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Background and Aim. The specific association between genetic variation and in-stent restenosis is still only partly understood. The
aim of this study is to analyze the relationship between functional polymorphisms in the genes encoding vascular endothelial
growth factor A (VEGF-A; rs699947) and transforming growth factor beta 1 (TGF-β1; rs1800470) and target lesion
revascularization (TLR) risk. Methods. A total of 676 patients (805 lesions) with stable coronary artery disease (SCAD) who
received elective percutaneous coronary intervention (PCI) with at least one bare-metal stent implantation were included. The
primary study endpoint was TLR at a 4-year follow-up. Results. The TLR rate was higher in patients with the VEGFA A/A
genotype (15.4%) than in patients with the VEGFA A/C (7.9%) and C/C (8.9%) genotypes (p = 0 009). The VEGFA A/A
genotype, after adjustment for clinical and procedural covariates, remained significantly and independently associated with the
TLR (hazard ratio—2.09 [95% confidence interval 1.32–3.33, p = 0 0017]). However, we found no association between TLR and
the TGFB1 genotype. Conclusion. The VEGFA A/A genotype is significantly and independently associated with TLR risk in
Polish SCAD patients who received elective PCI with bare-metal stent implantation.

1. Background

In-stent restenosis (ISR) is a major limitation of percutane-
ous coronary intervention (PCI). To date, the etiology and
genetic basis of this phenomenon are only partly understood.
A wide array of inflammatory cytokines, growth factors, and
mitogens as well as abnormal regional wall shear stress leads
to intimal hyperplasia [1–6]. The authors hypothesize that
polymorphisms in specific genes generate individual differ-
ences in the vascular wound healing process in response to
wall injury after stent implantation.

Experimental studies have proven the important role
of vascular endothelial growth factor A (VEGF-A) and

transforming growth factor beta 1 (TGF-β1) in the forma-
tion of neointima and ISR development [7]. Nonetheless,
the relationship between polymorphisms in genes encod-
ing these growth factors and target lesion revascularization
(TLR) risk has not been analyzed before. Therefore, we
aimed to determine whether the polymorphisms in
VEGFA (rs699947) and TGFB1 (rs1800470) are associated
with TLR in a prospective, population-based cohort of
Polish patients who underwent PCI with bare-metal stent
(BMS) implantation. We chose rs699947 and rs1800470 as
previous studies confirmed that they are functional poly-
morphisms and affect both gene expression and VEGF-A
and TGF-β1 serum levels [8, 9]. Moreover, we previously
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reported that rs699947 and rs1800470 polymorphisms in
the genes encoding VEGF-A and TGF-β1, respectively,
are associated with late lumen loss (LLL) in patients with
stable coronary artery disease (CAD) who received elective
PCI with BMS implantation [10]. Additionally, these poly-
morphisms have been studied in the context of other car-
diovascular disorders and have been proven to affect, inter
alia, the angiographic severity of CAD [11, 12] and the
risk of myocardial infarction [13, 14].

2. Methods

2.1. Patient Population. We enrolled 676 Caucasian patients
(805 lesions) with stable CAD who underwent elective PCI
between January 2007 and December 2012 with the implan-
tation of at least one BMS. The patients were not related to
each other. The primary study endpoint was TLR at a 4-
year follow-up, which was defined as either repeat percutane-
ous revascularization for a lesion anywhere within the stent,
within 5mm of the previously implanted stent, or the need
for surgical revascularization of the stented vessel due to
ISR. During index hospitalization, demographic and clinical
data as well as periprocedural variables were recorded,
including stent localization and diameter, the total stent
length per lesion, and the number of stents implanted.
Follow-up data on TLR were collected during subsequent
hospitalizations. The survival information was based on a
National Health Fund insurance status because a National
Health Fund insurance policy is obligatory for all Polish
citizens [15, 16].

2.2. Genotyping. DNA was extracted from blood samples
using the GeneMATRIX Quick Blood DNA Purification
Kit (EURX, Poland) according to the manufacturer’s
instructions. Similar to our previously used methods [10,
17], we identified single-nucleotide polymorphisms (SNPs)
in the TGFB1 and VEGFA genes using TaqMan genotyp-
ing assays on the 7300 Real-Time PCR System and the
SDS 1.4 Allelic Discrimination software (Applied Biosys-
tems, USA). Samples that were initially identified as
homozygous and heterozygous were sequenced, and after
genotype confirmation, they were used as positive controls.
DNase-, RNase-, and protease-free water (Qiagen, Germany)
was used as the negative control. For quality control,
10% of the samples were randomly repeated and showed
complete agreement.

2.3. Statistical Analysis. Continuous variables are reported as
the mean± standard deviation. Categorical variables are
presented as percentages. The chi-square test was used to
determine whether the analyzed genotypes agreed with the
Hardy-Weinberg equilibrium. Minor allele frequencies were
calculated and reported. The Kaplan-Meier method was used
to study the cumulative incidence of TLR overtime, whereas
the log-rank test was applied to evaluate differences between
patients with different VEGFA and TGFB1 genotypes using
the dominant model (homozygous major versus heterozy-
gous and homozygous minor) and codominant model setting
(homozygous major versus heterozygous versus homozygous

minor). Patients who died before TLR occurred were cen-
sored at the time of death. To adjust for baseline clinical
and periprocedural variables after positive evaluation of the
proportional hazards assumption, Cox regression analysis
was performed using TLR as a dependent variable. Prior to
Cox regression analysis, the missing values were replaced
using a state-of-the-art statistical method for mixed-type
data imputation, the MissForest algorithm, to minimize
information loss and the necessity to exclude entire cases
due to single missing values. The MissForest algorithm is
considered superior to other multiple imputation methods
such as multivariable imputation by chained equations
(MICE) [18]. Every variable, including the outcome variable,
was included in the multiple imputation algorithm. To visu-
alize the impact of the VEGFA and TGFB1 genotypes on
TLR, the adjusted Kaplan-Meier curves were plotted using
the inverse probability weight method and compared with
the log-rank test for adjusted curves. To account for multiple
comparisons resulting from multiple tests of VEGFA and
TGFB1 SNPs using the dominant and codominant models,
a Bonferroni-corrected p value= 0.05/4 = 0.0125 was consid-
ered statistically significant. Statistical analyses were entirely
performed using R software and freely available statistical
packages [19–21].

Table 1: Baseline clinical and procedural characteristics.

Clinical characteristics (n = 676 patients)

Age (years) 63.4± 9.3
Female 194 (28.7)

Hypertension 467 (69.1)

Diabetes mellitus 181 (26.8)

Previous myocardial infarction 369 (54.6)

Atrial fibrillation 89 (13.1)

Previous PCI 277 (41)

Previous CABG 66 (9.8)

Creatinine (μmol/l) 84.3± 34.1
Procedural characteristics (n = 805 lesions)

Vessel treated

LM 15 (1.9)

LAD 220 (27.3)

Cx 257 (31.9)

RCA 300 (37.3)

SVG 13 (1.6)

Ostial lesion 19 (2.4)

Bifurcation lesion 75 (9.3)

Number of stents implanted per
lesion

1.1± 0.34

Total stent length per lesion (mm) 19.5± 9.4
Minimal stent diameter (mm) 3.01± 0.54
Predilatation 412 (51.2)

Postdilatation 72 (8.9)

Continuous variables are presented as the mean ± standard deviation.
Categorical variables are presented as number of patients/lesions
(percentages). PCI: percutaneous coronary intervention; CABG: coronary
artery bypass grafting; LM: left main; LAD: left anterior descending; Cx:
circumflex branch; RCA: right coronary artery; SVG: saphenous vein graft.
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The study conformed to the Declaration of Helsinki
and was approved by the Ethics Committee of the Silesian
Medical Chamber in Katowice, Poland.

3. Results

Baseline clinical and periprocedural characteristics are pre-
sented in Table 1. The VEGFA and TGFB1 genotype distribu-
tion agreed with the Hardy-Weinberg equilibrium, and
minor allele frequencies were similar to those reported for
European populations (Table 2). Genotypes of TGFB1 and
VEGFA were successfully established for 663 (98.1%) and
675 (99.9%) patients, respectively. The 48-month follow-up
was available for 670 (99.1%) patients. During the follow-
up period, 25 (3.7%) patients died. The TLR rate was higher
in patients with the VEGFA A/A (15.4%) genotype than in
patients with the VEGFA A/C (7.9%) and C/C (8.9%) geno-
types using the codominant (Figure 1(a)) and dominant
models (Figure 1(b)) (p = 0 009 and p = 0 002, resp.). There
were, however, no differences in TLR frequency for differ-
ent TGFB1 genotypes (A/A—8.4%, A/G—11.2%, and G/
G—11.5%) using the codominant (Figure 2(a)) and domi-
nant (Figure 2(b)) models (p = 0 397 and p = 0 175, resp.).
The VEGFA A/A genotype, after adjustment for clinical
and periprocedural covariates, remained significantly and
independently associated with TLR (adjusted log-rank

p = 0 006, hazard ratio (HR)—2.09 [95% confidence interval
(CI) 1.32–3.33, p = 0 0017]; Figures 3(a) and 4), whereas no
association was observed for the TGFB1 A/A genotype (ref.
A/G and G/G; adjusted log-rank p = 0 186, HR—0.67 [95%
CI 0.40–1.12, p = 0 12]; Figures 3(b) and 4). Other factors
associated with TLR were minimal stent diameter (HR (per
1mm increase)—0.43 [95% CI 0.26–0.7, p = 0 0008]), stent
length (HR (per 3mm increase)—1.08 [95% CI 1.03–1.13,
p = 0 003]), and lesions localized in the circumflex branch
of the left coronary artery (reference LAD) (HR—0.49 [95%
CI 0.24–0.99, p = 0 04]) (Figure 4).

4. Discussion

Atherosclerosis is considered a multifactorial disease influ-
enced by environmental and genetic factors. Furthermore,
the pathophysiological mechanisms of restenosis have also
not yet been fully explained. Coronary angioplasty injures
the arterial wall, leading to parietal thrombus formation
and a local inflammatory response, which is considered the
main driver of vascular smooth muscle cell (VSMC) prolifer-
ation and neointima formation [22]. VSMC proliferation is
stimulated by the cytokines released from monocytes/macro-
phages [3], and studies have shown that one week after PCI,
the neointima contains 60% VSMCs and 30% neutrophils
and monocytes. In the subsequent weeks, the number of

Table 2: Distribution of TGFB1 and VEGFA polymorphism genotypes in the analyzed patient cohort (n = 676).

Gene/polymorphism Homozygous major Heterozygous Homozygous minor HWE p value MAF MAF EU population [51]

A/A A/G G/G

TGFB1 (rs1800470) 224 (33.8%) 310 (46.8%) 129 (19.5%) 0.27 42.8 38

A/A A/C C/C

VEGFA (rs699947) 186 (27.6%) 322 (47.7%) 167 (24.7%) 0.25 48.6 50

Genotypes of TGFB1 and VEGFA were successfully established for 663 (98.1%) and 675 (99.9%) patients, respectively. MAF: minor allele frequency; EU:
European Union; HWE: Hardy-Weinberg equilibrium.
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Figure 1: Freedom from TLR according to the VEGFA polymorphism genotypes using the codominant (a) and dominant model (b).
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mononuclear cells decreases, which is accompanied by a
significant increase in the VMSC cell percentage. Four
weeks after stent implantation, over 90% of the cells that
form the neointima are VMSCs [23]. Therefore, many
genetic studies on restenosis have examined genes encod-
ing inflammation-related proteins, particularly polymor-
phisms in the genes for interleukin-1, interleukin-10,
interleukin-1 receptor antagonist, matrix metalloprotein-
ases, and C-reactive protein [24, 25]. Mediators of inflam-
mation produced by monocytes and macrophages
stimulate the release of interleukins, TGF-β1, and other
growth factors, specifically, VEGF-A. These proteins mod-
ulate the proliferative activity of endothelial cells and
VSMCs and affect adhesion molecule expression [26, 27].

4.1. rs1800470 Polymorphism (TGFB1). TGF-β1 is a cytokine
with a complex mechanism of action. TGF-β1 mainly stimu-
lates TGF-β receptor type II (TGFBR2), which recruits TGF-
β receptor type I (TGFBR1) to form a complex (TGF-β1
+TGFBR2+TGFBR1) that activates the Smad pathway.
Throughout this pathway, TGF-β1 exhibits antiproliferative
[28] and anti-inflammatory effects [29], accelerates cell dif-
ferentiation [30], and promotes extracellular matrix synthesis
[31]. TGF-β1 released locally by arterial wall fibroblasts
sends paracrine signals to the VSMCs and the macrophages
migrating toward the injured region of the stented arterial
wall. The platelets that participate in parietal thrombus for-
mation release large amounts of TGF-β1 [32]; furthermore,
serum TGF-β1 levels might be genetically determined.
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Figure 2: Freedom from TLR according to TGFB1 polymorphism genotypes using the codominant (a) and dominant model (b).
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Figure 3: Freedom from TLR according to the VEGFA (a) and TGFB1 (b) polymorphism genotypes adjusted for clinical and
periprocedural covariates.
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According to some studies, the presence of allele C correlates
with higher TGF-β1 concentrations [23–34]. Other
researchers have observed increased TGF-β1 levels in T/T
genotype carriers [35]. TGF-β1 inhibits proliferation in G1
phase, although at levels higher than 1-2 fg per cell, it might
promote smooth muscle cell, fibroblast, and chondrocyte
proliferation [36]. There is no linear correlation between
TGF-β1 expression and its effect on the cells in the restenosis
process. Studies performed at our center have not shown a
relationship between serum TGF-β1 concentration and his-
tory of restenosis, including recurrent restenosis and the first
restenosis [37, 38]. Recently, Chung et al. reported that
blocking TGF-β1 by intravascular local gene delivery does
not reduce neointima formation but enhances the inflamma-
tory response in a pig model of restenosis, which potentially
aggravates lesion progression [39]. Previous studies indicated
that the rs1800470 genotype is associated with the risk of
developing cardiovascular diseases and their complications,
inter alia, cerebral infarction [40], silent myocardial ischemia
in diabetic patients [41], and CAD complications [13]. Yang
et al. investigated the relationship between the rs1800470
polymorphism and angiographic severity of CAD in Chinese
population. They found that allele T is associated with higher
CAD burden assessed using the Gensini Score [11]. On the
other hand, a study conducted at our center did not confirm
these findings in the population of Polish patients [17].
TGFB1 polymorphism (rs1800470) has been also studied in
the context of ISR. Fragoso et al. reported, for the first time,
that rs1800470 polymorphism could be involved in the risk
of developing ISR in the Mestizo population undergoing
PCI with drug-eluting stent or BMS implantation [42]. In
our previous study, we showed that the TGFB1 polymor-
phism (rs1800470) allele T is associated with decreased neo-
intima formation in patients with CAD receiving BMS [10].
Any discrepancy with our previous study can be explained
by the use of different inclusion criteria and the different end-
points of both studies.

4.2. rs699947 Polymorphism (VEGFA). VEGF-A is a potent
and highly specific endothelial cell mitogen that regulates
endothelial integrity [43–45], although in the literature, there
is still a debate regarding whether VEGF-A is a proathero-
sclerotic or antiatherosclerotic factor [12]. rs699947 is a func-
tional polymorphism associated with VEGF-A levels. In
particular, Shahbazi et al. reported that the C/C genotype
is associated with higher VEGF-A synthesis than the A/A
genotype [46]. Howell et al. genotyped 941 patients with
CAD for the rs699947 polymorphism, and the A/A geno-
type frequency increased stepwise with the number of dis-
eased coronary arteries using the C/C genotype as the
reference. Therefore, the A/A genotype is a risk factor
for atherosclerosis, and the C/C genotype is protective
[12]. Our previous study evaluating the Gensini Score as
a marker of atherosclerotic burden relative to SNPs
revealed that the A/A genotype was more frequently
observed than the C/C genotype in patients with the high-
est Gensini Score [17]. Results of the meta-analysis of
seven case-control studies indicated that rs699947 may
be associated with the risk of CAD development, and A

allele carriers have higher CAD susceptibility in compari-
son with the C allele carriers [47]. Furthermore, the
rs699947 VEGFA polymorphism is associated with collat-
eral circulation in CAD patients [48] and myocardial
infarction risk in patients with rheumatoid arthritis [14]
as well as may affect the antihypertensive responses to
enalapril [49]. In our previous analysis, we showed that
the A/A genotype is a risk factor for increased neointima
formation, whereas the C/C genotype was protective [10].
On the other hand, we did not find any relationship
between VEGFA rs699947 and the risk of binary ISR
[10]. Moreover, Bagyura et al. who analyzed the relation-
ship between VEGFA polymorphisms and the risk of ISR
in patients who underwent PCI with BMS implantation
reported that rs699947 polymorphism is associated with
neither the risk of diffuse nor focal ISR [50]. Our current
analysis shows for the first time that the rs699947 A/A
genotype is associated with a higher TLR risk. Similar to
the results of the analysis of TGFB1 polymorphism, the
discrepancies with previous studies regarding the role of
VEGFA in ISR development could be associated with dif-
ferent inclusion criteria and different study endpoints.

4.3. Conclusions. In summary, we report for the first time
that the rs699947 polymorphism in the VEGFA gene is
associated with TLR in patients with stable CAD receiving
PCI with stent implantation. This study suggests that a
genetic polymorphism in VEGFA might be applicable
to risk stratification for TLR. More detailed genetic stud-
ies in different ethnic populations are needed to further
evaluate the association between VEGFA polymorphisms
and ISR.
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