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Bradykinin postconditioning protects rat hippocampal 
neurons after restoration of spontaneous circulation 
following cardiac arrest via activation of the AMPK/
mTOR signaling pathway
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Abstract  
Bradykinin (BK) is an active component of the kallikrein-kinin system that has been shown to have cardioprotective and neuroprotective effects. We previously 
showed that BK postconditioning strongly protects rat hippocampal neurons upon restoration of spontaneous circulation (ROSC) after cardiac arrest. However, 
the precise mechanism underlying this process remains poorly understood. In this study, we treated a rat model of ROSC after cardiac arrest (induced by 
asphyxiation) with 150 μg/kg BK via intraperitoneal injection 48 hours after ROSC following cardiac arrest. We found that BK postconditioning effectively 
promoted the recovery of rat neurological function after ROSC following cardiac arrest, increased the amount of autophagosomes in the hippocampal tissue, 
inhibited neuronal cell apoptosis, up-regulated the expression of autophagy-related proteins LC3 and NBR1 and down-regulated p62, inhibited the expression 
of the brain injury marker S100β and apoptosis-related protein caspase-3, and affected the expression of adenosine monophosphate-activated protein kinase/
mechanistic target of rapamycin pathway-related proteins. Adenosine monophosphate-activated protein kinase inhibitor compound C clearly inhibited BK-
mediated activation of autophagy in rats after ROSC following cardiac arrest, which aggravated the injury caused by ROSC. The mechanistic target of rapamycin 
inhibitor rapamycin enhanced the protective effects of BK by stimulating autophagy. Our findings suggest that BK postconditioning protects against injury 
caused by ROSC through activating the adenosine monophosphate-activated protein kinase/mechanistic target of the rapamycin pathway. 
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Introduction 
Cardiac arrest (CA) is a critical clinical event in which the heart suddenly stops 
beating (Wallmuller et al., 2012; Perman et al., 2016; Radeschi et al., 2017). 
CA has a global annual incidence of 20–140/100,000 (Abelairas-Gómez et 
al., 2019; Andersen et al., 2019). Although advances in cardiopulmonary 
resuscitation (CPR) technology have enabled 25–40% of patients to recover 
after restoration of spontaneous circulation (ROSC), those who do survive can 
suffer substantial brain damage, including neuronal necrosis, apoptosis, and 
inflammation (Elmer and Callaway, 2017; Nolan, 2017; Twohig et al., 2019).

Bradykinin (BK) is an active component of the kallikrein-kinin system. It is also 
the most bioactive kinin in mammals and is primarily hydrolyzed into inactive 

substances by angiotensin-converting enzyme (also known as kininase II). BK 
is also an immune/inflammatory polypeptide that has a number of functions: 
it can cause pain, inflammation, vasodilation, and smooth muscle contraction 
and increase vascular permeability (Sharma and Al-Sherif, 2006; Paterson 
et al., 2013; Virych et al., 2017). Abnormal BK expression has been linked 
to a variety of cardiovascular diseases, including hypertension, myocardial 
infarction, and heart failure (Gunaruwan et al., 2009; Sharma, 2009; Qu et al., 
2015). Therefore, kinin receptor knockout, kinin receptor analogs, kallikrein 
analogs, and kallikrein transgenic methods play an essential role in the 
treatment of cardiovascular disease (Olson et al., 2009; Roman-Campos et al., 
2010). BK also has a protective effect on nerve function (Martins et al., 2012). 
A previous study found that supplementation with BK during cardioplegia 
improves the anti-apoptotic protein profile and reduces cardiomyocytic 
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apoptosis (Yeh et al., 2010). BK also leads to a remarkable reduction in 
ischemia-induced neuronal death and has neuroprotective effects against 
delayed neuronal death in hippocampal CA1 neurons (Danielisová et al., 
2009). Liu et al. (2016) confirmed that the BK B2 receptor (B2R) can mediate 
the mitogen-activated protein kinase kinase/extracellular signal-regulated 
kinase and adenosine monophosphate-activated protein kinase (AMPK) 
signaling pathways, as well as promote autophagy under cerebral ischemia 
stress. 

Postconditioning is defined as rapid, intermittent interruptions of blood flow 
during early reperfusion. Postconditioning relieves various manifestations 
of reperfusion injury, including endothelial activation and dysfunction, as 
well as infarction and apoptosis (Zhao and Vinten-Johansen, 2006; Gao et 
al., 2021; Goebel et al., 2021). Previous studies have demonstrated loss 
of cardioprotection after delayed postconditioning (Yang et al., 2004). The 
degree of protection conferred by postconditioning is comparable to that 
conferred by ischemic preconditioning (Zhao et al., 2003), and, in contrast to 
preconditioning, which requires previous knowledge of the ischemic event, 
postconditioning can be used in clinical settings at the onset of reperfusion, 
such as during angioplasty, cardiac surgery, and transplantation (Vinten-
Johansen et al., 2005). Previous research has suggested that ischemic 
postconditioning can promote autophagy, thereby protecting against 
ischemia/reperfusion injury, at least partly through activating the neuronal 
nitric oxide synthase/AMPK/mechanistic target of rapamycin (mTOR) pathway 
(Hao et al., 2017).

We previously found that BK postconditioning had a clear neuroprotective 
effect in the context of ROSC following CA in rats (Lin et al., 2015). However, 
the specific mechanism underlying this effect remains unclear. Therefore, the 
aim of this study was to explore the mechanism by which BK postconditioning 
exerts its neuroprotective effects. We hypothesized that BK postconditioning 
can reduce brain injury caused by ROSC after CA through activation of the 
AMPK/mTOR signaling pathway and regulation of autophagy- and apoptosis-
related protein expression. Compound C, an AMPK inhibitor, and rapamycin, 
which is an mTOR inhibitor, were used to investigate whether BK can reduce 
neuronal injury in rats after ROSC by activating the AMPK-mTOR signaling 
pathway.
 
Materials and Methods   
Ethics statement
This study was approved by and conducted in strict accordance with the 
guidelines of the Animal Care and Use Committee of Fujian Provincial Hospital 
of China. Ethical approval was granted on August 21, 2019.

Experimental animals
Forty-seven healthy, adult, male, 9- to 10-week-old, specific pathogen-free 
Sprague-Dawley rats weighing 350–400 g were purchased from Beijing Vital 
River Laboratory Animal Technology Co., Ltd., China [license No. SCXK (Jing) 
2016-0006]. They were randomly allocated into separate cages and allowed 
ad libitum access to food and water. They were allowed to acclimate to the 
laboratory environment (22–25˚C, 50–60% humidity, standard 12-hour/12-
hour light/dark cycle) for 5 days. The rats were fasted for 10 hours (water 
allowed) before the experiment. Female rats were not included to avoid 
interference from the estrous cycle (Singh et al., 2011). All experiments were 
designed and reported according to the Animal Research: Reporting of In Vivo 
Experiments (ARRIVE) guidelines (Percie du Sert et al., 2020). 

Animal grouping 
The rats were randomly allocated into five groups (n = 8 rats/group). After 
anesthetization via intraperitoneal (IP) injection of sodium pentobarbital (45 
mg/kg), the rats underwent a series of invasive procedures, including tracheal 
intubation and femoral artery catheterization. For the sham operation group 
(Sham), physiological saline (150 μg/kg) was administered via IP injection 
48 hours after the invasive procedures, and no other intervention was 
performed. Rats subjected to CA and successful CPR were randomly assigned 
to one of the following groups: ii) ROSC group, IP injection of physiological 
saline (150 μg/kg) 48 hours after ROSC; iii) BK group, IP injection of BK (150 
μg/kg; Cat# 193526; EMD Millipore) 48 hours after ROSC; iv) compound C 
(CP) + BK group, IP injection of CP (250 μg/kg; Cat# CSN13424; CSNpharm, 
Inc., Arlington Heights, IL, USA) 30 minutes before asphyxia-induced CA; and 
v) rapamycin (Ra) + BK group, IP injection of Ra (1 mg/kg; an effective and 
specific mTOR inhibitor; Cat# 553211; EMD Millipore) 30 minutes before 
asphyxia-induced CA. BK (150 μg/kg) was administered by IP injection 48 
hours after ROSC in the CP + BK and Ra + BK groups. 

Animal modeling
Cardiac arrest
CA was induced by asphyxiation, as described previously (Lee et al., 2019; Lu 
et al., 2020). After anesthetization via IP injection of sodium pentobarbital 
(45 mg/kg; Cat# P3761; EMD Millipore, Burlington, MA, USA), the rats were 
placed on the operating table in a supine position. The skin of the neck, chest, 
and groin area was sterilized and prepared for further steps. The head end of 
the table was tilted 30° from the horizontal plane. A bright flashlight was used 
to penetrate through the prepared area of skin on the neck. The tongue was 
lifted with gauze in the left hand, and the endotracheal intubation catheter 
inserted with a needle core was held in the right hand. The catheter was 
inserted into the trachea, then the needle core was withdrawn quickly, and 
the catheter was secured to the rat mandible with a suture needle (Additional 

Figure 1A). The left femoral artery was separated, the blood flow was blocked 
with ophthalmic forceps, and the distal end was ligated. A small incision was 
made in the proximal end with ophthalmic scissors, and a PE50 heparinized 
tube (Becton Dickinson Co., Franklin Lakes, NJ, USA) was inserted at a depth 
of 3–4 cm (Additional Figure 1B). The end of the PE50 tube was connected 
to an arterial pressure measuring device to continuously monitor mean 
arterial pressure. The electrodes were placed on the upper and lower limbs 
to continuously monitor electrocardiogram (ECG) changes (lead II) (BL-420S 
biological function experimental system, Chengdu Techman Software Co., Ltd., 
Sichuan, China). Once the rat was awake, the baseline of each physiological 
parameter was recorded. Rocuronium (0.1 mL/100 g; Cat# Y0000527; EMD 
Millipore) was injected into a three-way valve, and the tracheal intubation 
site was blocked with a syringe. The criteria for inducing CA were as follows 
(Lin et al., 2015, 2020): i) the mean blood pressure decreased rapidly to < 20 
mmHg after rocuronium injection; ii) the arterial pulse waveform disappeared 
on blood pressure monitoring; and iii) the ECG waveform showed ventricular 
fibrillation or pulseless electrical activity on ECG monitoring.

For the rats in the Sham group, after anesthesia, they underwent a series 
of invasive procedures, including tracheal intubation and femoral artery 
catheterization, and no other intervention was performed. 

Cardiopulmonary resuscitation 
The rat limbs and head were fixed in position, and the chest was fully exposed. 
The lower part of the sternum was marked as the compression site with a 
marker. The syringe was removed 6 minutes after CA. Pure oxygen mechanical 
ventilation (respiratory rate: 100 times/min, tidal volume: 0.6 mL/100 g, 
inhalation/exhalation ratio: 1:1) was administered. Hands-only external chest 
compressions were performed at 200 times/min. The compression depth was 
1/3 of the anteroposterior chest diameter. A total of 0.1 mL epinephrine (Cat# 
E4642; EMD Millipore) was administered 2 minutes after the compression. 
Indicators for ROSC (He et al., 2011; Lin et al., 2020) included recovery of 
supraventricular heart rhythm and mean arterial pressure > 60 mmHg, which 
was maintained for > 10 minutes. The rats were not anesthetized during CPR.

Management of rats with successful resuscitation
A total of 32 rats (~80%) were successfully resuscitated. Mechanical 
ventilation was maintained for 2 hours. The ECG and mean arterial pressure 
measurements were continued for 1 hour. All catheters were removed under 
anesthesia. Then, the skin was sutured and sterilized with iodophor (Cat# 
1234; Shangqiu Huachen Trading Co., Ltd., Zhengzhou, Henan Province, 
China), and the rats were given an IP injection of penicillin (100,000 units; 
Cat# P0389; EMD Millipore) each day for 3 days. After 3 days of observation, 
the rats were scored for neurological function using the neurological deficit 
scale (NDS) by two observers (YJL and ZG) who were blinded to the animal 
grouping; the scores from the two assessors were averaged. The NDS, 
which assesses seven main parameters (general behavior, brainstem reflex, 
movement, sensory, motor, behavior, and seizures) is widely used to evaluate 
the neurological function of rats after ROSC. On a scale of 0 to 80, 0 indicates 
brain death, while 80 indicates no neurological deficit (Additional Table 1) 
(Geocadin et al., 2000; Jia et al., 2006).

Detection of neuronal autophagosomes by transmission electron 
microscopy
Three days after ROSC, the rats were anesthetized by IP injection of 1% 
sodium pentobarbital (45 mg/kg), followed by left ventricular perfusion and 
fixation with physiological saline and paraformaldehyde, after which the brain 
was removed. The hippocampal tissue was isolated and fixed for 2 hours at 
4˚C in 2.5% glutaraldehyde (Cat# G5882; EMD Millipore). Then, the tissue 
was washed with precooled phosphate buffer saline (PBS) (three times), and 
dehydrated in 50%, 70%, 80%, 90%, and 100% ethanol for 10 minutes each, 
and in acetone for 10 minutes. The dehydrated tissues were incubated in 
pure embedding solution overnight at room temperature, then placed in 
embedding molds and heated in an oven at 60˚C to solidify the embedding 
agent. The paraffin-embedded tissues were sliced with an ultramicrotome 
(UC7; Leica Microsystems, Inc., Wetzlar, Germany) to a thickness of 70–100 
nm. The sections were double-stained for 20 minutes at room temperature 
with 2% uranyl acetate (Cat# SPI-02624; Hede Biotechnology Co., Ltd., 
Guangdong, China), then for 5 minutes with lead citrate (Cat# HD17800; 
Hede Biotechnology Co., Ltd.). Images of the neuronal autophagosomes were 
captured using a transmission electron microscope (Tecnai Spirit T12; FEI; 
Thermo Fisher Scientific, Inc.).

Apoptosis detection by terminal deoxynucleotidyl transferase dUTP nick 
end-labeling staining
The hippocampal tissue sections were heated at 65˚C for 2 hours. Then, the 
tissue sections were dewaxed, hydrated, and placed in xylene for 10 minutes 
at room temperature. The xylene was then replaced with fresh xylene, and 
the sections were allowed to incubate for another 10 minutes. Subsequently, 
the sections were placed in 100% (twice), 95%, and 80% ethanol, followed 
by purified water, for 5 minutes each, and then into a wet box, to which a 
proteinase K working solution (50 μg/mL per sample) was added, and the 
samples were allowed to react at 37˚C for 30 minutes. Then, they were 
thoroughly washed for 5 minutes with PBS (three times), and the excess PBS 
was absorbed with absorbent paper. Each slide was treated with a sufficient 
amount of terminal deoxynucleotidyl transferase dUTP nick-end labeling 
(TUNEL) detection solution (Cat# C1088; Beyotime Institute of Biotechnology, 
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Shanghai, China) and incubated in the dark at 45˚C for 2 hours. The excess 
solution was washed off for 5 minutes with PBS (three times). 4′,6-Diamidino-
2-phenylindole (Cat# abs47047616; Absin Bioscience Inc., Shanghai, China) 
was added dropwise, and the slides were incubated in the dark at room 
temperature for 5 minutes. Nuclear staining was performed, and excess 
4′,6-diamidino-2-phenylindole was rinsed off with PBS. The remaining liquid 
on the glass slide was wicked off with absorbent paper. Drops of anti-fade 
fluorescence mounting medium were applied. The images were examined 
and captured using a fluorescence microscope (CKX53; Olympus Corporation, 
Shinjuku, Tokyo, Japan) at 400× magnification. The TUNEL-positive cells 
in each group were counted with Image-Pro Plus software (v5.1; Media 
Cybernetics, Inc., Rockville, MD, USA). In total, three fields of view per section 
(at least three sections/rat) were randomly selected for quantification, before 
the mean value was taken.

Immunohistochemistry
The AMPK/mTOR signaling pathway, autophagy-related proteins, and brain 
injury marker expression were detected by immunohistochemistry. The 
prepared hippocampal tissue sections were dewaxed, hydrated, and placed 
in 100% (twice), 95%, and 80% ethanol, followed by purified water for 5 
minutes, with each step carried out at room temperature. Citrate buffer 
(Cat# C1010; Beijing Solarbio Science & Technology Co., Ltd., Beijing, China) 
was added for antigen retrieval. After washing with PBS (three times), 5% 
bovine serum albumin (Cat# A8020; Beijing Solarbio Science & Technology 
Co., Ltd.) was added, and blocking was performed at 37˚C for 30 minutes. 
The diluted primary antibodies [S100 calcium-binding protein B (S100β, a 
brain injury marker; 1:100; rabbit; Cat# ab52642, RRID: AB_882426; Abcam 
Co., Cambridge, MA, USA), phosphorylated mTOR (p-mTOR; 1:100; rabbit; 
Cat# ab109268, RRID: AB_10888105; Abcam Co.), neighbor of breast cancer 
1 gene (NBR1; an autophagy-related protein; 1:100; rabbit; Cat# DF12049, 
RRID: AB_2844854; Abcam Co.), microtubule-associated protein 1 light chain 
3 (LC3) I/II (an autophagy-related protein; 1:100; rabbit; Cat# AF5402, RRID: 
AB_2837886; Affinity Biosciences, Cincinnati, OH, USA), phosphorylated 
AMPK (p-AMPK; 1:100; rabbit; Cat# AF3423, RRID: AB_2834865; Affinity 
Biosciences), and p62 (an autophagy-related protein; 1:100; rabbit; Cat# 
18420-1-AP, RRID: AB_10694431; ProteinTech Group, Inc., Rosemont, IL, USA)] 
were then added, and the sections were incubated in a wet box overnight at 
4˚C. Subsequently, the wet box was allowed to sit at room temperature for 
45 minutes. The slides were then soaked in PBS for 5 minutes (three times). 
Incubation with goat anti-rabbit IgG heavy and light chain (H + L) horseradish 
peroxidase-conjugated (1:100; Cat# ZB-2301, RRID: AB_2747412; ZSGB-BIO; 
OriGene Technologies, Inc., Beijing, China) was performed at 37˚C for 30 
minutes. Then, the sections were thoroughly rinsed with PBS, the color was 
developed with 3,3′-diaminobenzidine (Cat# CW0125; CoWin Biosciences, 
Beijing, China) for 7 minutes at room temperature, and the slides were then 
washed with PBS for 1 minute and counterstained with hematoxylin (Cat# 
AR1180-1; Wuhan Boster Biological Technology, Ltd., Wuhan, China) for 3 
minutes at room temperature. Subsequently, hydrochloric acid differentiation 
and bluing were performed. Then, the slides were rinsed for 1 minute 
with tap water, dehydrated, cleared, mounted, and examined under a light 
microscope (CX41; Olympus Corporation, Tokyo, Japan). A total of four fields 
of view at 400× magnification were analyzed. Images were captured, the 
JEOR 801D morphological image analysis system software (v6.0; Nanjing Jieda 
Technology Co., Ltd., Nanjing, China) was used to determine the integrated 
optical density (IOD) of three images, and the mean value was taken.

Western blot assay
The AMPK/mTOR signaling pathway and apoptosis-related protein expression 
were detected by Western blot assay. The rat hippocampal tissue (0.2 g) 
was isolated and ground into powder in liquid nitrogen. The powder was 
then ground further with the addition of radioimmunoprecipitation assay 
lysis buffer (Cat# C1053; Applygen Technologies, Inc., Beijing, China). Next, 
the tissue homogenate was transferred to Eppendorf tubes and kept on 
ice for 30 minutes. After centrifugation at 13,523 × g for 15 minutes at 4˚C, 
the supernatant was carefully aspirated to obtain total protein. The protein 
concentration was quantified using a bicinchoninic acid kit (Cat# CW0014S; 
CoWin Biosciences). Total protein was denatured at 100˚C for 5 minutes, 
loaded (40 μg/lane), and subjected to sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis for 2 hours. This was followed by transfer to a PVDF 
membrane at 300 mA constant current for 80 minutes. Incubation with the 
primary antibodies (p-AMPK [1:1000; rabbit; Cat# 2535, RRID: AB_331250; 
Cell Signaling Technology, Inc., Danvers, MA, USA], p-mTOR [1:1000; rabbit; 
Cat# ab109268, RRID: AB_10888105; Abcam Co.], caspase-3 [an apoptosis-
related protein; 1:500; rabbit; Cat# ab44976, RRID: AB_868674; Abcam 
Co.], and glyceraldehyde 3-phosphate dehydrogenase [1:2000; mouse; 
Cat# TA-08, RRID: AB_2747414; ZSGB-BIO; OriGene Technologies, Inc.]) 
was carried out at 4˚C overnight, followed by incubation with goat anti-
mouse IgG (H + L) horseradish peroxidase-conjugated secondary antibody 
(for internal reference; 1:2000; Cat# ZB-2305, RRID: AB_2747415; ZSGB-
BIO; OriGene Technologies, Inc.) and goat anti-rabbit IgG (H + L) horseradish 
peroxidase-conjugated secondary antibody (for target protein; 1:2000; 
Cat# ZB-2301, RRID: AB_2747412; ZSGB-BIO; OriGene Technologies, Inc.) at 
room temperature for 2 hours. Enhanced chemiluminescence reagent (Cat# 
RJ239676; Thermo Fisher Scientific, Inc., Waltham, MA, USA) was added 
dropwise onto the membrane, which was then exposed using a gel imaging 
system (ChemiDocTMXRS+; Bio-Rad Laboratories (Shanghai) Co., Ltd., Shanghai, 
China). The IOD of each band was determined using Image-Pro Plus software. 
Relative protein expression was normalized to glyceraldehyde 3-phosphate 
dehydrogenase. 

Statistical analysis
The sample size was determined based on the results from our previous 
study (Lin et al., 2015), in which eight rats per group showed that BK 
postconditioning could improve neurological function, suggesting that a 
similar sample size would be appropriate for this study. All assessments were 
made by observers blinded to the grouping. Graphpad Prism 7 (GraphPad 
Software, San Diego, CA, USA) was used for statistical analysis and drawing 
the graphs. All experiments were repeated three times, and the quantitative 
results are expressed as mean ± standard deviation (SD). One-way analysis 
of variance (ANOVA) was performed for quantitative numerical comparisons 
among multiple groups, and Tukey’s post hoc method was used for pairwise 
comparisons. The significant difference level was α = 0.05. 

Results
Bradykinin postconditioning increases the NDS of ROSC rats
Behavioural assessment was performed to determine the effect of BK 
postconditioning on ROSC rats. As shown in Figure 1, the rats in the ROSC 
group had a significant decrease in NDS compared with those in the Sham 
group (P < 0.01). The rats in the BK group showed a significant increase in 
NDS compared with that in the ROSC group (P < 0.05). The rats in the CP + BK 
group demonstrated a significant decrease in NDS (P < 0.05), while the rats in 
the Ra + BK group showed a significant increase in NDS compared with that in 
the BK group (P < 0.05). These findings suggest that BK postconditioning can 
improve the NDS of ROSC rats.
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Figure 1 ｜ Effect of bradykinin postconditioning on the NDS score of rats with 
restoration of spontaneous circulation. 
A higher score indicates better neurological function, with a score of 80 indicating no 
neurological deficit. All data are presented as the mean ± SD (n = 8). **P < 0.01, vs. Sham 
group; #P < 0.05, vs. ROSC group; †P < 0.05, vs. BK group (one-way analysis of variance 
followed by Tukey’s post hoc test). BK: Bradykinin; CP: compound C; NDS: neurological 
deficit scale; Ra: rapamycin; ROSC: restoration of spontaneous circulation; Sham: sham 
operation.

Bradykinin postconditioning increases the amount of autophagosomes in 
the hippocampus of ROSC rats
The amount of autophagosomes in the hippocampus was evaluated to 
determine the effect of BK postconditioning on neuronal autophagy in ROSC 
rats. As indicated by the transmission electron microscopy images shown in 
Figure 2, the ROSC group exhibited an increase in the amount of neuronal 
autophagosomes compared with the Sham group. The BK group exhibited 
an increase in the amount of neuronal autophagosomes compared with the 
ROSC group. The amount of neuronal autophagosomes in the CP + BK group 
remained unchanged, whereas the amount of neuronal autophagosomes in 
the Ra + BK group was increased compared with that seen in the BK group. 
These findings suggest that BK postconditioning can promote neuronal 
autophagy in ROSC rats.

Sham ROSC BK CP+BK Ra+BK

Figure 2 ｜ Effect of bradykinin postconditioning on autophagosomes in the 
hippocampi of rats with restoration of spontaneous circulation, as detected by 
transmission electron microscopy.
Compared with the Sham group, the amount of neuronal autophagosomes in the 
ROSC group was increased. Compared with the ROSC group, the amount of neuronal 
autophagosomes in the BK group was increased. Compared with the BK group, the 
amount of neuronal autophagosomes in the CP + BK group remained unchanged, 
whereas in the Ra + BK group it was increased. Autophagosomes are indicated by 
red arrows. Scale bars: 1 μm. BK: Bradykinin; CP: compound C; Ra: rapamycin; ROSC: 
restoration of spontaneous circulation; Sham: sham operation.

Bradykinin postconditioning decreases apoptosis in the hippocampus of 
ROSC rats
The number of hippocampal TUNEL-positive cells was calculated to determine 
the effects of BK postconditioning on apoptosis in ROSC rats. As the TUNEL 
staining showed, the ROSC group exhibited significantly more hippocampal 
TUNEL-positive cells compared with the Sham group (P < 0.01). The BK group 
demonstrated a significant decrease in the number of hippocampal TUNEL-
positive cells compared with the ROSC group (P < 0.01). The CP + BK group 
showed a significant increase in the number of hippocampal TUNEL-positive 
cells compared with the BK group (P < 0.01), while the Ra + BK group showed 
a significant decrease in the number of hippocampal TUNEL-positive cells 
compared with the BK group (P < 0.01; Figure 3). These findings suggest that 
BK postconditioning can reduce neuronal apoptosis in ROSC rats.
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Bradykinin postconditioning affects the AMPK/mTOR signaling pathway, 
autophagy- and apoptosis-related proteins, and brain injury marker 
expression in the hippocampus of ROSC rats
Immunohistochemistry
The p-AMPK, p-mTOR, NBR1, p-62, LC3 and S100β immunopositivity was 
measured to determine the effect of BK postconditioning on the AMPK/
mTOR signaling pathway, autophagy-related proteins, and brain injury marker 
expression in ROSC rats. As shown in Figure 4, the rats in the ROSC group 
showed a significant decrease in p-mTOR and p62 immunopositivity (both P 
< 0.01), a significant increase in S100β (P < 0.01), p-AMPK (P < 0.05), and LC3 
(P < 0.01) immunopositivity, and no change in NBR1 immunopositivity (P = 
0.192) compared with the Sham group. The BK group exhibited a significant 
decrease in p-mTOR, p62, and S100β immunopositivity (all P < 0.01), as well 
as a significant increase in p-AMPK (P < 0.05), NBR1 (P < 0.01), and LC3 (P < 
0.01) immunopositivity compared with the ROSC group. The CP + BK group 
showed a significant decrease in LC3 (P < 0.01), p-AMPK (P < 0.01), and NBR1 
(P < 0.05) immunopositivity and a significant increase in S100β, p62, and 
p-mTOR immunopositivity (all P < 0.01), while the Ra + BK group exhibited a 
significant increase in LC3 (P < 0.01), p-AMPK (P < 0.01), and NBR1 (P < 0.05) 
immunopositivity and a significant decrease in S100β, p62 (both P < 0.01) 
and p-mTOR (P < 0.05) immunopositivity compared with the BK group. These 
findings suggest that BK postconditioning can inhibit S100β expression in 
ROSC rat neurons, reduce nerve damage, activate the AMPK/mTOR signaling 
pathway, inhibit p62 expression, and increase the autophagy-related proteins 
NBR1 and LC3 expression to promote autophagy.

Western blot assay
The p-AMPK, p-mTOR and caspase-3 expression was measured to determine 
the effect of BK postconditioning on the AMPK/mTOR signaling pathway, 
and apoptosis-related protein expression in ROSC rats. As shown in Figure 
5, the ROSC group exhibited a significant increase in p-AMPK and caspase-3 
expression (both P < 0.01) and a significant decrease in p-mTOR expression 
(P < 0.01) compared with the Sham group. The BK group demonstrated 
a significant increase in p-AMPK expression (P < 0.01) and a significant 
decrease in p-mTOR and caspase-3 expression (both P < 0.01) compared 
with the ROSC group. The CP + BK group exhibited a significant decrease 
in p-AMPK expression (P < 0.01) and a significant increase in p-mTOR and 
caspase-3 expression (both P < 0.01), while the Ra + BK group exhibited a 
significant increase in p-AMPK and caspase-3 expression (both P < 0.01) and 
no significant changes in p-mTOR expression (P = 0.26) compared with the BK 
group. These findings suggest that BK postconditioning activates the AMPK/
mTOR signaling pathway and inhibits caspase-3 expression. 

Discussion
The kallikrein-kinin system mainly comprises the kinin, kininogen, kallikrein, 
and kinin-degrading enzymes. In mammals, it primarily includes BK, 
kallidin, and methionyl kallidin (Campbell, 2001). Kinins are a family of 9- 
to 11-amino-acid peptides that have similar biological functions (Talbot et 
al., 2013). The primary role of kininase is kinin degradation. There are two 
main groups of kininases: kininase I and kininase II. Kininase II can degrade 
BK, which produces inactive substances and causes BK to lose its biological 
function, whereas the angiotensin-converting enzyme inhibitor decreases 
BK degradation and enables it to accumulate locally to exert its biological 
effects (Kuoppala et al., 2000; Sharma and Al-Sherif, 2006; Hanif et al., 2010). 
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was significantly decreased. Scale bars: 50 μm. All data are presented as the mean ± SD 
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Figure 5 ｜ Effect of bradykinin postconditioning on the AMPK/mTOR signaling 
pathway and apoptosis-related protein expression in rats with restoration of 
spontaneous circulation, as detected by western blot.  
Original images of bands were shown in Additional Figure 2. All data are presented as the 
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The retention time of BK in the body is short, usually only a few minutes, 
and its half-life in plasma is approximately 30 seconds (Cyr et al., 2001; Bork 
et al., 2007). Previous studies found that BK exerts its biological function 
through the B1 receptor and B2R, particularly B2R, which plays a vital role in 
the cardiovascular system (Regoli et al., 1994; Cloutier et al., 2004; Dagher 
et al., 2019). It most likely affects cardiomyocytes by stimulating B2R on the 
vascular endothelial cell membrane to produce nitric oxide active substance; 
alternatively, it may directly bind B2R on cardiomyocytes to enhance the 
production of the second messenger inositol 1,4,5-trisphosphate. Following 
a series of signaling steps, nitric oxide is produced, which ultimately protects 
cardiomyocytes from oxidative stress-induced senescence (Dong et al., 
2013; Fu et al., 2015). BK is related to the potential of cardiac endothelial 
angiogenesis (Nurmi et al., 2012). Therefore, BK plays an important role 
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in cardiovascular disease, for example by reducing myocardial ischemia-
reperfusion injury, affecting cardiac remodeling, delaying heart failure, and 
delaying vascular endothelial senescence (Yeh et al., 2010).

In the current study, we evaluated the neuroprotective effect of BK 
postconditioning on neurons in a rat model of ROSC after CA. Behavioral 
assessment showed that BK postconditioning improved NDS in ROSC rats. 
The TUNEL results demonstrated that BK postconditioning reduced neuronal 
apoptosis in ROSC rats. Immunohistochemistry analysis showed that BK 
postconditioning inhibited the expression of S100β, which is a nerve tissue 
protein (He et al., 2018), in the neurons of ROSC rats. When brain tissue 
is damaged, S100β levels increase in the cerebrospinal fluid; thus, S100β 
is a marker of blood-cerebrospinal fluid barrier injury. When its levels 
increase, this indicates that severe brain injury may have occurred (Hafez 
and El-Sarnagawy, 2020). The findings from this study suggest that BK 
postconditioning can significantly reduce neuronal injury in ROSC rats.

ROSC after CPR can cause ischemia-reperfusion injury to the brain. Cerebral 
ischemia directly injures neurons, and reperfusion also induces neuronal 
damage. The pathophysiological mechanism is primarily associated with 
signaling pathway activation that leads to the formation of oxygen free 
radicals, excitotoxic injury induced by glutamate release, calcium homeostasis 
imbalance, and cell death (Hopper et al., 2014; Videla-Richardson et al., 2019; 
Wang et al., 2019). Neurological dysfunction can occur if a large number of 
neurons are damaged. In severe cases, coma, persistent vegetative state, and 
even death may occur (Elmer and Callaway, 2017). Apoptosis, necrosis, and 
autophagy are the histological manifestations of neuronal death, and they 
interact with and restrict each other, thereby determining cell fate (Zille et al., 
2017; Chi et al., 2018; Xu et al., 2018).

Autophagy was first observed in hepatocytes by electron microscopy in 
1962. It is also known as “type II programmed cell death” (Ashford and 
Porter, 1962). During autophagy, lysosomes degrade senescent, denatured, 
and damaged organelles or macromolecules. This biological phenomenon 
is specific to eukaryotes and plays an important role in cell proliferation, 
differentiation, development, homeostasis, and survival. Studies have 
illustrated that autophagy is activated in models of ischemia-hypoxia, global 
or regional cerebral ischemia brain injury, and has a two-way regulatory effect 
on cell fate that depend on the cell type and stimuli (Au et al., 2015; Wang 
et al., 2019). Appropriate autophagy can promote neuronal survival, while 
excessive autophagy causes cell death (Hou et al., 2019; Stavoe and Holzbaur, 
2019). Tao et al. (2018) found that neuronal autophagy is activated in a rat 
model of brain injury and plays an important role in nerve tissue repair. Cui et 
al. (2016) reported that autophagy activation in a CA animal model mediates 
hippocampal neuronal death in the later stage of ROSC after CPR. However, a 
previous study by Zeng et al. (2013) suggested that autophagy is reduced in 
rats that undergo CPR after CA, and that enhancing autophagy could inhibit 
neuronal injury. Our study found that the amount of autophagosomes in rat 
brain tissue and the IOD value of the autophagy-related protein LC3 were 
increased, and the p62 expression was downregulated, indicating that the 
level of autophagy was increased after ROSC, which is consistent with the 
study by Cui et al. (2016). 

Autophagy is regulated by various signaling pathways. When cells are ischemic 
and subjected to energy depletion, they are regulated by autophagy, which 
is primarily activated via the sirtuin 1/forkhead box protein O1 and AMPK 
pathways (Miyauchi et al., 2019; Xu et al., 2020). AMPK is an important ATP/
AMP energy sensor protein and regulator of energy metabolism (Hinchy et al., 
2018), and is widely expressed in the central nervous system and peripheral 
tissues (Villanueva-Paz et al., 2016; Herzig and Shaw, 2018; Li and Chen, 
2019). In response to stress, ischemia, hypoxia, strenuous exercise, decreased 
ATP levels, and increased intracellular AMP levels, AMPK is activated to 
regulate downstream pathways, which increases ATP levels in the body to 
maintain the balance of cell energy metabolism and promote cell survival. 
Therefore, AMPK act as a central node for cells to balance energy demands 
(Carling, 2017; Herzig and Shaw, 2018). AMPK is used to treat metabolic 
diseases, such as obesity, diabetes, inflammation, and cancer (Jeon, 2016; 
Wang et al., 2016). mTOR is a protein that belongs to the phosphatidylinositol 
3-kinase-related kinase family. It is an atypical serine/threonine kinase that 
plays a role in mTOR complex1 and 2 formation. Studies have found that 
AMPK activates and phosphorylates Unc-51-like autophagy activating kinase 1 
and promotes the autophagy cascade, whereas mTOR suppresses autophagy 
by inhibiting Unc-51-like autophagy activating kinase 1 (Kim et al., 2011; Gui 
et al., 2017; Liu et al., 2018). Therefore, AMPK affects the level of autophagy 
by negatively regulating mTOR expression via the Unc-51-like autophagy 
activating kinase 1 node (Kim et al., 2011). Studies have shown that AMPK/
mTOR signaling-mediated autophagy is protective in myocardial ischemia (Yang 
et al., 2013) and that mTOR inhibition is protective in cerebral ischemia via 
autophagy initiation (Wang et al., 2012; Srivastava et al., 2016).

He et al. (2020) reported increases in the level of autophagy and in particular  
in the rate of apoptosis and downregulation in p-AMPK expression in the 
brain tissue of mice undergoing CPR after CA. Treatment with adiponectin 
stimulates autophagy and inhibits apoptosis, thereby protecting mouse 
brain. Zhu et al. (2018) also found that, after ROSC following CA and CPR, 
pretreatment with metformin induced autophagy, which was accompanied 
by AMPK phosphorylation, whereas AMPK or autophagy inhibitors eliminated 
the neuroprotective effects of AMPK, demonstrating that AMPK activation 
plays a key function in the increase in autophagy. Therefore, in the current 
study, BK, combined with the AMPK inhibitor CP and the autophagy activator 
Ra, was used to treat rats that underwent CPR after CA. The expression of 

autophagy-related proteins (LC3, NBR1, and p62), brain injury marker (S100β) 
proteins involved in related pathways (p-AMPK and p-mTOR), and apoptosis-
related protein (caspase-3) was assessed. The immunohistochemistry and 
western blotting results showed that BK postconditioning significantly 
increased autophagy, upregulated NBR1 and LC3 expression, and 
downregulated p62, caspase-3 and S100β expressions in our rat model. In 
addition, these treatment conditions promoted AMPK phosphorylation and 
inhibited mTOR phosphorylation. The addition of CP inhibited, while the 
addition of Ra promoted, the aforementioned effects of BK. Therefore, these 
results indicated that, through AMPK/mTOR signaling pathway activation, 
BK can promote autophagy, inhibit apoptosis, and prevent the brain injury 
induced by ROSC after CA. Ra was used to evaluate the enhancement of the 
protective effect of autophagy on neurons in the rat model. The behavioral 
assessment demonstrated a significant increase in NDS of rats in the Ra + BK 
group compared with that in the BK group, suggesting that Ra enhanced the 
protective effect of BK on the rat model. 

Comparison with treatment using Ra or CP alone was not performed in this 
study because this study primarily addressed the protective effects of BK 
treatment on the hippocampal neurons of SD rats after ROSC. Ra and CP were 
mainly used to explore the effects of BK on the AMPK/mTOR signaling pathway. 
Treatment with Ra or CP alone has no significant role in the study of the 
mechanism of BK, and it is indeed not necessary to eliminate the interference 
effect here. It is not essential to demonstrate the effects of Ra and CP alone 
on the rat model, because the combined action of BK with Ra or CP can prove 
the relationship between BK and the AMPK/mTOR signaling pathway, or the 
combined effect of BK with Ra or CP on autophagy in rats after ROSC. 

A limitation of the present study is that the mechanism by which BK regulates 
autophagy was not studied in detail, for example how BK regulates the AMPK/
mTOR signaling pathway, if there are other regulatory pathways, and whether 
BK acts through B1 or B2 receptors. Future studies should explore these 
aspects, as well as the degree of phosphorylation, the relationship between 
the autophagy-related proteins, and caspase-3 activation.

In summary, neuronal autophagy levels and apoptosis rates were increased in 
rats after ROSC from CA. BK postconditioning increased neuronal autophagy 
levels and inhibited apoptosis, thus reducing the degree of brain injury caused 
by ROSC after CA, and this effect was mediated by activation of the AMPK/
mTOR signaling pathway.
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Additional Figure 1 Establishment of cardiac arrest rat model.
(A) Under anesthesia, the catheter was inserted into the trachea. (B) The left femoral artery was separated, the
blood flow was blocked with ophthalmic forceps, and the distal end was ligated.
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Additional Figure 2 The original images of p-AMPK (A), p-mTOR (B), caspase-3 (C), and GAPDH (D) by
western blot assay.
GAPDH: glyceraldehyde 3-phosphate dehydrogenase; p-AMPK: phosphorylated adenosine monophosphate
activated protein kinase; p-mTOR: phosphorylated mechanistic target of rapamycin.
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Additional Table 1 Scoring criteria of neurological deficit scale
Item Scoring criteria
(A) General behaviour

1. State of consciousness
2. State of wakefulness

3. Respiratory state

Total score = 19
Normal (10), drowsiness (5), coma (0)
Spontaneous eye opening (3), eye opening in response
to pain (1), no eye opening (0)
Normal (6), abnormal (1), absent (0)

(B) Brainstem reflex
1. Olfactory sensation
2. Visual sensation
3. Pupillary reflex
4. Corneal reflex
5. Startle reflex
6. Beard tactile reflex
7. Swallowing reflex

Total score = 21
Present (3), absent (0)
Present (3), absent (0)
Present (3), absent (0)
Present (3), absent (0)
Present (3), absent (0)
Present (3), absent (0)
Present (3), absent (0)

(C) Movement
Strength (left and right tested and scored
respectively)

Total score = 6
Normal (3), stiffness or weakness (1), no
movement/paralysis (0)

(D) Sensory
Pain (left and right tested and scored respectively)

Total score = 6
Rapid avoidance of pain stimuli (3), weak or abnormal
response (1), no avoidance response (0)

(E) Motor
1. Gait coordination
2. Balance ability

Total score = 6
Normal (3), abnormal (1), absent (0)
Normal (3), abnormal (1), absent (0)

(F) Behavior
1. Righting reflex
2. Negative geotaxis reflex
3. Visual positioning
4. Steering test

Total score = 12
Normal (3), abnormal (1), absent (0)
Normal (3), abnormal (1), absent (0)
Normal (3), abnormal (1), absent (0)
Normal (3), abnormal (1), absent (0)

(G) Seizures Total score = 10
No seizures (10), focal seizures, (5), generalized
seizures (0)


