influencing parameters, respectively. 𝑛 is the 
most dangerous value of influencing factor parameters, 𝑛min and 𝑛𝑚ax
are the minimum and maximum value of influencing factor parameters, 
respectively. S𝑗 is the sensitivity value of influencing parameters; 𝛽 is 
the number of influencing parameters; R𝑗 is the maximum change of 
the test index when the level of the j-th column factor changes; 𝜆 is the 
order number.

Fig. 14 shows the dangerous parameter ranges for different condi-

tion parameters. And Fig. 15 illustrates the dangerous range of opera-

tion parameters for different condition parameters.

According to the above solution method, the distribution of dan-

gerous operating parameters under five order sensitivity revision can 
be achieved, as shown in Fig. 16. With the increase of the order, the 
dangerous operating range is gradually reduced. Fig. 16 (a) is trolley 
10
Fig. 14. Dangerous working parameter interval of crane under first-order sen-

sitivity correction.

Fig. 15. Dangerous working parameter range of crane under second-order sen-

sitivity correction.

position, figure (b) is forward speed, figure (c) is lifting speed, figure 
(d) is lifting load and figure (e) is sea wind pressure. With the increase 
of solution order, the range of dangerous operation parameters is grad-

ually refined.

Further the distribution of dangerous operating parameters ampli-

tude under five order sensitivity revision can be achieved, as shown in 
Fig. 17. With the increase of the order, the dangerous operating range is 
gradually reduced. More and more refined operation parameter range 
is beneficial, from the perspective of protecting the operation safety for 
equipment structure.

4. Conclusion

This paper has developed a revised sensitivity model, which con-

sidered the local and global sensitivity analysis of multiple influencing 
parameters through the integration of the response surface function -
Kriging model and the Sobol sensitivity algorithm. Here not only the 
individual change but also the interaction of factors are investigated.

The proposed approach is illustrated through a practical case crane 
port with a high prediction accuracy 95.91%. The results reveal that 
the coupling effect between the trolley position (F1) and the lifting load 
(F4) is the highest, and the coupling effect between the lifting speed 
(F3) and the sea wind pressure (F5) is the weakest.



L. Zhu, J. Qiu, M. Chen et al. Heliyon 8 (2022) e10046

Fig. 16. Dangerous working range of different parameters under multi-order sensitivity correction.
Fig. 17. Dangerous operating parameter distribution amplitude under multi-

order sensitivity correction.

The distribution of operating parameters interval are achieved. With 
the increase of the order, the dangerous value range is gradually re-

duced. The revised model may provide a good mean for the selection of 
the dangerous operation parameter range of an industrial equipment.
11
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