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Abstract: Advanced battery materials are urgently desirable to meet the rapidly growing demand for
portable electronics and power. The development of a high-energy-density anode is essential for the
practical application of B3+ batteries as an alternative to Li-ion batteries. Herein, we have investigated
the performance of B3+ on monolayer (MG), bilayer (BG), trilayer (TG), and tetralayer (TTG) graphene
sheets using first-principles calculations. The findings reveal significant stabilization of the HOMO
and the LUMO frontier orbitals of the graphene sheets upon adsorption of B3+ by shifting the energies
from −5.085 and −2.242 eV in MG to −20.08 and −19.84 eV in 2B3+@TTG. Similarly, increasing the
layers to tetralayer graphitic carbon B3+@TTG_asym and B3+@TTG_sym produced the most favorable
and deeper van der Waals interactions. The cell voltages obtained were considerably enhanced, and
B3+/B@TTG showed the highest cell voltage of 16.5 V. Our results suggest a novel avenue to engineer
graphene anode performance by increasing the number of graphene layers.

Keywords: DFT; graphene layers; boron-ion battery; adsorption; reduced density gradient

1. Introduction

The past two decades have witnessed impressive improvements in lithium-ion battery
(LIB) technologies for portable consumer electronics, electrical devices, and energy stor-
age [1,2]. LIBs have demonstrated outstanding performance, including superior energy
density, operating voltage, life cycle, and minimal rate of self-discharge, as well as low
volume [3]. Generally, LIBs have exhibited exceptional performance over other known
rechargeable ion battery systems [4–6]. More significantly, the 2019 Nobel Prize award in
Chemistry was received by researchers in the field of lithium-ion batteries [7,8]. Despite
the appealing applicability of LIBs, limitations such as narrow lifetime, inadequate perfor-
mance at low temperatures, and most severely, the swift exhaustion of the lithium mineral
reserves, may represent a setback for LIB technology. For example, around one-quarter of
the global Li precursor materials are utilized to produce LIBs, thereby delivering a strong
hike in the price of lithium carbonate [9–11]. On this premise, a wide range of research has
been dedicated to alternative elements for ion battery technology [2,8,12–14]. Among many
candidates, sodium-ion batteries (SIBs) are expected to substitute the LIBs due to their low
cost, non-toxicity, and nearly limitless sodium mineral reserve [15,16]. Moreover, sodium
possesses similar chemical properties as lithium since they belong to the same alkali metal
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group. The replacement of lithium with sodium could take advantage of the existing and
mature technologies and product lines with only minimal modifications. Unfortunately,
SIBs suffer from low energy storage capacity and energy density, and a low rate of charging
and discharging [17].

The developmental process of ion batteries in the past few decades has advanced since
the discovery of nanotechnology and nanomaterials, which provide excellently performing
electrodes [18–22]. Nanostructures such as graphenylene, nanotubes, nanoeggs, nanocones,
fullerene, and graphene have been studied for nano-electrode applications [23–25]. For in-
stance, a report from Youn et al. [8] showed that graphene nanomaterials have excellent ion
battery electrode properties [26]. Particularly, structural modifications such as doping with
foreign materials and/or chemical functionalization of electrode nanostructures have been
reported to enhance the performance of these nanomaterials [1,27–29]. , reported that boron
nitride nanosheets (BNNS) have improved anodic voltage capacity when functionalized
with conducting polymers such as polypyrrole [1]. Furthermore, Hardikar et al. (2014) [28]
and Qie et al. [30] reported improved performance of LIB through the replacement of
graphene’s carbon atoms with boron or nitrogen. Similarly, in 2013, Yu [31] reported
that the performance of LIB anodic materials can be significantly improved by defective
nitrogen-doping of graphene sheets. Yu established that N-substituted graphene possess-
ing double vacancies is mostly likely to significantly enhance the performance of LIBs.
Experimentally, Chen et al [32] studied the effect of N-doping of hard carbon for robust
anodic material application for high-performance potassium-ion batteries (PIBs). Their
report showed a high-capacity rate of 154 mAh/g at 72 cycles and a long-lasting life cycle
of 4 × 103 with efficient rate capability. Similar improved electrode properties, such as
enhanced conductivity and voltage capacities via carbon anode N/S-codoped hierarchy for
SIBs, have also been reported [33]. Commonly, less compact elements such as boron and
nitrogen can yield suitable adsorption sites for ions that show weak interaction with the
pristine graphene.

Graphene is a 2D nanosheet comprising sp2-hybridized carbon atoms. The sp2-
hybridized bonds offer excellent structural reliability and outstanding mechanical proper-
ties, which are important for anodic material applications [34–49]. Its honeycomb extended
network represents the fundamental block structure for other crucial allotropes such as
stacked 3D graphite, rolled form 1D nanotubes, and the wrapped form 0D fullerenes [50].
Graphene has been extensively investigated as an anodic material [51–54] owing to its
properties such as superior surface area and promising electronic properties [30]. More
specifically, one-dimensional nanotubes and zero-dimensional fullerenes have been utilized
as anodic materials in LIBs and have demonstrated increased electrochemical perfor-
mance [51,55,56]. However, these carbon-based materials only exhibit short-lived enhanced
performance when compared with 3D graphite. It is already established that the perfor-
mance of nanomaterials extensively relies on their morphologies and structures. Hence,
graphene nanosheets would most likely provide improved electrochemical activities. Using
first-principle simulations, Gerouki et al. reported that graphene sheets of ca. 0.7 nm
thick offer the best storage density with Li4C6 [57], while Hardikar et al. reported the
electrochemical performance of LIBs with graphene sheets of four layers and a large spe-
cific surface area of 492.5 m2/g [30]. Lian et al. obtained an excellent specific capacity of
about 900–1264 mAh/g for more than four layers of high-quality graphene sheets [51].
Furthermore, doping graphene support(s) with boron atom(s)/ion(s) demonstrated an
improvement in the anodic performance of the support materials and, consequently, the cell
voltages [58]. It has conferred on the support materials high electronic mobility, indicating
potential to attain an excellent rate of performance.

Despite these efforts, there are limited reports on the intercalation of elements such as
boron within the layers of high-quality graphene nanosheets for improved anodic boron-
ion batteries (BIBs). Hence, in the present study, we report a theoretical investigation
of the anodic performance of graphene nanosheets for boron-ion batteries. Previous
reports [30,51,57] have shown that multilayer graphene with fewer layers demonstrates
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superior electrochemical performance for ion battery anodic applications. Therefore, we
investigated the electrochemical performance of single-layer to four-layer graphene sheets.
With this investigation, we aim to pave the way for the successful design of extremely
effective materials for energy storage.

2. Theoretical Methods

All structural optimizations and electronic properties calculations were performed
employing Density Functional Theory (DFT) as implemented on Gaussian 09 suite. The
Perdew–Burke–Ernzerhof (PBE) functional belonging to the generalized gradient approx-
imation (GGA) functional was used to account for the exchange–correlation energy be-
cause it provides reasonable accuracy without prolonged computational times, while the
6–311 G(d,p) basis set was adopted [8,59–61]. The PBE is an effective standardized func-
tional because, by design, each component adheres to some exact conditions [62]. It follows
the spin-scaling relationship exactly and reclaims the linear response of the LDA for a
small-scale gradient [63]. The PBE functional is a full ab initio functional which relies on
µ, β, K, and γ parametric values fixed from theoretical factors. Similarly, the 6–311 G(d,p)
basis set was adopted because it provided a reliable assessment of the energies of solvation
when employing an implicit solvent standard/prototype when compared to other highly
revered basis sets [64]. The influence of dispersion-corrected functionals on the geometry
of the layers was similarly examined using Grimme’s D3 approach [65–68]. Typically, all
atoms were set free in the single- and double-layer slab. The resulting layers slab models
are shown in Figure 1. However, to stabilize the computed surface energies for the three
and four layers, the atoms were frozen. Studies have shown that freezing layers does not
affect surface energies [59]. The adsorption energies (Ead) were calculated according to the
following equation [69]:

Ead = EComplex − (Eadsorbate + Esubstrate) (1)

where Ecomplex, Eadsorbate, and Esubstrate represent the energies of the absorbate and boron
ion(s), graphitic layer(s), and the substrate, respectively. Likewise, the final cell voltages
(Vcell) were calculated utilizing the Nernst equation:

Vcell =
−∆Gcell

zF
(2)

where zF represents the charge on the metal ions and Faraday constant, and ∆Gcell stands
for the Gibbs free energy of the overall cell reactions as

∆Gcell = ∆Ecell + P∆V− T∆S (3)

where ∆G corresponds to the change in the internal energies of the cell, because the
influences of entropy and the volume effects are insignificant (<0.01 V) to the cell voltage
(Vcell) [1]. We investigated the effect of the number of layers and boron ions on the cell
voltage. Our model of the systems with pristine layered graphene sheets is illustrated
in Figure 1. The models of the boron-intercalated layered graphene sheets are shown in
Figure 2. The GaussSum program was used to depict the density of states (DOS) plot [70].
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(BG), (e,f) trilayer graphene sheet (TG), and (g,h) tetralayer graphene sheet (TTG). (b,d,f,h) Side-
view orientation of the graphene sheets. 
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(e,f) B@TG (side and top views), (g,h) B@TTG (side and top views), (i,j) B3+@MG (side and top 
views), (k,l) B3+@BG (side and top views), (m,n) B3+@TG (side and top views), and (o,p) B3+@TTG 
(side and top views). 

3. Results and Discussion 
3.1. Structural Properties 

Pristine graphene nanosheets: The optimized electronic structures of the graphene sheet 
and the different multilayer orientations of the sheets are shown in Figure 1. In the multi-
layer orientations, the graphene sheets were differently orientated: AB and AA for bilayer; 
ABA and AAB for trilayer; and ABAB, AABB, and AABA for tetralayer before optimiza-
tion. However, after optimization, it was observed that the layers favored AA orientation 
in all the arrangements, as similarly observed by other reports [8]. 

Figure 1. Optimized structures of (a,b) monolayer graphene sheet (MG), (c,d) bilayer graphene sheet
(BG), (e,f) trilayer graphene sheet (TG), and (g,h) tetralayer graphene sheet (TTG). (b,d,f,h) Side-view
orientation of the graphene sheets.
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(e,f) B@TG (side and top views), (g,h) B@TTG (side and top views), (i,j) B3+@MG (side and top views),
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3. Results and Discussion
3.1. Structural Properties

Pristine graphene nanosheets: The optimized electronic structures of the graphene sheet
and the different multilayer orientations of the sheets are shown in Figure 1. In the
multilayer orientations, the graphene sheets were differently orientated: AB and AA for
bilayer; ABA and AAB for trilayer; and ABAB, AABB, and AABA for tetralayer before
optimization. However, after optimization, it was observed that the layers favored AA
orientation in all the arrangements, as similarly observed by other reports [8].
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Boron-intercalated and boron-free graphene nanosheets: Figure 2 shows the optimized
structures of the boron atom and its corresponding ion (B3+) adsorbed on the monolayer
graphene sheets (MG) (Figure 2a,b,i,j). The boron species preferred a central position on the
MG after optimization even after being positioned at different points on the sheets before
optimization. In the multilayered graphene orientations, the intercalated B or B3+ preferred
the edges of the multilayer sheets after optimization. The reduced density gradient (RDG)
maps for the complexes imply weak van der Waals interactions predominantly among
the boron species and the graphene sheets. It may offer explanations for the preferred
arrangements of the complexes. As shown in Figure S1 in the Supplementary Materials,
the TG and TTG have two boron atoms and/or ions (B3+) alternatively intercalated within
two layers of the graphene sheets.

We examined the distances between the layers of the graphene (α-layer and β-layer)
and the boron species (B/B3+). As shown in Figure 3, the red bars represent the distance or
degree of compactness between the β-layer and the boron species. Similarly, the green bars
represent the degree of compactness between the α-layer and the boron species (B/B3+).
The monolayer graphene arrangement results from the “α-layer”-B/B3+ arrangement with
the subsequent multilayer arrangements resulting from the successive addition of two
or more graphene layers in the α- and/or β-layered direction(s). The “α-layer”-B/B3+

distances (the green bars) are generally shorter than the “β-layer”-B/B3+ distances (the
red bars), probably due to stronger interaction between the α-layer and the boron species
before the subsequent addition of the β-layer(s) to generate the multilayers. The β-layer
distances from the boron atoms (B) are also longer than their corresponding distances from
the ionic boron species (B3+), which further amplifies the ionic interaction effect of the
boron with the graphene layer(s).
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Figure 3. The distance between the graphene layers (α-layer and β-layer) and the boron species
(B and/or B3+). The green bars represent the “α-layer”-B/B3+ distance while the red bars represent
the “β-layer”-B/B3+ distance.

In the cases of arrangements having more than one boron atom/ion, similarly, distance
trends and effects are pertinent. Generally, the presence of the boron atoms/ions interca-
lation influences the degree of compactness of the graphene layer arrangement; however,
this may likely be insignificant to the progressive drifting of the boron atoms and/ions
during the charging and discharging process of the ion battery, as illustrated in the RDG
surface analysis.
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3.2. Electronic Properties of Graphene Sheets and Absorbed B3+ on the Graphene Sheets

The energies of HOMO, LUMO, and HOMO–LUMO bandgap of the graphene sheets
and the intercalated B3+ ions are calculated in Figure 4a–g and Figures S2–S5 in the Sup-
plementary Materials. The presence of higher HOMO energy is a characteristic associated
with donating tendencies, while low LUMO energy is considered as accepting ability.
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Figure 4. Molecular orbital HOMO (Lower) and LUMO (upper) of (a) tetralayer graphene sheet
(TTG), (b) B@TTG-sym, (c) B3+@TTG-sym, (d) B@TTG-asym, (e) B3+@TTG-asym, (f) 2B@TG (side
and top views), and (g) 2 B3+@TTG (side and top views).

The HOMO energies (Table S1 in Supplementary Materials) of the graphitic layers
relatively decrease from monolayer to tetralayer, whereas the LUMO energies recorded no
significant changes. This suggests that the HOMO and LUMO levels of graphene sheets
were significantly stabilized by the adsorption of the B3+ ion. The HOMO and LUMO
levels shift from −5.085 and −2.242 eV in MG to −20.08 and −19.84 eV in 2B3+@TTG.
Although there are no significant differences between the energies of the HOMO and
LUMO of the singly adsorbed B3+ ions, relative variations are seen with doubly adsorbed
B3+ ions: −20.08 and −19.84 eV for 2B3+@TG and −18.33 and −17.66 eV, corresponding
to 2B3+@TTG, which can be attributed to the addition of B3+ into the graphene sheets.
Accordingly, upon adsorption of B3+, the global electronic energy bandgap (Eg) of the
graphene sheets is reduced significantly to about 99.89%, and the same trend is observed
with adsorbed neutral boron (Table S1 in Supplementary Materials).

The observed order with adsorbed neutral boron could be due to the existence of
unpaired electrons in the valence shell of the neutral boron; the HOMO level of the graphitic
layer is largely impacted by altering to higher energies, suggesting a considerable destabi-
lization [71]. Similarly, the Eg of the doubly adsorbed B3+ increases in comparison with the
singly adsorbed B3+, which could be attributed to the decreased LUMO level and increased
HOMO level. In electrostatic potential maps (ESPs), colors are used as indicators for dif-
ferent electrostatic potential values: blue demonstrates high positive (electron-deficient)
regions of the species, while green displays the region of zero potential [72]. As illustrated in
Figures S6 and S7, the ESPs of the B3+ form of B3+@MG, B3+@BG, B3+@TG, B3+@TTG_asym,
B3+@TTG_sym, 2B3+@TG, and 2B3+@TTG reveal predominantly more electropositive re-
gions (blue color). This is more severe with B3+@MG, B3+@BG, 2B3+@TG, and 2B3+@TTG
configurations. However, with the addition of layers, a slightly neutral region with B3+@TG,
B3+@TTG_asym, and B3+@TTG_sym was observed.
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3.3. Adsorption of B3+ Ions on the Wall of Graphene Sheets

The adsorption of B3+ ions on the wall of the solid host is considered an alternative
B3+-storage mechanism. The model sheets studied with adsorbed B3+ ions are depicted
in Figure 2. The role of the numbers of graphene sheets and the number of B3+ ions
are examined. We studied the adsorption characteristics of graphitic carbon sheets by
intercalating B3+ ions between the bilayer, trilayer, and tetralayer (Figure 2). The positions
of the intercalated B3+ ions between the graphene sheets were selected thoroughly. All the
B3+ ions were placed in the central plane defined by the graphene sheet and allowed to
relax in all directions.

The adsorption energies (Ead) for the singly intercalated B3+ ions were calculated
as 3.987, −320.1, −477.0, −638.4, and −637.6 kcal/mol for B3+@MG, B3+@BG, B3+@TG,
2B3+@TTG_asym, and B3+@TTG_sym, respectively (Figure 5). Furthermore, the tetralayer
graphitic carbon B3+@TTG_asym and B3+@TTG_sym exhibited the most favorable and
stable adsorption configuration of B3+ intercalated within different layers of graphene
sheets. Similarly, the Ead corresponding to the formation of 2B3+@TG and 2B3+@TTG
configurations having double B3+ ion intercalations are −467.9 and −628.7 kcal/mol,
respectively. Thus, the addition of an extra sheet to form 2B3+@TTG was more energetically
favored than the formation of the 2B3+@TG with fewer layers. Meanwhile, a very weak
interaction was observed on B3+@MG with an Ead of 3.987 kcal/mol, in agreement with
some research findings on Li [73].
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Figure 5. Adsorption energies (Ead) of B3+ ions on the seven studied systems including B3+@MG,
B3+@BG, B3+@TG, B3+@TTG–asym, B3+@TTG–sym, 2B@TG, and 2 B3+@TTG.

The reduced density gradient (RDG) isosurfaces of the interactions are shown in
Figure 6 and Figure S8. Bader’s theory of atoms in molecules categorized van der Waals
interactions, strong steric effects, and hydrogen bond interactions to exhibit low ρ and
relatively larger ρ values, respectively [74]. RDG isosurfaces plots reveal the binding
interaction region and the modes [75]. The RDG isosurfaces analysis results of BC6 and
BC2 mode of binding interactions manifest the weak van der Waals interaction between
B3+ and graphene sheets, as displayed in Figure 6 and Figure S8, suggesting the physical
nature of the reaction and high diffusion affinity of the B3+ ions [76]. Except for B3+@MG,
in which the intercalated B3+ is equidistant with six carbons of the graphene ring to form
BC6 (Figure 6a,b), all other configurations revealed the BC2 geometry, where the B3+ ions
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are adjacent to two carbon atoms, one above and one below the graphene layer (Figure 6c–f
and Figure S8).
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To gain in-depth knowledge of the interactions between the intercalated B3+/B atom
and the numbers of graphene sheets, we calculated the density of states (DOS) and the
projected density of states (PDOS) of the B3+/B atom adsorbed graphene sheets as displayed
in Figure 7 and Figures S9–S12. The projected density of states (PDOS) plots revealed the
reduction in Eg from 2.843 eV in MG to 2.472 eV with TTG, which is likely due to an increase
in the number of graphene sheets (Figure 7). Similarly, as seen in the PDOS and the frontier
molecular orbital, the number of states at the HOMO is influenced by the carbon atoms,
while the contribution at the LUMO increases with an increase in the graphene sheet. In
general, the valence and conduction bands of MG, BG, TG, and TTG are dominated by the
p orbitals of both types of carbon atoms (either bonded with C or H). Unlike the boron
atoms, the adsorption of B3+ significantly reduces the levels of HOMO and LUMO in the
graphene sheets and limits their Eg, which would simplify the diffusion of electrons or
charges. Analysis of the PDOS and frontier molecular orbital implies that the LUMO is
localized on the B3+ while the HOMO is confined on the graphitic sheets but improved
with the addition of the sheets. Furthermore, the adsorption of two B3+ into TG and TTG
followed the same trend. However, upon adsorption of boron, a new electronic peak
(indicated by the red arrow) is generated, which mainly comes from the contribution of
2p unpaired electrons of the B atom (Figures S9a–c, S10c,d and S12c,d). The presence of
unpaired electrons at the HOMO generates unstable singly occupied molecular orbitals,
resulting in the lowering of the HOMO from −5.085 eV in B@MG to 0.040 eV in 2B@TG
(Table S1). In general, the PDOS and the frontier molecular orbital analysis illustrate that
the contribution of the number of states at the HOMO is mainly influenced by the boron
atoms, while the LUMO is controlled by the atoms of the graphene sheet.
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Natural bond orbitals (NBO) population analysis was conducted to estimate the charge
transfer in the complexes and is presented in Figures S13 and S14. As shown in Table 1,
the complexes exhibit σ donation between the graphene sheets and the B3+ ion, and π

back-donation from the B3+ ion to the vacant orbitals of the graphene atoms. The NBO
results likewise indicate that the charge transfer is more sensitive to the sum of adsorbed
B3+ ions in 2B3+@TG and 2B3+@TTG than the other complexes, suggesting greater stability
in the B3+@MG, B3+@BG, B3+@TG, B3+@TTG_asym, and B3+@TTG_sym configurations in
contrast to the 2B3+@TG and 2B3+@TTG complexes.

Table 1. Summary of NBO analysis of π-complexation between B3+ ions and the graphene sheets.

Complexes C→B3+ Interaction (σ
Donation)

B3+→C Interaction (p−π*
Back-Donation) Total Charge

B3+@MG 0.645 −0.049 0.596

B3+@BG 0.971 C1 = −0.413
C2 = −0.409 0.560

B3+@TG 1.082 C1 = −0.251
C2 = −0.242 0.836

B3+@TTG_asym 0.916 C1 = −0.443
C2 = −0.429 0.480

B3+@TTG_sym 0.981 C1 = −0.491
C2 = −0.219 0.626

2B3+@TG B3+1 = 1.212
B3+2 = 0.994

C1 = −0.328
C2 = −0.210
C1 = −0.323
C2 = −0.237

0.630

2B3+@TTG B3+1 = 1.002
B3+2 = 1.017

C1 = −0.443
C2 = −0.400
C1 = −0.325
C2 = −0.341

0.633

C1 and C2 represent the shortest distant carbon of the graphene sheet above or below, respectively, and B3+ is the
adsorbed boron ion, π* represent the anti-bonding π-orbitals.
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3.4. Ion Battery Applications

The graphene sheets (single and multilayers) were considered as anodic electrodes for
the boron-ion batteries with the half-cell reactions taking place at the cathode and anode
shown in Equations (4)–(7). Equation (8) also shows the overall cell reaction.

Cathode: B3+ + 3e− → B (4)

Anode: B@sheet→ B3+@sheet + 3e− (5)

Charging Process: B3+@sheet + 3e− → B@sheet (6)

Discharging Process: B@sheet→ B3+@sheet + 3e− (7)

Overall cell reaction: B3+ + B@sheet→ B3+@sheet + B + ∆Gcell (8)

where B/B3+ is the boron atom/ion and “sheet” is the monolayer graphene sheet (MG),
bilayer graphene sheet (BG), trilayer graphene sheet (TG), and tetralayer graphene sheet
(TTG). The cell voltage (Vcell) and the cell energy are computed according to Equations (2)
and (3).

As depicted in Figure 5, the adsorption energies of the boron atom(s) and/or ion(s)
with the graphene sheets increased negatively as the number of the layers increased, with
the boron ion (B3+) adsorption being more negative than the atomic counterparts. The
monolayer graphene sheet (B3+/B@MG) has the least negative adsorption energy, while the
tetralayer graphene sheet (B3+/B@TTG) showed the highest negative adsorption energy.
The complexes with more negative adsorption energies express more favorable and deeper
van der Waals interactions [65,77]. Table 2 shows the overall cell energies (∆Ecell) and the
corresponding voltages of the cells. The cells’ energy increases with an increasing number
of graphene sheets. However, for the intercalation of two atoms/ions of boron, the overall
cell adsorption energy is higher. This can be attributed to the increased weak interactions
between the graphene sheets and the two boron ions, which still permit free movement of
the boron ions within the graphene layers during the charging and discharging processes.

Table 2. The overall cell energy change (∆Ecell) and the cell voltages of the graphene sheet(s).

∆Ecell (kcal/mol) Vcell (Volts)

B3+/B@MG 1.513 13.7
B3+/B@BG 1.701 15.4
B3+/B@TG 1.742 15.8
B3+/B@TTG_asym 1.815 16.5
B3+/B@TTG_sym 1.786 16.2
2B3+/2B@TG 2.723 12.4
2B3+/2B@TTG 2.959 13.4

Moreover, compared to sodium and lithium-ion batteries (SIBs and LIBs) [1] and
other battery materials reported (Table 3), the voltages obtained here are significantly
improved. The B3+/B@TTG showed the highest cell voltage of 16.5 V, which indicates that
in addition to the complexes being efficient alternatives for the anodic electrode of boron-ion
batteries, increasing the number of the graphene layers also improved the electrochemical
performance of the storage system. Generally, the boron-graphene sheets have shown
excellent voltage outputs, hinting at their suitability as anodic material(s) for enhancing the
energy storage performance of boron-ion batteries (BIBs) if extensively studied.
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Table 3. Comparison of the present results with those reported in the literature.

S/N Support(s) Dopant(s) Cell Voltage(s) Ref.

1 Boron nitride sheet Li/Li+, Be/Be2+, Na/Na+,
Mg/Mg2+, and polypyrrole

Li-ion = 2.06 V
Na-ion = 1.37 V
Be-ion = 6.60 V
Mg-ion = 3.82 V

[1]

2 Boron nanorod Li/Li+ Li-ion = 2.00 V [78]

3 Magnesium polymorphs Na/Na+ Na-ion = 1.5 V [79]

4 Inorganic boron nitride nanocluster Na/Na+, F−, Cl−, and Br− Na-ion = 3.39 V [80]

5 Boron nitride nanosheet Na/Na+, P, and Al Na-ion = 2.31 V [12]

6 Hexagonal boron phosphide Li/Li+, Na/Na+, K/K+
Li-ion = 1.37 V
Na-ion = 0.97 V
K-ion = 0.93 V

[81]

7 Aluminum/boron phosphide
nanocluster Na/Na+, F−, Cl−, and Br−

Na/F@B12P12 = 4.5 V
Na/Cl@B12P12 = 3.47 V
Na/Br@B12P12 = 3.5 V
Na/F@Al12P12 = 3.5 V
Na/Cl@Al12P12 = 3.22 V
Na/Br@Al12P12 = 3.20 V

[82]

8 Phosphorene Mg/Mg2+ Mg-ion = 0.833 V [83]

9 Graphene-like MoS2 cathode and
ultrasmall Mg nanoparticles Mg/Mg2+ Mg-ion = 1.8 V [84]

10 B40 fullerenes Mg/Mg2+, F−, Cl−, and Br− Mg-ion = 8.8 V [85]

11 Multilayer graphene sheet B/B3+ B-ion = 16.5 V Present study

4. Conclusions

We have studied the high-energy-density anodic compartment for boron-ion batteries
as an alternative to lithium-ion and sodium-ion batteries using the first-principles calcu-
lations within the framework of Density Functional Theory. We investigated the electro-
chemical performance of the boron ion(s) on the monolayer, bilayer, trilayer, and tetralayer
graphene sheet electrodes. Significant decreases in the HOMO–LUMO energy gap from
−5.085 eV to −2.242 eV for B3+@MG and from −20.08 eV to −19.84 eV for 2B3+@TTG were
recorded. The predominant interaction force for the graphene layers was van der Waals, as
predicted by the reduced density gradient isosurface analyses, with the B3+@TTG_asym
and B3+@TTG_sym configurations showing the most favorable interactions.

Furthermore, the electrochemical cell voltages obtained with the single-layer (B3+/B@MG)
and/or multilayer (B3+/B@BG, B3+/B@TG, and B3+/B@TTG) graphene sheets were sig-
nificantly improved, with B3+/B@MG (13.7 V) showing the least voltage. On the contrary,
B3+/B@TTG (16.5 V) showed the highest voltage. The results revealed that increasing
the number of graphene layers improves the electrochemical performance of the anodic
electrode of the boron-ion battery. Therefore, the number of layers or the thickness of the
graphene nanosheets is another effective parameter to tune the anode performance for
boron-ion batteries. This might suggest an additional dimension to further engineer the
graphene anode performance by increasing the number of graphene layers. Our theoretical
investigations demonstrate the suitability of the graphene-based anodic electrodes for
boron-ion batteries when extensively investigated for large-scale application as a highly
efficient energy storage substitute for lithium- and sodium-based ion batteries, which could
be beneficial to the material design of ion batteries.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12081280/s1, Figure S1: Optimized structures of (a) and
(b) 2B@TG (side and topviews), (c) and (d) 2B@TG (side and topviews), (e) and (f) 2B3+@TTG (side and
topviews), (g) and (h) 2B3+@TTG (side and topviews); Figure S2: Molecular Orbital HOMO (Lower)
and LUMO (upper) of (a) Monolayer Graphene Sheet (MG), (b) B@MG, (c) B3+@MG; Figure S3:
Molecular Orbital HOMO (Lower) and LUMO (upper) of (a) Bilayer Graphene Sheet (BG) (b) B@BG,
(c) B3+@BG; Figure S4: Molecular Orbital HOMO (Lower) and LUMO (upper) of (a) Trilayer Graphene
Sheet (TG), (b) B@TG, (c) B3+@TG; Figure S5: Molecular Orbital HOMO (Lower) and LUMO (upper) of
(a) 2B@TG and (b) 2B3+@TG; Figure S6: Electrostatic potential (ESP) map of (a) B3+@MG, (b) B3+@BG,
(c) B3+@TG, (d) B3+@TTG_sym and (d) B3+@TTG_asym; Figure S7: Electrostatic potential (ESP)
(a) 2B3+@TG and (b) 2B3+@TTG; Figure S8: The reduced density gradient (RDG) isosurfaces analyses
of (a), (b) and (c) 2B3+@TG (complex and RDG), and (d), (e) and (f) 2B3+@TTG (complex and RDG).
Where blue regions correspond to strong hydrogen bonds; red regions indicate strong steric effects,
whereas green regions describe strong van der Waals interactions; Figure S9: Partial density of states
(PDOS) plots (a) B@MG (b) B@BG and (c) B@TG; Figure S10: Partial density of states (PDOS) plots
(a) 2B3+@TG (b) 2B3+@TTG (c) B@TG_sym and (d) 2B@TTG; Figure S11: Partial density of states
(PDOS) plots of (a) B3+@MG (b) B3+@BG and (c) B3+@TG; Figure S12: Partial density of states (PDOS)
plots of (a) B3+@TTG_sym (b) B3+@TTG_asym (c) B@TTG_sym and (d) B@TTG_asym; Figure S13:
Natural bond orbital charges of (a) B3+@MG, (b) B3+@BG and (c) B3+@TG, (d) B3+@TTG_sym and
(e) B3+@TTG_asym; Figure S14: Natural bond orbital charges of (a) 2B3+@TG and (b) 2B3+@TTG;
Table S1: Electronic properties.
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Abbreviations

RDG Reduced density gradient
MG Monolayer graphene sheets
BG Bilayer graphene sheets
TG Trilayer graphene sheets
TTG Tetralayer graphene sheets
B3+@MG Absorbed boron ion on monolayer graphitic sheets
B@MG Absorbed boron atom on monolayer graphitic sheets
B3+@BG Intercalated boron ion in bilayer graphitic sheets
B@BG Intercalated boron atom in bilayer graphitic sheets
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B3+@TG Intercalated boron ion in trilayer graphitic sheets
B@TG Intercalated boron atom in trilayer graphitic sheets
2B3+@TG Two intercalated boron ions in trilayer graphitic sheets
2B@TG Two intercalated boron atoms in trilayer graphitic sheets
B3+@TTG Intercalated boron ion in tetralayer graphitic sheets (in symmetry to the sheets)
B@TTG Intercalated boron atom in tetralayer graphitic sheets (in symmetry to the sheets)
B3+@TTG Intercalated boron ion in tetralayer graphitic sheets (in asymmetry to the sheets)
B@TTG Intercalated boron atom in tetralayer graphitic sheets (in asymmetry to the sheets)
2B3+@TTG Two intercalated boron ions in tetralayer graphitic sheets
2B@TTG Two intercalated boron atoms in tetralayer graphitic sheets
HOMO Highest occupied molecular orbital
LUMO Lowest occupied molecular orbital
DFT Density Functional Theory
PBE Perdew–Burke–Ernzerhof
GGA Generalized gradient approximation
Ead Adsorption energies
EComplex Energy of the complex (adsorbate and substrate)
Eadsorbate Energy of the boron atom (ionic or neutral)
ESubatrate Energy of the graphene sheets
RDG Reduced density gradient
SIBs Sodium-ion batteries
LIBs Lithium-ion batteries
BIBs Boron-ion batteries
PDOS Projected density of states
DOS Density of states
α-layer The graphene layer directly beneath the intercalated boron atom/ion
β-layer The graphene layer directly above the intercalated boron atom/ion
AA Similar graphene layer stacking for bilayer
AB Different graphene layer stacking for bilayer
ABA Alternated graphene layer stacking for trilayer
AAB Random graphene layer stacking for trilayer
ABAB Alternated graphene layer stacking for tetralayer
AABA Random graphene layer stacking for tetralayer
AABB Regular graphene layer stacking for tetralayer
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