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Abstract
Background  Deep grey matter (DGM) atrophy in multiple sclerosis (MS) and its relation to cognitive and clinical decline 
requires accurate measurements. MS pathology may deteriorate the performance of automated segmentation methods. Accu-
racy of DGM segmentation methods is compared between MS and controls, and the relation of performance with lesions 
and atrophy is studied.
Methods  On images of 21 MS subjects and 11 controls, three raters manually outlined caudate nucleus, putamen and thala-
mus; outlines were combined by majority voting. FSL-FIRST, FreeSurfer, Geodesic Information Flow and volBrain were 
evaluated. Performance was evaluated volumetrically (intra-class correlation coefficient (ICC)) and spatially (Dice similar-
ity coefficient (DSC)). Spearman’s correlations of DSC with global and local lesion volume, structure of interest volume 
(ROIV), and normalized brain volume (NBV) were assessed.
Results  ICC with manual volumes was mostly good and spatial agreement was high. MS exhibited significantly lower DSC 
than controls for thalamus and putamen. For some combinations of structure and method, DSC correlated negatively with 
lesion volume or positively with NBV or ROIV. Lesion-filling did not substantially change segmentations.
Conclusions  Automated methods have impaired performance in patients. Performance generally deteriorated with higher 
lesion volume and lower NBV and ROIV, suggesting that these may contribute to the impaired performance.

Keywords  Multiple sclerosis · Deep grey matter · Atrophy · Automated segmentation methods

Introduction

In multiple sclerosis (MS), atrophy of deep grey matter 
(DGM) structures like the caudate nucleus (caudate), puta-
men and thalamus is associated with cognitive and clinical 

impairment [1–4]. Accurate segmentations of these struc-
tures from structural MRI are key to understanding these 
atrophic processes and their role in MS.

However, it is unclear whether DGM segmentation 
using state-of-the-art automated methods is as accurate in 
MS cases as in healthy controls. Since studies have shown 
that white matter (WM) lesions and atrophy could affect 
measures such as whole-brain grey matter (GM) volume, 
it could be expected that such pathology also affects DGM 
segmentation [1, 5–9].

A direct comparison of automated methods to expert 
manual (reference) segmentation was performed by Dera-
khshan et al. (2010) in a small dataset containing 3 slices 
each of 3 MS patients [1]. Although that paper provided 
insights into the spatial overlap between automated and 
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manual segmentations, with 3 slices per subject no volu-
metric analysis was possible. Moreover, the small number 
of subjects did not allow any analysis of relations between 
segmentation performance and MS-related pathological 
changes.

Therefore, this study quantitatively investigated auto-
mated segmentation performance in a whole-brain dataset 
of 32 subjects including MS patients and healthy controls. 
Four publicly available segmentation method packages 
(FSL-FIRST [10], FreeSurfer [11], Geodesic Informa-
tion Flow (GIF) [12] and volBrain [13]) were evaluated 
in terms of volumetric and spatial agreement with manual 
segmentations created by combining manual outlines of 
three trained raters by majority voting. Moreover, the 
relation of segmentation accuracy with total and regional 
lesion load, whole-brain volume, and volume of the struc-
ture of interest was assessed to determine possible con-
founding disease relations factors.

Methods

Subjects

In total 21 MS patients and 11 healthy controls subjects 
were retrospectively selected from two of the multi-center 
studies of the MAGNIMS Study Group (www.magni​
ms.eu) [14, 15]. Demographic details of the subjects are 
listed in Table 1. Subjects had been recruited at nine Euro-
pean centers, see Supplementary data A for the centers.

The selection of the cases was based on maximizing the 
number of scanners and the number of secondary progres-
sive MS (SPMS) and primary progressive MS (PPMS) 
cases while considering the workload for the three raters. 
All patients and controls had given informed consent for 
the use of their brain MRI-scans for research within the 
original study.

Acquisition

An overview of acquisition parameters for each site is given 
in Supplementary Tables 1 and 2. Briefly, MRI data were 
obtained using magnets operating at 3 T for all cases with 
three vendors (Siemens, Philips and GE). One of the two 
following imaging protocols was used: (1) 3D T1‐weighted 
scan (different pulse sequences for different venders) and 
a dual-echo spin echo scan with both 2D T2-weighted and 
2D proton density (PD) weighted; or (2) 3D T1-weighted 
magnetization prepared rapid gradient echo (MPRAGE) 
scan and 2D fluid-attenuated inversion recovery (FLAIR) 
T2-weighted fast spin-echo sequence.

Manual segmentation of DGM structures

Manual segmentation of three DGM structures was per-
formed using the SPINE online environment for collabo-
rative research (https​://spine​virtu​allab​.org). The caudate 
nucleus, putamen and thalamus were all manually seg-
mented on the full 3D T1-weighted images in each subject 
by each rater. Four scans were outlined a second time by 
each rater to examine intra-rater variability. A summary of 
the segmentation protocol is added to the supplementary 
data (Supplementary Protocol 1).

The manual segmentations of the three raters were com-
bined into a reference using majority voting: i.e., a voxel was 
classified as part of a structure if at least 2 of the 3 raters 
assigned it to that structure.

Lesion segmentation

Lesion segmentation was also performed manually by one 
expert rater, on the FLAIR scan or on the PD scan. The 
lesion segmentation was performed using the Medical Image 
Processing, Analysis, and Visualization (MIPAV) software 
environment whereby only lesions of at least three voxels 
were included.

Lesion filling

Lesion-filling is a common pre-processing step in patient 
scans, in which the intensities of voxels identified as being 
part of WM lesions are replaced by intensities similar to 
normal-appearing white matter. In this study, lesion-filling 
was applied using two algorithms: lesion segmentation 
toolbox (LST-LF) [16], and LEAP [8], and both versions of 
lesion-filled images as well as native images were analyzed. 
The lesion masks were first co-registered from their original 
PD or FLAIR space to 3D-T1 space using FSL-FLIRT with 
tri-linear interpolation and a threshold of 0.5 because this 

Table 1   Demographics of the subjects

EDSS expended disability status scale, DD disease duration, std 
Standard deviation, HC healthy control, RR relapsing remitting, SP 
secondary progressive, PP primary progressive

Disease 
status

Number of 
cases (male/
female)

Average age 
in years ± std

Median 
EDSS score 
(range)

Aver-
age DD 
year ± std

HC 11 (3/8) 37.6 ± 8.2 n.a n.a
MS 21 (9/12) 43.2 ± 10.1 3.5 (6.0) 9.5 ± 6.9
RRMS 10 (4/6 39.8 ± 8.3 2.3 (2.5) 8.0 ± 9.8
SPMS 5 (3/2) 41.3 ± 8.9 4.0 (6.0) 11.0 ± 5.3
PPMS 6 (2/4) 49.4 ± 10.8 3.5 (4.5) 14.0 ± 4.0

http://www.magnims.eu
http://www.magnims.eu
https://spinevirtuallab.org
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was previously found to provide good results for whole-brain 
GM volume measurements [6]. The Supplementary data B 
provides a description of LST-LF and LEAP. In this study, 
lesion-filling was applied using two algorithms: lesion seg-
mentation toolbox (LST-LF) [16], and LEAP [8], and both 
versions of lesion-filled images as well as native images 
were analyzed. The lesion masks were first co-registered 
from their original PD or FLAIR space to 3D-T1 space using 
FSL-FLIRT with tri-linear interpolation and a threshold of 
0.5, based on literature [6]. Second, the lesion was filled 
on the 3D-T1 weighted image with the use of the lesion 
mask in 3D-T1 space. The Supplementary data B provides 
a description of the two used lesion filling methods (LST-LF 
and LEAP).

Automatic DGM segmentation method

Within this study four automatic DGM segmentation meth-
ods were assessed; FSL-FIRST (https​://fsl.fmrib​.ox.ac.uk/
fsl/fslwi​ki/FIRST​), FreeSurfer (https​://surfe​r.nmr.mgh.harva​
rd.edu), volBrain (https​://volBr​ain.upv.es) and GIF (https​://
nifty​web.cs.ucl.ac.uk).

FSL-FIRST, version 6.0.1, has previously been described 
by Patenaude et al. (2011). In short, FSL-FIRST finds the 
most plausible outline based on the observed intensities from 
the T1-weighted input image using shape and appearance 
models derived from a large training dataset. Surface meshes 
of the subcortical structures were converted to boundary cor-
rected voxelwise segmentations [10].

FreeSurfer, version 6.0.0. is described on the FreeSurfer-
Wiki page (https​://surfe​r.nmr.mgh.harva​rd.edu/fswik​i/). In 
short, labels are assigned to each voxel in the subcortical 
region (WM + subcortical GM). From these segmentations, 
the binary segmentations for the individual structure were 
extracted [11].

Geodesic Information Flow (GIF), versions V2.0, uses 
manually created atlases for segmentation of the input 

images. GIF captures the local variation in morphology and 
in standard space locations. With the use of an iterative geo-
desic minimization algorithm and the manual labels, more 
accurate segmentations are expected [12].

VolBrain, version 1.0 is an online pipeline for volumetric 
brain analysis The proposed pipeline is based on a library 
of manually labeled atlas cases to perform the segmenta-
tion process, including subcortical structure segmentation 
as proposed by Coupé et al. 2011 [13, 17].

Brain volume

The normalized brain volume (NBV) and brain volume (BV) 
were measured with SIENAX (part of FSL version 5.0) [18] 
on the lesion filled data. SIENAX is the cross-sectional pipe-
line of the SIENA method [19]. Based on voxel intensities it 
estimates partial volume fractions of GM, WM and cerebro-
spinal fluid (CSF) for each voxel. Volumes of GM and WM 
were added to obtain BV. SIENAX performs normalization 
of skull size to MNI space to obtain NBV.

Relation with MS pathology

The association of automatic segmentation performance, as 
measured by Dice similarity coefficient (DSC, see statistical 
analyses section), with multiple MS-related disease param-
eters, i.e. WM lesion load, regional lesion load, normalized 
brain volume (NBV) and DGM structure volume, was inves-
tigated. WM lesion load was determined from the manual 
lesion outlines. Regional lesion load was evaluated by meas-
uring the lesion load within a pre-defined distance from the 
DGM structure (see Fig. 1). Using the distance transform, 
the distance of each voxel to the reference of the structure 
in the specific subject under investigation was calculated. 
By thresholding of the subject- and structure-specific dis-
tance map and masking with the subject-specific WM mask 
obtained with FreeSurfer, for each case, a “surrounding 

Fig. 1   Method for lesion load calculation within a set border. a a dis-
tance field is created around DGM structure, in this case the caudate 
nucleus. b Distance is set around the DGM structure, seen in grey. c 
An overlay is created between the DGM border and the lesion mask 

in T1 space. In grey the lesion border is shown, in red the lesions 
without overlap with the border and in yellow the lesions with an 
overlap in the border

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST
https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
https://volBrain.upv.es
https://niftyweb.cs.ucl.ac.uk
https://niftyweb.cs.ucl.ac.uk
https://surfer.nmr.mgh.harvard.edu/fswiki/
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WM border” region at distances of 0–10 mm was defined. 
Region-specific lesion volumes were obtained by masking 
the WM lesion mask in 3D-T1 space with these WM sur-
rounding WM border.

Statistical analyses

Intra-rater agreement was measured between the first and 
second manual segmentation of the structures with the Dice 
similarity coefficient (DSC) [20]:

with A and B defined as the segmentations and where ∩ is the 
intersection of the two segmentations.

Volumetric analysis was done by comparing the volume 
of the reference with volumes of the automated segmenta-
tion. Moreover, the intra-class correlation coefficient (ICC) 
for the absolute agreement was calculated [21].

Spatial overlap between reference and the automated 
method was measured with DSC. Student’s t test was used 
to compare DSC with the reference between controls and 

DSC(A,B) =
2(A ∩ B)

A + B

patients. To assess the effect of lesion-filling, two-way 
ANOVA analysis was performed comparing DSC of native 
images separately with those from each of the two lesion-
filling methods (LEAP and LST).

The relation of disease pathology with spatial perfor-
mance was examined using Spearman’s correlation coef-
ficient, in which 0.0 <|r|< 0.2 was considered a weak cor-
relation, 0.2 ≤|r|< 0.5 a moderate correlation and |r|≥ 0.5 a 
strong correlation [22].

For all statistical analysis P-values < 0.05 were consid-
ered statistically significant.

Results

Manual segmentation

Volumes of the reference DGM structures are listed in 
Table 2. Intra-rater agreement was assessed through DSC 
means per structure for three cases (Table 3). Intra-rater 
DSC was consistently high, with DSC ≥ 0.85 for all the 
experts across all six DGM structures. No difference in inter-
rater DSC was observed between raters or between DGM 

Table 2   For all structures and hemispheres, first the mean volume ± standard deviation (std) in millimeter of reference and the four automated 
segmentation software

Second, the intra-class correlation coefficient (ICC) and mean dice similarity coefficient (DSC) ± std between the reference and the segmentation 
of the automated segmentation software. N = amount of subjects

Method Left Caudate Right Caudate

N = 32 Volume ICC DSC Volume ICC DSC

Reference 3.99 ± 0.64 3.98 ± 0.60
FSL-FIRST 3.46 ± 0.45 0.69 0.84 ± 0.04 3.53 ± 0.49 0.81 0.84 ± 0.04
FreeSurfer 3.55 ± 0.52 0.74 0.76 ± 0.09 3.75 ± 0.58 0.68 0.77 ± 0.09
GIF 3.52 ± 0.42 0.50 0.83 ± 0.04 3.73 ± 0.47 0.60 0.83 ± 0.05
volBrain 3.55 ± 0.55 0.85 0.83 ± 0.07 3.57 ± 0.54 0.86 0.83 ± 0.07

Left Putamen Right Thalamus

Volume ICC DSC Volume ICC DSC

Reference 4.79 ± 0.79 4.65 ± 0.73
FSL-FIRST 4.85 ± 0.73 0.94 0.88 ± 0.03 4.83 ± 0.79 0.93 0.87 ± 0.04
FreeSurfer 4.60 ± 0.88 0.94 0.81 ± 0.08 4.66 ± 0.88 0.96 0.81 ± 0.07
GIF 4.37 ± 0.70 0.98 0.80 ± 0.03 4.34 ± 0.65 0.92 0.81 ± 0.03
volBrain 4.09 ± 0.65 0.77 0.84 ± 0.06 4.04 ± 0.60 0.80 0.84 ± 0.06

Left Thalamus Right Thalamus

Volume ICC DSC Volume ICC DSC

Reference 6.83 ± 1.19 6.80 ± 1.21
FSL-FIRST 7.87 ± 1.01 0.76 0.82 ± 0.05 7.69 ± 0.98 0.79 0.83 ± 0.05
FreeSurfer 7.32 ± 1.10 0.80 0.77 ± 0.08 6.93 ± 1.01 0.95 0.78 ± 0.08
GIF 5.81 ± 0.76 0.72 0.77 ± 0.04 5.67 ± 0.68 0.64 0.76 ± 0.04
volBrain 5.47 ± 1.01 0.68 0.80 ± 0.07 5.39 ± 0.98 0.67 0.80 ± 0.07
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structures. The manual labels were combined by majority 
voting to create the reference segmentation. An evaluation at 
the voxel level showed similar numbers of voxels segmented 
by only a single rater in both MS and controls, indicating 
that there was no greater disagreement between the raters for 
MS patients compared to controls, see Table 4.  

Performance of automated methods

Volumetric agreement

DGM volumes of the reference and automatic segmentations 
were compared. In Fig. 2, an example T1 image is shown 
along with the corresponding segmentation of reference and 
automated method. Figure 3 and Table 2 show the volumet-
ric and spatial agreement between reference and automated 

method. Over the total dataset (n = 32) automated average 
volumes all differed from reference segmentations: caudate 
and putamen volumes were on average underestimated by all 
automated method, while thalamus volumes were overesti-
mated by FSL-FIRST and FreeSurfer and underestimated 
by GIF and volBrain (all p < 0.01). Despite these systematic 
differences, ICC for FSL-FIRST, FreeSurfer and volBrain 
varied between good (0.60 ≤ ICC < 0.75) and excellent 
(ICC ≥ 0.75) and for GIF from fair (0.40 ≤ ICC < 0.60) to 
excellent (Table 3). 

Spatial agreement

The DSC between reference and automatic segmentations 
were assessed. Figure 4, Table 5 show the DSC for both 
controls and patients. For thalamus, all the DSC were signifi-
cantly lower for patients compared to controls (p < 0.05). For 
putamen, this was the case for FreeSurfer and GIF, for both 
left and right hemisphere. The volumes were, however, dif-
ferent in all cases, mostly lower in MS. For the caudate, only 
a significant difference in DSC between controls and patients 
was found in the right hemisphere for FreeSurfer and Gif. In 
all cases, a large variation was observed for patients com-
pared to controls, see Fig. 4.

Relation with pathology

Higher WM lesion load was associated with a lower per-
formance of the automated method: total WM lesion load 

Table 3   For all structures and hemispheres the spatial overlap of intra rater agreement. Spatial overlap is shown with the mean dice similarity 
coefficient ± standard deviation and is calculated over four subjects

Rater Left caudate Right caudate Left putamen Right putamen Left thalamus Right thalamus

Expert 1 0.87 ± 0.031 0.87 ± 0.037 0.89 ± 0.047 0.91 ± 0.026 0.87 ± 0.035 0.88 ± 0.007
Expert 2 0.87 ± 0.051 0.88 ± 0.032 0.85 ± 0.039 0.88 ± 0.018 0.89 ± 0.031 0.88 ± 0.022
Expert 3 0.92 ± 0.004 0.92 ± 0.008 0.91 ± 0.022 0.92 ± 0.016 0.89 ± 0.022 0.91 ± 0.008

Table 4   The average (± standard deviation) amount of voxels that 
were selected by one rater for both healthy control groups (HC) as 
patients (MS) group

Volumes differed between the Reference and all four automated meth-
ods for all structures (all p  <  0.01), but there were no differences 
between the volumes for pairs of automated methods

Structure HC (n = 11) MS (n = 21)

Caudate 1356 ± 220 1413 ± 211
Putamen 1460 ± 290 1536 ± 436
Thalamus 2126 ± 443 2083 ± 526

Fig. 2   T1 weighted images and segmentation of majority voting, FSL-FIRST, Freesurfer, GIF and volBrain. Segmentations of both left and right 
hemisphere and for all three structures; caudate, putamen and thalamus
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was negatively correlated with DSC for all method (Table 6 
and Fig. 5). The correlation was moderate to strong for all 
structures and for all methods and both sides (|r|> 0.2), how-
ever, not all were significant, see Table 6. The regional WM 
lesion load, i.e., that located within 10 mm of the structure, 
was also negatively correlated with DSC (Table 6), however, 
these correlations ranged from weak to moderate for puta-
men and thalamus and for caudate from moderate too strong.

Both NBV and the volume of the structure of interest 
itself were positively correlated with DSC (Table 6). The 
correlations between NBV and DSC were often not signifi-
cant and ranged between weak and strong for the different 
structures, methods and sides. The correlations between the 
volume of the structure and DSC were often significant. 
Only the correlation of DSC and volume measured on left 
caudate with GIF and on left thalamus with FreeSurfer were 
not significant. The correlations ranged for the putamen, 
thalamus and right caudate from moderate too strong and 
for left thalamus from weak too strong.

To overcome the effect of lesions, two lesion-filling meth-
ods (LST-LF and LEAP) were used. Two-way ANOVA 
analysis per hemisphere, per method and DGM structure 
showed no significant difference in segmentation volume 
and DSC for both lesion filling methods compared to native 
(non-filled) patients images (see Supplementary Fig. 1 and 
Supplementary Table 5). Moreover, Student’s t test showed 
no significant difference in segmentation volume or DSC 
for either of the filling methods compared to native patient 
images (Table 7).

Discussion

Using a systematic and objective evaluation against a con-
sensus of manual segmentations in a multi-center dataset, 
this study provides evidence that automated DGM seg-
mentation methods performed worse on brain scans of MS 
patients than on those of healthy controls. Higher lesion 
volumes were associated with poorer DGM segmentation 
performance.

The accuracy of DGM segmentations is not an academic 
question but also has great clinical importance. Clini-
cal and cognitive deterioration in MS have been linked to 
brain and GM atrophy [5, 23, 24], and several treatments 
are now available that are able to reduce brain atrophy rates 
in MS [25–28]. Accurate measurement of the volumes of 
DGM structures in MS is becoming especially important, 
because of the strong relation of DGM atrophy with cog-
nitive impairment (1,5). This study reveals that existing 

DGM segmentation methods perform not as accurate in MS 
patients as in controls, as reflected by the lower DSC (over-
lap) scores. This implies that the results may incorporate 
increased random variability and bias when applied to MS 
cases and should be interpreted with great caution. In the 
future, methodological improvements are required to achieve 
better performance in MS.

Only a limited number of studies directly investigated the 
performance of DGM segmentation methods when applied 
to MS. Derakhshan et al. (2010) evaluated six automated 
segmentation method for GM atrophy on T1 MR images of 
three MS patients. They concluded that severe shortcomings 
are present in the segmentation of DGM structures [1]. The 
current study extends those findings substantially by inves-
tigating a multi-center dataset comprising 21 MS subjects 
and 11 controls using full three-dimensional manual seg-
mentations of three DGM structures bilaterally. Importantly, 
using this dataset we were able to objectively compare sev-
eral widely applied automated segmentation techniques in a 
multi-center setting. By selecting from previously acquired 
data a subset that maximized the number of scanners and the 
number of progressive patients, we were able to demonstrate 
quantitatively that this performance impairment exists in MS 
patients with a relatively long disease duration and/or pro-
gressive course. It would next be important to confirm this 
independently, as well as to investigate if the effect already 
occurs in early MS or CIS, given that DGM atrophy already 
occurs at those early stages [29].

To obtain insights that could aid in amending the impair-
ment of segmentation performance, we investigated several 
possible causes. One important candidate reason for the 
reduced accuracy of DGM segmentation in MS is formed 
by the focal WM lesions. Previous work on whole-brain 
total GM volume measurement has shown that MS WM 
lesions affect the GM volume measurement for a number 
of different packages [6–9, 30]. Similarly, the presence of 
local or overall brain atrophy or diffusions damage could 
affect the performance of segmentation methods [31]. The 
precise mechanism behind these deteriorating effects may 
differ between packages but could include effects on image 
intensity histograms, image registration and non-brain tissue 
removal [5]. Therefore, we investigated whether total lesion 
load, regional lesion load, NBV and the volume of the struc-
ture itself were related to the performance of the automated 
DGM segmentation method. The strongest association with 
poorer accuracy in MS cases compared to healthy controls 
was observed for total WM lesion load. Higher regional 
lesions load and lower total and local brain volumes were 
also associated with poorer performance, but less strongly. 
It should be mentioned that the small size of regional lesion 
load—which is confined to a narrow region around the 
structure of interest—and the relatively small number of 
MS patients may have hampered our ability to detect this 

Fig. 3   Majority voting segmentation volume and volume by auto-
matic segmentation are given for each deep gray matter structure and 
segmentation method. Volumes are given in milliliters

◂
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association. Moreover, we should mention that the relation 
between the volume of the structure and the performance 
of the automated DGM segmentation methods could also 
result from the artifact that the performance is dependent 
on the volume (greater volume could result in higher DSC). 
Therefore, the positive relationship should be studied in 
more detail for a better understanding of this effect.

While the accuracy of the segmentation was the most 
important focus of the present work, the accuracy of the 
resulting volumes may be considered at least equally impor-
tant from a clinical viewpoint. Here to, systematic differ-
ences were observed between the automated methods and 
the reference measurements. We also saw a difference 
between the volumes obtained from different methods for 
each structure separately. The automated methods underes-
timated volumes of caudate and putamen while the volume 
of the thalamus was generally overestimated. This difference 
could be related to the different anatomical definitions used 
in the manual standard and the automated methods. One spe-
cific example is the question of whether the lateral genicu-
late nuclei bodies should be included or excluded when seg-
menting the thalamus [32]. The differences for the structures 

could also be indirectly related to disease effects: due to the 
anatomical location of the structures, some brain regions are 
more prone to contain lesions than others or could be more 
affected by regional atrophy (both of which could impair 
DGM segmentation). A study with more patients and a more 
diverse lesion load could give more insight if the automated 
method performs differently on DGM structures. Moreover, 
a study on spatial patterns on the DGM structures could also 
give more insight into the performance of the methods.

It has been suggested that filling lesions increases the 
accuracy of total GM segmentation, and we also expected 
an improvement of DGM segmentation after lesions fill-
ing [6, 30, 33]. However, we measured no difference in the 
performance of the automated method compared to manual 
segmentation after filling lesions. This is similar to the 
results reported in 2014 by Popescu et al. for filling with 
FLS-lesion filling and LEAP and segmentation with FSL-
First for multiple DGM structures (e.g. thalamus, putamen, 
caudate nucleus, brainstem) (7). Therefore, it seems that 
lesion filling increases the accuracy of total GM segmenta-
tion, however, it does not increase the accuracy of DGM 
segmentation. Our hypothesis on this is that an underlying 

Table 5   For all structures and hemispheres the spatial overlap between the “Gold standard” and the automated segmentation methods for both 
control and patients group

The spatial overlap is given as the mean ± standard deviation of the Dice Similarity Coefficient. Values of patients are bold if they are signifi-
cantly diferent from those of controls (p-value < 0.05). N = amount of subjects

Method Caudate nucleus

Controls (N = 11) Patients (N = 21)

Left Right Left Right

FSL-FIRST 0.84 ± 0.44 0.87 ± 0.03 0.86 ± 0.24 0.86 ± 0.04
FreeSurfer 0.85 ± 0.02 0.85 ± 0.02 0.82 ± 0.06 0.83 ± 0.05
GIF 0.85 ± 0.02 0.86 ± 0.01 0.83 ± 0.05 0.83 ± 0.06
volBrain 0.88 ± 0.02 0.88 ± 0.02 0.87 ± 0.03 0.87 ± 0.02

Putamen

Controls (N = 11) Patients (N = 21)

Left Right Left Right

FSL-FIRST 0.89 ± 0.03 0.88 ± 0.04 0.88 ± 0.03 0.87 ± 0.04
FreeSurfer 0.89 ± 0.01 0.88 ± 0.01 0.85 ± 0.05 0.86 ± 0.03
GIF 0.82 ± 0.02 0.83 ± 0.01 0.80 ± 0.03 0.81 ± 0.02
volBrain 0.89 ± 0.01 0.89 ± 0.01 0.88 ± 0.02 0.89 ± 0.02

Thalamus

Controls (N = 11) Patients (N = 21)

Left Right Left Right

FSL-FIRST 0.86 ± 0.02 0.86 ± 0.03 0.81 ± 0.05 0.81 ± 0.06
FreeSurfer 0.85 ± 0.02 0.86 ± 0.02 0.83 ± 0.05 0.83 ± 0.05
GIF 0.80 ± 0.01 0.77 ± 0.02 0.77 ± 0.03 0.75 ± 0.04
volBrain 0.87 ± 0.01 0.87 ± 0.01 0.84 ± 0.05 0.84 ± 0.04
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Table 6   Spearman correlation between the dice similarity index and lesion load (LL), regional lesion load (RLL), normalized brain volume 
(NBV) and volume of region of interest (ROIV)

Correlation is measured for all structures, hemispheres and automated segmentation software. With α for * < 0.05 and ** < 0.01 for significant 
spearman correlation. N = amount of subjects

Method Left caudate Right caudate

N = 21 LL RLL NBV ROIV LL RLL NBV ROIV

FSL-FIRST − 0.31 − 0.52*  − 0.88 0.45*  − 0.33  − 0.41  0.36  0.53**
FreeSurfer − 0.60** − 0.49*  0.20 0.47** − 0.57**  − 0.62*  0.25  0.37* 
GIF − 0.68** − 0.57**  0.25 0.17  − 0.57**  − 0.63*  0.34  0.38* 
volBrain − 0.34 − 0.43  0.17 0.61** − 0.57**  − 0.58** 0.18  0.82**

Left Putamen Right Putamen

LL RLL NBV ROIV LL RLL NBV ROIV

FSL-FIRST − 0.56** − 0.30**  0.69** 0.72** − 0.69**  − 0.80** 0.43  0.62**
FreeSurfer − 0.26  − 0.45  0.08  0.74** − 0.56**  − 0.20 0.23  0.37**
GIF − 0.26  − 0.25  0.52  0.65** − 0.54* − 0.50 0.40  0.59**
volBrain − 0.39  − 0.09  0.43  0.56** − 0.34 − 0.68** 0.44* 0.65**

Left Thalamus Right Thalamus

LL RLL NBV ROIV LL RLL NBV ROIV

FSL-FIRST − 0.46*  − 0.16  0.36  0.54** − 0.52* − 0.27  0.29  0.42* 
FreeSurfer − 0.53*  − 0.30  0.30  0.26  − 0.49* − 0.38  0.46* 0.64* 
GIF − 0.42  − 0.43  0.18  0.52** − 0.23 − 0.29  0.18  0.44* 
volBrain − 0.30  − 0.16  0.45*  0.48** − 0.31 − 0.26  0.41  0.63**

Fig. 5   Dice similarity coefficients versus lesion load, represented per DGM structure and segmentation method and left (blue) and right (green) 
hemisphere
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factor such as regional atrophy or GM lesion load or a com-
bination of the pathology aspects (e.g. lesion load, atrophy, 
NAWM, diffusion damage) could be a cause. It should be 
mentioned that the lesions were manually outlined on either 
T2/PD images or FLAIR images, potentially leading to dif-
ferences in the lesion segmentations that could have affected 
our results. However, after dividing the group into two dif-
ferent sets the same effects were visible as in the complete 
group, though less significant, as expected for the smaller 
group sizes.

Moreover, we suggest a study on the effect of WM-GM 
contrast-to-noise ratio which might cause this effect. As MS 
pathology affects both the WM and GM, resulting in more 
variation in the WM and GM signal, it is possible that the 
WM-GM contrast ratio is changed. Ratio could be changed 
due to iron change or damage of WM and/or GM [34]. West-
lye et al. (2009) showed in Alzheimer’s Disease (AD) that 
cortical thickness in subjects with regionally reduced tissue 
contrast was overestimated compared to subjects without 
reduces tissue contrast. They indicate that the overestimation 
is related to alterations in myelin density and water com-
partment close to the WM. Moreover, adjusting for local 
variability in tissue contrast could correct the overestima-
tion [35]. Therefore, further studies should investigate this in 
MS and, moreover, other possible causes (e.g. diffuse signal 

changes, the effect of image processing) should be investi-
gated as well.

Furthermore, as it is important to have segmentation with 
accurate spatial level for correct localization and shape, 
future research could take are more in-depth approach 
regarding shape analysis e.g. quantitative vertex displace-
ment analysis [36]. This analysis enables the finding of 
vertices which have a significantly different shape from the 
reference and would be of added value in unraveling why 
some packages are outperforming others.

In conclusion, the performance of four state-of-the-art 
automated DGM segmentation method is impaired in MS, 
which warrants caution in interpreting DGM volumes both 
in group studies and in individual patients. Poorer accuracy 
was associated with higher WM lesion load and smaller 
global-local brain volumes, but the mechanism is not yet 
understood. Remarkably, the impaired performance was 
not improved by lesion-filling. More research is needed to 
understand the underlying causes of reduced accuracy and 
then eliminate their effects.
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