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Abstract

Background: The reconstruction of gene regulatory networks from time series gene expression
data is one of the most difficult problems in systems biology. This is due to several reasons, among
them the combinatorial explosion of possible network topologies, limited information content of
the experimental data with high levels of noise, and the complexity of gene regulation at the
transcriptional, translational and post-translational levels. At the same time, quantitative, dynamic
models, ideally with probability distributions over model topologies and parameters, are highly
desirable.

Results: We present a novel approach to infer such models from data, based on nonlinear
differential equations, which we embed into a stochastic Bayesian framework. We thus address
both the stochasticity of experimental data and the need for quantitative dynamic models.
Furthermore, the Bayesian framework allows it to easily integrate prior knowledge into the
inference process. Using stochastic sampling from the Bayes’ posterior distribution, our approach
can infer different likely network topologies and model parameters along with their respective
probabilities from given data. We evaluate our approach on simulated data and the challenge #3
data from the DREAM 2 initiative. On the simulated data, we study effects of different levels of
noise and dataset sizes. Results on real data show that the dynamics and main regulatory
interactions are correctly reconstructed.

Conclusions: Our approach combines dynamic modeling using differential equations with a
stochastic learning framework, thus bridging the gap between biophysical modeling and stochastic
inference approaches. Results show that the method can reap the advantages of both worlds, and
allows the reconstruction of biophysically accurate dynamic models from noisy data. In addition, the
stochastic learning framework used permits the computation of probability distributions over
models and model parameters, which holds interesting prospects for experimental design purposes.

Background
Since in 2003 the Human Genome Project released the
complete human genome sequence, there is great
interest in the complex interplay between different

genes and proteins. Instead of focusing on individual
cellular components, interest has shifted to the interplay
between these components, introducing the view that a
biological system is more than the sum of its parts.
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One of the most difficult problems in systems biology is
the reconstruction of gene regulatory networks from
experimental data. This difficulty arises from numerous
sources, among them the combinatorial explosion of
possible network topologies for a given number of genes,
limited information content and high levels of noise in
experimental data, limited amounts of data, and the
complexity of regulatory processes in cells during
transcription, translation and post-translation.

Many approaches have been proposed to infer networks
from data, good reviews are, for example, [1-8]. A
common method to represent dynamics in biochemical
systems are differential equations [9]. Rich mathematical
theory has been established for their solution and
analysis, and can be exploited [10,11]. Linear differential
equation models have been proposed to infer gene
regulatory networks [12,13]. These are attractive models
due to the low number of parameters and their analytical
tractability. However, since biological networks are
typically highly nonlinear, linear differential equations
are usually not adequate to accurately capture a
regulatory network’s dynamic behavior [14,15]. Some
authors argue that if a system is linearized around a
specific point of interest, e.g., a steady state, one may
describe the local behavior using linear models [16-20].

To describe more complex dynamic behavior, nonlinear
models are needed. Such models can describe nonlinear
behavior such as oscillations, multi-stationarity and
biochemical switches. Furthermore, by using differential
equations which are based on chemical reaction kinetics,
model parameters directly correspond to reaction rates,
thus models and model parameters can be immediately
interpreted biochemically [21].

On the other hand, due to the high-dimensional search
space, inference of nonlinear models from data is much
more complex than linear system identification, and serious
problems with over-fitting and non-identifiability arise.

Nevertheless, nonlinear models are increasingly being
used, and are very likely to play an important role in our
ability to understand progressively more complex
systems in the future. Bongard and Lipson recently
published a method that can be used to symbolically
infer nonlinear systems without prior specification of a
model class, which they applied to simulated data of a
three-component model of the lac operon [22]. While
such a model-free approach is very interesting, it remains
to be seen whether the methodology can be extended to
larger networks.

Making assumptions about the underlying model class,
Spieth et al. used S-systems [23,24], generalized linear

models [25] and so-called H-Systems and inferred
models with up to 10 genes from data, using different
search strategies, including evolutionary algorithms
[26-28]. A cooperative, coevolutionary algorithm was
used by Kimura et al. for the inference of S-system
models of genetic networks [29]. Perkins et al. used
partial differential equations to reverse engineer the Gap
gene network in Drosophila melanogaster [30]. Busch et al.
recently used an approach related to delay differential
equations to infer the regulatory network underlying
keratinocyte migration [31].

While models based on differential equations provide a
quantitative dynamic description of a system under
consideration, they completely disregard the stochastic
nature of biological data. Linear stochastic differential
equations have been proposed for this reason [32], but
they still require strong assumptions, and it is unclear if
larger, nonlinear stochastic differential equation models
of genetic regulatory networks can successfully be
inferred from experimental data.

A further difficulty with differential equation models is,
that it is not straightforward to compute probability
distributions over alternative models or model para-
meters. This would be most useful in particular if several
alternative models fit the data well, and could be used to
design additional experiments. Furthermore, such infor-
mation would make it possible to consider alternative
scenarios also in simulation-based perturbation studies,
e.g., when interest is on the effect of potential drug
candidates. The problems of over-fitting and non-
identifiability of models typically encountered with
nonlinear differential equation models can be addressed
by regularization [20,32,33], or by including additional
biological knowledge in the inference process [34,35].
However, the former requires setting a regularization
parameter, which is often a nontrivial problem, whereas
the latter approach requires a systematic way to include
such information in parameter estimation. Both issues
can nicely be addressed in a Bayesian framework.

We therefore embed a nonlinear ordinary differential
equation (ODE) model, based on chemical reaction
kinetics, into a Bayesian framework. Network inference
then amounts to evaluating the posterior distribution
over models and model parameters, given the experi-
mental data. A related idea has recently been pursued by
Steinke et al. for linear models [20]. In their paper, the
authors use expectation propagation to evaluate the
posterior distribution. We combine a nonlinear differ-
ential equation model based on chemical reaction
kinetics with a Bayesian framework, and use a Markov
chain Monte Carlo (MCMC) approach to sample from
the posterior distribution.
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A difficulty with this approach comes from the fact, that
it requires solving the differential equations at every step
in the Markov chain. To avoid this problem, we adapt
the parameter estimation method proposed by Ramsay
et al. [36] for Markov chains. The authors iteratively fit
smoothing splines to the data, and then learn the
parameters of the differential equations using a least
squares procedure on the slope estimates of the splines
and the differential equations. The idea to carry out the
optimization on slopes instead of concentrations was
first suggested by Varah in 1982 [37]. It was then
improved by Poyton et al., who proposed to iterate
between spline interpolation and parameter estimation
[38]. Ramsay et al. further improved this approach by
proposing profiled estimation [36]. We adapt their
objective function, and sample both model parameters
and smoothing factor using a Markov chain. The
combination of differential equations with a Bayesian
framework proposed in this work allows it to adequately
describe the nonlinear dynamic behavior of gene
regulatory networks, and to incorporate prior knowledge
into the network inference process at the same time. In
contrast to simple optimization of the posterior dis-
tribution as we pursued in previous work [39], the
MCMC approach used here provides confidences on
learned parameters and computes probability distribu-
tions over alternative network topologies. This can be
used to consider alternative future scenarios in simula-
tion, and permits the design of additional, most
informative experiments to improve the inference
procedure.

Methods
Differential Equations Model
We represent gene regulatory networks as directed graphs
G = (V, E), with vertices V = {v1,..., vn} corresponding to
genes and directed edges E corresponding to regulatory
interactions. An edge from gene i to gene j indicates that
the product of gene i, xi, influences the expression of
gene j either by activating or by inhibiting it. We assume
that different regulators act independently, such that the
total effect on the expression of gene i can be written as
the sum of the individual effects. This clearly is a
simplification, and can be generalized by considering
products of effects from different genes. Our ODE model
is written as

∂
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where xi(t) is the concentration of gene i at time t.
Furthermore, si and gi are basal synthesis and degrada-
tion rates for each gene i, which in the absence of
regulations from other genes determine the dynamic

behavior of component i. Variable bij denotes the
regulation strength of component xj on xi, and fij is the
corresponding regulation function. bij > 0 corresponds to
an activation, bij < 0 to an inhibition, and bij = 0 means
that there is no regulation from gene j to gene i. As
regulation functions we use Hill-type functions
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where m denotes the Hill coefficient and θj is related to
the reaction rate by describing the concentration of xj
needed to significantly activate or inhibit expression of
xi. To keep the number of parameters small, we use one
joint Hill coefficient m for all regulations, and use the
same threshold parameter θj for all regulations out of the
same gene xj. The regulation functions (2) are obtained
from chemical reaction kinetics by considering the
binding process of a transcription factor to a promoter
a reversible chemical reaction. For a more detailed
derivation, see, for example, [40-42].

Figure 1 shows Hill functions for different Hill
coefficients. The left plot shows the case where gene
product xj activates xi, the right plot describes an
inhibitory effect. We note that the formulation used
here for inhibitions avoids problems with concentra-
tions possibly becoming negative, as may happen when
using the upper function from equation (2) also with
bij < 0, as was done in [39].

Parameter Estimation of ODE systems
The estimation of model parameters from experimental
time series data for differential equation models is
typically carried out iteratively in two steps: (1)
numerically solve the differential equations for the
time interval of interest, and (2) compute an error
between experimental data points and model prediction.
Initial values and model parameters are then modified to
minimize this error. The disadvantage of this procedure
is, that the differential equations have to be solved
numerically in every iteration of the optimization, which
is very time consuming.

As an alternative, Varah proposed a two stage method
[37]. In step one, interpolating cubic splines z(t, D) are
fitted to the data D. Thereafter, the squared difference
between the differential equations and the slope esti-
mates from the interpolation is minimized according to
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Here, z (tτ, D) is the slope estimate from the cubic
splines z(t, D), ω are the differential equation model
parameters, T is the number of different time points tτ
and n is the number of time series to be fitted, for
example, the number of different genes in the network.

An obvious drawback of Varah’s approach is, that the
quality of the parameter estimates can only be as good as
the spline fit, which is particularly difficult in case of
noisy data. To address this problem, Poyton et al.
developed a recursive method, called iterative principal
differential analysis, where the two steps of Varah’s
method are iterated, and the model predictions are fed
back into the spline estimation [38]. Ramsay et al.
improved this method further using a generalization of
profiled estimation to learn the parameters of interest
[36].

We adapt this iterative method by simultaneously
estimating model parameters ω := (s, g, b, m, θ) and
smoothing factor l of the smoothing splines. This could
be done by minimization of the function
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where diτ denotes the measured data, T1 is the number of
time points in the experimental data and T2 denotes the

number of points to be used in the squared error
parameter fitting on the slopes. To adequately describe
the dynamics of a system using derivatives, a large
number of slope estimates (over time) is required, we
will therefore usually have T2 >> T1. We note that
equation (1) requires concentrations to compute the
derivatives, these are taken from the spline interpolation.

Bayesian Learning Framework
We now address two further problems in parameter
estimation, regarding the entire topology of the regula-
tory network, and variability in experimental measure-
ments. The network topology (which genes have
regulatory interactions between them) can either be
determined in a separate step prior to parameter
estimation, or can be solved implicitly by assuming a
fully connected network, and pruning edges with very
small regulation strengths afterwards. Determination of
the network topology in a separate step has the
disadvantage, that edges not included in this prior step
cannot be re-introduced in parameter estimation. We
therefore use the latter approach, with appropriate
regularization to prune many edges during the inference
process.

To account for noise in the experimental data, we embed
the differential equations into a Bayesian framework. For
this purpose, we assume that the measured data diτ is
corrupted by independent mean zero Gaussian noise
with variance σ1

2 . The assumption of normally dis-
tributed noise is clearly a simplification, which is made
here to keep the model simple. Other noise models

Figure 1
Regulation functions. Hill functions fij for different Hill coefficients m = 1, 3, 5. The left plot shows an activation, the right
plot an inhibitory effect. The threshold θj was chosen equal to 3 for both plots, at this concentration of the regulating gene j,
half the maximum effect on gene i is achieved.
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could be used. We furthermore assume the differences
between slope estimates and differential equation pre-
dictions to follow a normal distribution with mean zero
and variance σ 2

2 . We note that the ratio between σ1
2 and

σ 2
2 corresponds to a parameter that weighs the two

terms in (3) relative to one another.

The assumption of Gaussian noise leads to the likelihood

p D

di zi t D
T

i

n

( | , , , )

( , , )

ω λ σ σ
σ

τ τ λ

πστ
1
2

2
2

01

1

2 1
2

2

2 1
2

1

=

− −( )
×

==
∏∏ e ee

− ∂
∂

−⎛
⎝⎜

⎞
⎠⎟

==
∏∏

1

2 2
2

2

2 2
2

01

2 σ
τ ω τ λ

πστ

xi
t

t zi t D
T

i

n
( , ) ( , , )

,

(4)

which is equivalent to equation (3) up to log-transfor-
mation and scaling.

Since we are interested in the probability distribution
over the model parameters ω, the smoothing factor and
the variances σ1

2 and σ 2
2 , given the experimental data

D, we use Bayes’ theorem to obtain
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2
2 is given by the likelihood (4),

p( , , , )ω λ σ σ1
2

2
2 is a prior distribution on the model

parameters, and p(D) is a normalizing factor which is
independent of ω, l σ1

2 and σ 2
2 . For simplicity, we treat

the variance parameters σ1
2 and σ 2

2 as user parameters,
which are set in advance and not sampled.

Inclusion of Prior Knowledge
The prior distribution p(ω, l) on the model parameters can
be used to include available biological knowledge on the
system under consideration into the network inference
process, as demonstrated, for example, by Wehrli and
Husmeier [35]. It is a huge advantage of the Bayesian
framework that it allows the easy and systematic integration
of such expert knowledge. If no such detailed knowledge is
available, one can resort to very general assumptions, such as
sparsity of the interaction network [43] or rough estimates of
reasonable ranges for parameters.

We assume independent prior distributions for the different
model parameters, and suggest to use gamma priors

p z
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for the synthesis and degradation rates si and gi, for the
Hill coefficient m and the threshold parameters θj. The
parameters a and r are scale and rate parameters of the

gamma distribution, respectively, and Γ denotes the
Gamma function
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This choice of prior ensures that the parameters are
positive, and will not become too large. Since the
smoothing factor l ranges between zero and one, we
use a beta prior
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To reflect the assumption of sparsity of gene regulatory
networks, we use a prior based on the Lq norm [44] for
the interaction strengths bij, i, j = 1,..., n:
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for b � R and q, s > 0, where N (q, s) is the normalizing
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For q = 2, equation (6) is a normal distribution, for q = 1
it corresponds to the Laplace distribution. Values of
q < 1 enforce stronger sparsity constraints, as can be seen
in Figure 2 for the two-dimensional case with q = 0.5 and
s = 1. In comparison with the prior proposed in [45] and
used in network inference in [39], we avoid the
numerical integration of the prior required in these
publications, and obtain similar sparseness constraints.

MCMC Sampling from the Posterior
The posterior distribution (5) can now be maximized
using, for example, gradient based methods, simulated
annealing or genetic algorithms. However, since multiple
parameter combinations, corresponding to alternative
network topologies, may explain the data equally well,
we sample from p(ω, l|D) using Markov chain Monte
Carlo. This way, full distributions over each parameter
are available, and can be used, for example, to consider
different likely topologies, and to design experiments
that will resolve ambiguities. This would not be possible
with simple maximization approaches.
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To sample from p(ω, l|D) we use an iterative approach.
First, we sample the model parameters ω using the
Hybrid Monte Carlo algorithm (HMC), with fixed
smoothing factor l. HMC has originally been proposed
by Duane et al. for problems arising in quantum
chromodynamics [46], and has been introduced to the
general Bayesian statistical community by Neal [47]. The
method samples points from a given n-dimensional
distribution p(h) by introducing momentum variables
r = (r1, r 2,..., r n) with associated energy K(r), and
iterative sampling for the momentum variables from K
(r) and following the Hamiltonian dynamics of the
system H(h, r):= -ln p(h) + K(r) in time. Doing so, HMC
generates a sequence of points distributed according to
p(h), and can avoid the random walk behavior typically
observed with the Metropolis Hastings algorithm [47].

As the second step, we sample the smoothing factor l
using Metropolis Hastings [48,49], with ω fixed to the
values sampled in the previous step. Pseudocode for our
iterative sampling procedure is given in Table 1.

Evaluation of Reconstructed Networks
To evaluate reconstructed networks, we summarize the
Markov chains by using the mean value of the chain for
eachmodel parameter, after excluding points from the burn-
in phase of the chain. This is of course a very crude
simplification, which we take to allow for an automated,
quantitative evaluation of reconstructed networks.
Obviously, in case of, for example, bimodal distributions,
the mean will be located somewhere between the two
modes, possibly in a region with very low probability mass.

We therefore emphasize here that the full set of points
sampled can and should be analyzed in more detail.

To quantitatively evaluate inferred networks, we use
receiver operator characteristic (ROC) and precision to
recall (PR) analysis, and summarize these using the area
under the curve (AUC). For two-class classification
problems (e.g. edge present/not present), ROC curves
plot sensitivity against 1-specificity for varying thresh-
olds on the predictor (for example, absolute value of
average edge weight bij), whereas PR curves similarly plot
precision against recall (= sensitivity). The AUC is then
simply the area under the ROC or PR curve, and on a
scale from 0 to 1 provides a single number to measure
the quality of a predictor. We note that changing the
threshold in ROC and PR curves corresponds to different
thresholds for edge pruning in reconstructed networks.

In our case, we want to distinguish between three classes - no
edge, activation, or inhibition. Therefore, we map the three-
class problem onto a two-class problem as indicated in
Table 2. With this approach we calculate sensitivity,

Table 1: Iterative Markov chain Monte Carlo Algorithm

Algorithm 1 Iterative Hybrid Monte Carlo and Metropolis Hastings
algorithm

Require: desired distribution p(·), starting value (ω0, l 0), proposal
distribution ql (·|l (t)), number of leapfrog steps for HMC L, proposal
distribution for stepsize � of leapfrog steps q�(·), standard deviation sr
for the sampling of the momentum variables r, number of Markov chain
samples T
1: t ← 0
2: while t <T do
3: Sample ε from q�(·)
4: Sample ρ i

t( ) from N ( , )0 2σ ρ for all i � {1,..., n}
5: Perform L leapfrog steps with stepsize ε starting at state (ω(t), r (t))
6: Store resulting candidate state in ( , )ω ρ
7: Sample u1 from U (0, 1)
8: a1 ← min {1, exp H(ω(t), r(t)) - H ( , )ω ρ )}
9: if u1 <a1 then
10: ω(t+1) ← ω̂
11: else
12: ω(t+1) ← ω(t)

13: end if
14: Sample λ from ql(·|l(t))
15: Sample u2 from U (0, 1)

16: α λ ω λ λ λ

λ ω λ λ λ
2 1

1

1←
⎧
⎨
⎪

⎩⎪

+

+min , ( | ( )) ( ( )| )

( ( )| ( )) ( | ( ))

p t q t

p t t q t

⎫⎫
⎬
⎪

⎭⎪
17: if u2 <a2 then

18: l(t+1) ← λ
19: else
20: l(t+1) ← l(t)

21: end if
22: Append (ω(t+1), l(t+1)) to Markov chain ω λ( ) ( ),t t

i

t( )
=123: t ← t + 1

24: end while
25: return Markov chain ω λ( ) ( ),t t

i

T( )
=1

Figure 2
Lq Prior. Plot of the two-dimensional Lq prior p(b1, b2):=
Lq(b1; q, s)·Lq(b2; q, s) for q = 0.5 and s = 1. It can clearly be
seen how this prior favors points (b1, b2) where one of the
two components is approximately zero over points at the
same distance from the origin with both b1, b2 ≠ 0.
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specificity and precision, to calculate the area under the ROC
and PR curves (AUCROC and AUCPR). We point out that for
our three-class problem, for a random network, the average
expected AUC value will not be 0.5 as in the two-class case,
butwill varybetweenzero and0.39 forAUCROCandbetween
zero and 0.5 for AUCPR, depending on the number of non-
existing edges in the reference network. For a mathematical
proof we refer to Additional file 1.

Implementation
We implemented our algorithm in Matlab, Release
2008b (The Mathworks), using the spline and statistics
toolboxes. Computations were carried out on a Linux
cluster with dual-processor 3.1 GHz XEON quadcore
machines with 32 GB RAM, running each Markov chain
in a single thread (no additional parallelization). The
Matlab code is available on request from the authors.

Results
Simulated Five Gene Network
We first evaluated our approach on a simulated five-gene
network. This allows it to systematically study the
performance of network inference under varying levels
of noise and dataset sizes, while the true network
topology is known. We simulated data using the network
topology shown in Figure 3a. Since this is the topology
also underlying the experimental data used later, this
allows a direct comparison of simulation results with
inference results on real experimental data.z

Data was simulated using the differential equation
model (1), with synthesis and degradation rates s =
(0.2, 0.2, 0.2, 0.2, 0.2) and g = (0.9, 0.9, 0.9, 1.5, 1.5) for
the five genes. The threshold parameter of the Hill
functions was set to θ = (1.5, 1.5, 1.5, 1.5, 1.5), with Hill
coefficient m = 5. The parameters for the regulation
strength were set to bij = 2 for activations, bij = -2 for
inhibitions, and zero if there was no interaction between
to genes, compare Figure 3a.

Data was simulated by numerical integration of the
differential equations in Matlab using the function
ode45. Simulated data shows oscillations for all genes,
see Figure 3b. To simulate the typical setting in network
inference, where only a limited number of noisy
measurements are available, we evaluated our network
reconstruction approach using different numbers of time
points subsampled equidistantly from the simulated

Table 2: Classification Matrix for ROC/PR Evaluation

predicted
positive
link

negative
link

non-existent
link

positive link TP FP FN

actual negative link FP TP FN

non-existent link FP FP TN

Mapping of three-class classification problem (no edge present, positive
regulation, negative regulation) onto two-class ROC/PR evaluation. TP:
True Positive, TN: True Negative, FP: False Positive, FN: False Negative.

Figure 3
Gold Standard Topology and Simulated Data. (a) True network of the DREAM 2 challenge #3 five gene time series data,
showing the bio-engineered interactions between the five genes artificially inserted into yeast. (b) Time course of simulation
with model in arbitrary time and concentration units, for the simulated five gene model. Different numbers of equidistant time
points from this data were used for network reconstruction in the simulation study. The time courses of gene 2 and gene 3 are
almost the same.
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data, and added mean-zero normally distributed noise
with different standard deviations to the concentration
values. We then used our method to reconstruct the
original network from this data. For this purpose, we
sampled 110, 000 points for (ω, l) using the algorithm
described in Table 1, with a burn-in of 10, 000 points.
Parameters of the prior distributions were set to a = 1, r =
2 for the gamma prior on synthesis and degradation
rates, a = 1.5, r = 5.0 for the gamma prior on the Hill
coefficient m, a’ = 100, b’ = 10 for the beta prior on l, and
q = 0.5, s = 1 for the Lq prior on the regulation strengths
bij. Shape and scale parameters for the gamma priors on
the θj for each gene j where chosen such that mean and
variance of the priors correspond to mean and variance
of the training data. The number of slope estimates T2 is
set to 1000 and the corresponding variance σ 2

2 is set to
1. Furthermore, the variance σ1

2 is set to T1/T2, where T1
denotes the number of time points.

Results on 40 time points
We first describe results for an ideal case with 40 time
points and no noise. In that case, mean values for
inferred synthesis and degradation rates were s = (0.23,
0.20, 0.29, 0.26, 0.15) and g = (1.17, 1.14, 1.33, 1.00,
0.99). Mean value for the Hill coefficient m was 4.76,
means for the thresholds θj ranged from 1.38 to 1.78 and
the mean smoothing factor l was 0.92. Inferred
regulation strengths (mean and standard deviations)
are given in Table 3. The large standard deviations for
some regulation strengths, e.g., the self-regulation on
gene 3 or the regulation from gene 4 to gene 1, indicate
that there either are different network topologies which
describe the data well, or that the dynamics of the system
is insensitive to changes of this parameter.

Precision to recall and receiver operator characteristic
analysis of results yield AUC values of AUCPR = 0.516
(guessing: 0.14) for precision to recall curves and
AUCROC = 0.706 (guessing: 0.358) for sensitivity vs. 1-
specificity curves.

To close the circle from the original concentration data
over the reconstructed model back to dynamic simula-
tion, we used the mean inferred model parameters to

simulate gene concentrations. This simulation shows an
accurate match of simulated and experimental data (not
shown). It is well known that fitting models to
oscillating data, and even more so, reconstructing net-
works from such data, are extremely hard problems,
since models tend to learn a steady state [50]. In spite of
this, oscillations were captured with high precision by
our approach (see Figure 3b).

Effect of Noise and Dataset Size
We next studied the effect of different dataset sizes
(number of time points) and different levels of noise in
the data on the quality of network reconstruction. For
this purpose, we added mean zero Gaussian noise with
standard deviations 0.05, 0.1, 0.15, 0.2 and 0.3 to the
simulated concentration data, and furthermore sub-
sampled equidistantly from the time series to generate
data sets with T1 = 10, 20, 30, 40, 50, 70, 90, 110, 140,
170 and 200 different time points for each of the five
noise levels. Then the network reconstruction was
performed as described in the methods section.

Figure 4 shows AUC values for ROC analysis (left) and
precision to recall analysis (right) for the different noise
rates and number of time points. All runs without noise
produced results with very high AUC values. As expected,
performance decreases with increasing noise levels and
decreasing number of time points. We point out that for
oscillations with an amplitude of 0.5 to 0.6, as present in
the simulated data, noise with standard deviation 0.3
is already very high and considerably disturbs the
oscillations.

Evaluation on Experimental Data: The DREAM 2,
Challenge 3 Dataset
To assess the performance of different reverse engineering
approaches, Stolovitzky et al. fathered theDREAM (Dialogue
on Reverse Engineering Assessment and Methods) initiative
[51]. For this purpose, Cantone et al. provided in-vivo data
on a small, bio-engineered five-gene network, which was
posted as challenge #3 within DREAM 2 [52]. This data was
generated by inserting new promoter/gene combinations
directly into the chromosomal DNA of budding yeast. Two
time series of gene expression of the five inserted genes after

Table 3: Inferred Interaction Strength Parameters for Simulated Data for Dataset with 40 Time Points

To ↓/From Æ Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Gene 1 0.53 ± 0.72 -0.22 ± 0.41 -0.10 ± 0.43 1.37 ± 1.16 0.88 ± 0.74
Gene 2 1.54 ± 0.78 0.28 ± 0.42 0.49 ± 0.62 0.33 ± 0.55 0.28 ± 0.53
Gene 3 1.35 ± 0.80 0.34 ± 0.57 1.07 ± 1.59 0.55 ± 0.63 0.26 ± 0.46
Gene 4 0.23 ± 0.57 -0.35 ± 0.61 -0.51 ± 0.64 0.40 ± 0.69 0.84 ± 0.74
Gene 5 -0.01 ± 0.31 -0.62 ± 0.67 -0.91 ± 0.69 0.55 ± 0.81 0.65 ± 0.63

Learned regulation strength parameters b for the simulated dataset with 40 time points. Given are mean and standard deviation of the sampled
interaction parameters. True edges which are present in the reference network are indicated in bold.
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stimulation were measured using quantitative PCR, measur-
ing 15 time points in 3 minute intervals in time series 1, and
11 time points in 5 minute intervals in time series 2.

Measurements in both time series consist of negative (base 2)
log-ratios of the genes of interest to housekeeping genes, we
therefore transformed the measured data to recover the
original ratios.Weused the first time series (3minute interval
data) for network inference, i.e., T1 = 15.

Figure 3a shows the original engineered network. The
topology is the same that we used in the simulation
study. We attempted to reconstruct this network from the
experimental data alone. For this purpose we ran a
Markov chain with 60, 000 steps and a burn-in of 10,
000. The parameters used for the gamma prior for the
synthesis rate, degradation rate and Hill coefficient, T2,
σ1

2 and σ 2
2 were set as described for the simulated data.

We set the parameters for the beta prior on the
smoothing factor to a’ = 5 and b’ = 100.

The hyperparameters for the Lq prior on the regulation
strengths were set to q = 1 and s = 2. Parameters for the
gamma priors on the threshold parameters were

manually set to concentrate probability mass near the
mean concentration value for each gene individually.

An evaluation of results using the mean of the Markov
chain for each parameter, as done for the simulated data,
results in AUC values that are equivalent to guessing
(data not shown). This might indicate that either the
level of noise present in the experimental data is too
high, or that the posterior distribution has multiple
modes, with the mean being an inappropriate summary
statistic. We therefore searched the points sampled for
the maximum a-posteriori mode, and evaluate this mode
further in the following. Clearly, data from the addi-
tional modes are available and can be studied similarly.

The regulation strength parameters for the maximum a-
posteriori mode are shown in Table 4. The dynamic
behavior and fit of the model prediction to the
experimental data is depicted in Figure 5. Obviously,
the general dynamics of the original data is well
represented, with a moderate amount of smoothing.
AUC values of the reconstructed network are 0.532
(guessing: 0.358) for sensitivity vs. 1-specificity, and
0.255 (guessing: 0.14) for precision to recall.

Table 4: Inferred Interaction Strength Parameters for DREAM 2 Challenge #3 Data

To ↓/From Æ Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Gene 1 1.03 0.03 -0.05 -0.62 0.12
Gene 2 1.09 1.55 -0.09 0.00 -0.10
Gene 3 0.10 -0.04 0.56 0.16 -0.11
Gene 4 -0.15 -0.03 -0.43 0.26 0.09
Gene 5 0.77 -0.16 0.01 0.01 0.44

Reconstructed maximum-a-posteriori regulation strength parameters b for the DREAM 2 challenge #3 data. True edges present in the reference
topology are marked in bold.

Figure 4
AUC Values for Simulated Data. AUC values for different noise levels and different numbers of time points used for
network reconstruction. The standard deviation of the noise was varied from s = 0 to s = 0.3, the number of time points from
T = 10 to T = 200. The plots show (a) AUC values under the ROC curve and (b) AUC values for PR curves for varying T and s.
The blue surface indicates the AUCROC and AUCPR values that would follow for random guessing.
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To assess the quality of this result, we next compared
performance of our approach to the performance of
other approaches submitted to the DREAM 2 challenge.
For this purpose, we computed performance measures as
were used in the DREAM 2 challenge for our inferred
network, and show results in Table 5. AUC values for this
comparison were calculated as described in [51]. Since
our method gives us a topology with positive and
negative regulation strengths, we have transformed our
results to be suitable for the evaluation method used in
DREAM 2:

• By skipping the sign and dividing by the largest
learned regulation strength for the DIRECTED-
UNSIGNED challenge.
• For the two DIRECTED-SIGNED challenges we only
took the regulation strengths with the appropriate
sign and divide them by the highest absolute
regulation strength.

Our method outperforms all submitted results in the
challenge DIRECTED-SIGNED-INHIBITORY. One diffi-
culty we observed was, that our approach learned many
strong self-regulations of genes, possibly because of an
improper balancing of the priors on synthesis/degrada-
tion rates and regulation strengths. Since there are no
self-regulations in the DREAM 2 challenge #3 data, we
provide an additional evaluation when disregarding self-
regulations, results are shown in the third column of
Table 5. In this case, we not only outperform all
submitted approaches in the DIRECTED-SIGNED-INHI-
BITORY challenge, but also beat the best models in the
DIRECTED-UNSIGNED challenge.

Discussion and Conclusions
We have developed a novel methodological approach to
reverse engineer gene regulatory networks from gene
expression time series data, and evaluated this approach
on both simulated and real gene expression data. The
combination of ordinary differential equations and the
Bayes’ regularized inference technique can be used for
the quantitative analysis of complex cellular processes.
Non-linear differential equations are able to describe
complex dynamic behavior, and a rich mathematical
theory for analyzing them is well established. Our
method combines these advantages of differential
equations with the advantages of a Bayesian framework,
which is able to capture noise in data, makes it possible
to include biological knowledge into the learning
process, and allows the computation of probability
distributions over model topologies and model para-
meters.

The latter is one of the main advantages of the MCMC
approach. The information about distributions can be
used to make predictions of future states of the network
together with confidence intervals on the predictions
made. This may allow it to take alternative future
scenarios into account, and could be used to design
additional most informative experiments that will help

Table 5: Results of DREAM 2 Challenge #3 Data Compared to Other Approaches

Challenge Best submitted Our method No self-regulations

DIRECTED-SIGNED-EXCITATORY AUC = 0.79 AUC = 0.61 AUC = 0.79
AUCPR = 0.72 AUCPR = 0.25 AUCPR = 0.54

DIRECTED-SIGNED-INHIBITORY AUC = 0.63 AUC = 0.96 AUC = 0.96
AUCPR = 0.14 AUCPR = 0.45 AUCPR = 0.45

DIRECTED-UNSIGNED AUC = 0.73 AUC = 0.56 AUC = 0.79
AUCPR = 0.55 AUCPR = 0.30 AUCPR = 0.57

Results of the DREAM 2 challenge #3 data of our method (second column) compared to submitted best results from [53] (first column). The third
column gives the AUC values for our method when self-regulations are omitted. Our method clearly outperforms all submitted methods in the
DIRECTED-SIGNED-INHIBITORY challenge; furthermore, when neglecting self-regulations, we also beat the best submitted method in the
DIRECTED-UNSIGNED challenge.

Figure 5
Learned Dynamics of DREAM 2 Challenge Data. Plot
of the experimental data from the DREAM 2 challenge, in
comparison to time courses simulated with reconstructed
model parameters. Shown in black is the smoothed data.
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to distinguish between corresponding topologies or
parameter sets. We therefore think that our approach
will be highly useful to elucidate regulatory networks in
an iterative procedure with several rounds of experiment,
network inference, and experiment design.

In contrast to the usual approach of minimizing an error
between experimentally measured concentrations and
model predictions, our likelihood function uses the
difference between model slopes and experimental
slopes. We furthermore integrate a smoothing spline
approximation into the likelihood, automatically per-
forming an optimized tradeoff between an accurate
representation of the experimental data, and smoothing
out noise. Fitting of model parameters on slopes has the
advantage that no numerical integration of the model is
required in each step of the optimization or sampling.
Instead, we must estimate smoothing splines and slopes.
This can be carried out much faster than numerical
integration, enabling us to use a Markov chain sampler
on the posterior distribution instead of plain maximiza-
tion. We have evaluated our approach on simulated and
on real experimental data from a synthetic gene
regulatory network. On the simulated data, we have
shown that our approach can reconstruct the underlying
topology with high accuracy. As expected, performance
deteriorates with increasing levels of noise and with
decreasing number of different time points available. We
emphasize that the simulated example chosen is a
difficult learning task due to the oscillations in the
data. It is obvious that sufficient data points are required
to sample the full dynamics of the oscillating network,
and that oscillations quickly break down in the presence
of noise.

On the DREAM 2 data, our method yields superior
results when compared to other approaches that were
submitted to DREAM 2 in the DIRECTED-SIGNED-
INHIBITORY and DIRECTED-UNSIGNED categories.
Importantly, our analysis shows that there are multiple
posterior modes that describe the data well, which may
explain a surprising result of the original DREAM 2
challenge: As reported by Stolovitzky et al., none of the
submitted models were able to accurately reconstruct the
original network topology from the synthetic data [51].
Our results indicate that this might be due to a dense
population of local optima, in which network recon-
struction approaches looking for a single optimal
topology might get trapped and return suboptimal
solutions. An obvious conclusion is that further experi-
ments are required to resolve ambiguities in network
reconstruction. This emphasizes the need for robust and
efficient methods for optimum experimental design.
Our sampling approach may be a good starting point for
such experiment design, since it analyzes the full

distribution over model parameters, and therefore yields
information on alternative network topologies and
confidence intervals on parameters, which are instru-
mental to design experiments that elucidate the network
topology further.
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