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What Is the Sweetest UPR Flavor for
the b-cell? That Is the Question
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Institute for Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania

Unfolded protein response (UPR) is a process conserved from yeasts to mammals and,
based on the generally accepted dogma, helps the secretory performance of a cell, by
improving its capacity to cope with a burden in the endoplasmic reticulum (ER). The ER of
b-cells, “professional secretory cells”, has to manage tremendous amounts of insulin,
which elicits a strong pressure on the ER intrinsic folding capacity. Thus, the constant
demand for insulin production results in misfolded proinsulin, triggering a physiological
upregulation of UPR to restore homeostasis. Most diabetic disorders are characterized by
the loss of functional b-cells, and the pathological side of UPR plays an instrumental role.
The transition from a homeostatic to a pathological UPR that ultimately leads to insulin-
producing b-cell decay entails complex cellular processes and molecular mechanisms
which remain poorly described so far. Here, we summarize important processes that are
coupled with or driven by UPR in b-cells, such as proliferation, inflammation and
dedifferentiation. We conclude that the UPR comes in different “flavors” and each of
them is correlated with a specific outcome for the cell, for survival, differentiation,
proliferation as well as cell death. All these greatly depend on the way UPR is triggered,
however what exactly is the switch that favors the activation of one UPR as opposed to
others is largely unknown. Substantial work needs to be done to progress the knowledge
in this important emerging field as this will help in the development of novel and more
efficient therapies for diabetes.

Keywords: unfolded protein response (UPR) pathway, b-cell proliferation, b-cell dedifferentiation, immune
attack, heterogeneity
INTRODUCTION

Recently, increased stress of the endoplasmic reticulum (ER), or ER stress, has emerged as a critical
regulator of transcription and translation events in diabetes (1–5). The ER supports correct protein
folding that is essential to maintain protein homeostasis and cell survival; however, this process is
remarkably sensitive as even minute modifications in the cellular milieu can result in protein
misfolding (6, 7). Following nutrient stimulation, freshly transcribed insulin mRNA translated in
the ER drives a 10-fold increase in insulin synthesis that represents about 50% of the total protein
production by the b-cells (7, 8). This massive synthesis and its variations result in a constant hassle
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of the ER. To deal with this challenge, b-cells continuously
supervise protein folding in the ER through a well conserved
mechanism, the unfolded protein response (UPR) (7, 9).

Over the next sections, we will present how UPR is actively
present during important stages of b-cell existence in
physiological and pathological circumstances. We will focus on
processes that are relevant for the development of potential
therapies that target UPR. As such, we will address the role of
UPR in proliferation, inflammation/inflammatory attack and
dedifferentiation of b-cells.
UPR AND DEVELOPMENT OF DIABETES

UPR is a cellular process consisting of an intricate network of
transducers and downstream target genes ensuring correct protein
folding in the ER. UPR comprises of three major sensors: Protein
kinase RNA-like endoplasmic reticulum kinase (PERK),
endoribonuclease/kinase inositol-requiring enzyme 1 (IRE1, or
ERN1), and activating transcription factor 6 (ATF6) (10, 11).
These factors are localized in the ER membrane and they are able
to sense and monitor through their luminal domains the status of
protein folding in the ER (12–17). If an accumulation of unfolded
proteins occurs, these transducers signal via their cytosolic
domains either by direct targeted catalytic activities or by
specific post-translational modulation. The precise mechanism
that triggers UPR is still under debate (18–22), and most probably
there is not a single mechanism involved, but rather the multiple
concerted action of several ones, depending on cell type (23–25).
The downstream effectors converge at the nucleus and induce
UPR targets, finally restoring homeostasis via various processes
described below.

PERK, upon oligomerization followed by autophosphorylation
(26–28), phosphorylates the translation initiation factor 2 (eIF2a)
inducing inhibition of mRNA translation through activation of a
signaling cascade, thus reducing the ER protein load, and
increasing ATF4 translation (13, 27, 29, 30). This results
in overexpression of chaperones, antioxidant genes, but also of
proapoptotic genes, such as CHOP, GADD34, ATF3 and TRB3
that contribute to b-cell apoptosis during terminal UPR (31, 32).
eIF2a has a central role in stress management, being also targeted
by other kinases in response to various kinds of stresses (30, 33–
36). This signaling cascade converging on eIF2a phosphorylation
followed by ATF4 activation is an adaptive pathway for cellular
homeostasis restoration commonly known as Integrated Stress
Response (ISR) (37, 38).

IRE1 possesses both kinase and endoribonuclease
activities. When UPR is induced, dimerization and trans-
autophosphorylation of IRE1 activates its RNase domain and
results in splicing of Xbp1 pre-mRNA and overexpression of
XBP1s, a transcription factor that induces genes-encoding
chaperones, ER-associated protein degradation (ERAD), and
lipid biosynthetic enzymes (12, 17, 39–41). Additionally, IRE1
presents a nonspecific RNase activity responsible for degradation
of mRNAs from ER vicinity, thus reducing import of proteins
into the ER (26, 42, 43). During increased stress, the kinase
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activity of IRE1 is activated and initiates the apoptosis cascade
mediated by signal-regulating kinase 1 (ASK1)/cJun amino
terminal kinase (JNK) (44).

Upon UPR activation, ATF6 is translocated to the Golgi
apparatus, where it is processed by Site-1 and Site-2 proteases
(S1P/S2P) (45, 46). Once the cytosolic fragment (nuclear ATF6,
or nATF6) is generated, it travels to the nucleus and induces
transcription of UPR target genes (47–49). Alone or in
combination with XBP1s, nATF6 acts on increasing
synthesis of chaperones to aid with the misfolded proteins, of
proteins involved in lipid synthesis to increase ER volume, and of
genes responsible for the ERAD pathway. They work for
restoring homeostasis by modulating the amount of ER-
mediated production of ER lipids and proteins necessary to
accommodate variable requirements of ER protein folding and
other functions in response to physiological and pathological
conditions. If any of these mechanisms fail, the ER homeostasis is
lost, a stressed UPR is induced and that ultimately results in cell
apoptosis (11, 32, 50–52).

In diabetes, overactivation of UPR leads to phosphorylation
of IRE1, which results in degradation of proinsulin mRNA (53–
55) activation of JNK pathway, and splicing of XBP1 mRNA.
XBP1s by itself or in cooperation with ATF6 induces expression
of various ER chaperons, such as Herp1, EDEM, HRD1, p58IPK,
and ERAD proteins, followed by swelling of the ER. Moreover,
CHOP mRNA expression is induced by both ATF4 and XBP1s
(5). By depleting CHOP in various diabetes models results in
improved b-cell function and survival (56), although in NOD
mice it is not the case (57). Surprisingly, TUDCA was able to
increase the expression of Atf6 and XBP1 and increased b-cells
survival, reduced islet inflammation and thus lower diabetes
incidence in mouse models of diabetes (58). Therefore, in
diabetes, the erroneous expression of ER chaperones may be
responsible for the predisposition of the b-cell to a terminal UPR
that culminates with cell death induced by CHOP.

PERK-eiF2a-ATF4 and IRE1-XBP1s/ATF6 arms of the UPR
are activated differently by glucose. Surprisingly, low glucose
concentrations result in maximal activation of the first arm,
while protein synthesis, ATP levels and the concentration of Ca2+

in the ER are low, whereas the second arm is inactive. The
response to high glucose concentration is the rapid inhibition of
the ISR, the splicing of Xbp1 pre-mRNA and subsequent
upregulation of XBP1s together with the downstream target
genes to accommodate increased ER machinery load. Finely
adjusting this adaptive response is indispensable to preserve
the identity and function of b-cell (59).
UPR IS VERY DYNAMIC AND DRIVES
HETEROGENIC INSULIN EXPRESSION

Xin and collaborators have shown that in healthy human
subjects, b-cells go through different active states to
accommodate insulin requirements that are characterized by
different levels of UPR and insulin gene expression. They show
that the transition between an active and prolonged insulin
January 2021 | Volume 11 | Article 614123
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secretory state results in induction of a stressed UPR that
diminishes the levels of secreted insulin. After a certain time,
the UPR of the b-cell recovers at a basal level and the cells restart
the production of insulin. They describe several cyclical
individual states of b-cell stress in correlation with insulin
secretion, and low apoptosis and dedifferentiation markers
(60). UPR was induced in a subpopulation of b-cells that
express low insulin levels (INSlowUPRhi) suggesting they
represent a state of recovery from stress. Another population
of b-cells was characterized by INShiUPRlow and most likely
represents a state of active production and secretion (60).
Importantly, the insulin protein amounts are not always
correlated with the mRNA levels. Apparently, in pancreases of
type 1 diabetes (T1D) patients insulin protein levels were very
low; nevertheless proinsulin and INS mRNA were still detected
(61). It is not clear if this occurs due to dedifferentiation of b-cells
or because more precursors of b-cells arise (61, 62). The
characterization of different populations of b-cells based on
their UPR and insulin levels is crucial in diabetes. It is
important to know how these populations change during the
disease progression, and where and when to intervene
therapeutically to recover insulin homeostasis.
b-CELLS WITH ACTIVE UPR PROLIFERATE

One of the questions that puzzled scientists referred to how is
b-cell mass regulation maintained?While it is already established
that stem cells drive regeneration of tissues with fast turnover,
such as skin, gut and blood, a stem cell pool has not yet been
characterized for the pancreatic islets (63). Multiple studies
demonstrated that b-cell mass adjusts in a dynamic way, in
correlation with increased metabolic demand, or upon injury.
Under most conditions, the major driver of postnatal islet cell
expansion is the proliferation of already present b-cells (64).

Several studies suggested that UPR activation in vivo
drives b-cell proliferation. Hodish and collaborators
showed that overexpression of mutant proinsulin is correlated
with both UPR activation and islet size increase (65).
Inhibiting expression of PERK in adult mice resulted in
increased proliferation of b-cells (66). In addition, another
study established that ATF6 pathway that acts in response to
the loss of PERK is regulating the pro-proliferative UPR
mechanism rather than PERK. By using different murine
models of diabetes (glucose-induced hyperglycemia mouse
model; db/db mice and Akita mice) as well as b-cells isolated
from pancreatic donors, they argue that mild UPR drives ATF6-
induced proliferation of b-cells based on the insulin requirement.
Moreover, they show that inhibition of ATF6 and IRE1 pathways
reduce glucose-induced b-cell proliferation in vitro. However,
chemical chaperones abrogated the proliferative effect on the b-
cells (63). Human b-cells are less likely to respond well to
stimulation, as they have a lower basal proliferation than mouse
cells (67, 68). Importantly, there are studies showing proliferation
of b-cells from donors upon UPR stimulation (63). A thorough
study that characterized various b-cells subpopulation from
Frontiers in Endocrinology | www.frontiersin.org 3
healthy subjects showed that the majority of proliferating cells
displayed low insulin expression correlated with activated UPR,
with more proliferating cells in G1S cell cycle phase rather than in
G2M (60).
UPR AND INFLAMMATION IN b-CELLS

The questions raised here are: does the dysregulated UPR from
b-cells facilitate the immune attack, or vice-versa, the cytokines
secreted by the immune cells induced upregulation of the UPR in
b-cells, rendering them more susceptible to apoptosis? Many
studies proved that both are true and mostly interdependent.

Inflammatory Environment Triggers
UPR Activation
Recent work shows the importance of inflammation for UPR
induction and b-cell fate in various diabetes contexts, especially
in T1D (9, 69). There, the progressive invasion of inflammatory
cells, like T-cells, macrophages, dendritic cells, and natural killer
cells within the islets leads to insulitis (9, 70–72). Due to insulitis,
the access of numerous proinflammatory molecules and reactive
oxygen species (ROS) to b-cells, like interleukin-1b (IL1b), TNF,
IFN-g, IL17, and NO, is facilitated as these molecules are secreted
by the invading immune cells. This results in apoptosis of b-cells
(73, 74). Death of b-cells driven by cytokines entails induction of
various transcription factors (NF-kB and STAT1), JNK, which in
conjunction with a stressed UPR, end with activation of
mitochondrial pathway of apoptosis (73, 75, 76). Moreover, upon
stimulation by pro-inflammatory cytokines, b-cells start expressing
and secreting more cytokines and chemokines, resulting in a cross-
talk between the immune cells and the b-cells (77, 78). As a
consequence, many T cells get infiltrated into the islets and cause
destruction of the b-cells initiating diabetes (73, 79, 80).

The low grade inflammation present in the pancreas of T2D
patients is responsible for recruitment of macrophages in the
vicinity of the islets creating a pro-inflammatory milieu and
inducing UPR (81, 82). A recent study provided direct evidence
for the role of ER stress-induced inflammation in T2D. It
revealed that by blocking IL23 and IL24, proinflammatory
cytokines upregulated in the islets of T2D patients, the authors
were able to partially decrease oxidative stress, UPR induction
and restore glucose tolerance in obese mice. In addition, after
reducing ROS with IL22, the improved UPR stress and b-cell
function re-established glucose homeostasis (83).

UPR Facilitates Inflammatory Attack
of b-Cells
This research topic got attention, as emerging data connects
inflammatory responses to UPR in b-cells via the regulator of
inflammation, NFkB (84, 85). Additionally, XBP1 seems to exert
both pro- and anti-inflammatory effects in b-cells depending on
the context established by the anti-apoptotic/anti-oxidative
reaction as opposed to the pro-inflammatory response (47).
Moreover, CHOP was shown to have a pro-inflammatory role
in various disease models, upregulating pro-inflammatory
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cytokines (such as IL1b, IL8) and chemokines (CCL2) in several
tissues (86, 87). However, it is not clear how CHOP activates NF-
kB. In b-cells, studies show that the transcription factor NF-kB is
able to modulate the UPR upon activation by pro-inflammatory
cytokines (88, 89). Reciprocally, the UPR was found to induce
NF-kB activity in correlation with inflammatory responses,
resulting in increased apoptosis and overexpression of
cytokines and chemokines that may be responsible for b-cell
death (74, 89, 90).
UPR IN DEDIFFERENTIATION
OF b-CELLS

It has been established that every cell from any organism, b-cells
included, are derived by differentiation from embryonic stem cells
(91). Differentiation toward b-cells involves synchronized and
rigorously controlled induction/downregulation of certain
transcription factors and effectors in a timely manner (59).
Importantly, cellular differentiation is not unidirectional (92).
Recent data has shown that specific factors can induce mature b-
cells to lose their identity and phenotype and backslide to an under-
differentiated state, or in a progenitor-like condition. This
phenomena is called dedifferentiation and has been involved in
the pathology of diabetes (93–96), being a significant contributor of
the reduction of functional b-cell mass (62, 97). Dedifferentiation of
b-cells is characterized by reduced expression of b-cell-specific
genes, that include essential transcription factors, insulin, genes
responsible for glucose metabolism, genes required for protein
processing and genes of the secretory pathway, accompanied by
induction of genes that are usually repressed or lowly expressed in
mature b-cell, such as the embryonic endocrine progenitor genes.
Expression of these later genes is found in diabetic animals, in the
islets (59, 62, 94). The mechanisms involved in the dedifferentiation
process are still under investigation and here, we will underline
some possible implications of UPR.

In a recent study, Zhu and collaborators have demonstrated
that overexpression of miR24 reduced ER stress-induced b-cells
apoptosis and blocked INS mRNA degradation, though it
induced dedifferentiation of b-cells (98). MiR24 was found to
inactivate the IRE1 sensor. Importantly, they speculated that one
of the downstream effectors of IRE1 was CHOP. As ATF4 was
not affected by miR24, the assumption was that CHOP was not
upregulated via the PERK/ATF4 pathway. Surprisingly, they
demonstrated that XBP1s, effector downstream of IRE1, is
responsible for the apoptosis of b-cells under terminal ER
stress (98). In a T1D model, work from Engin’s group has
shown that downregulating IRE1 before insulitis appearance
results in temporary dedifferentiation of b-cells proved to be
beneficial as it made b-cells more resistant to the immune attack
(99). These dedifferentiated b-cells expressed lower levels of
autoantigens and of MHC class I molecules and upregulated
their immune inhibitory markers (99, 100). It became apparent
that interference with TGFb signaling resulted in induction of
several markers of b-cells maturation (101, 102) and reversed
dedifferentiation (103). The E3 ligase Hsd1 and the cofactor
Frontiers in Endocrinology | www.frontiersin.org 4
Sel1L represent well-conserved ERAD machinery (104) that has
recently been linked to the preservation of b-cells identity via
inhibition TGFb pathway, while their survival and proliferation
were not affected (105).
CONCLUSIONS AND PERSPECTIVES

The correlation between activation of UPR and their insulin
gene expression was shown to divide b-cells into several
populations that evolve from dynamic insulin secretion states
to a stress recovery state when insulin production is decreased
(60). This is an important aspect when developing new therapies
that have a scope to mimic the heterogeneity of the b-cells.
Strategies for regenerating b-cells should consider the
importance to reintroduce these differences in the newly-
emerged cells.

In the b-cells, there are functions of UPR that are ER stress-
independent. Hassler and collaborators, by using mice with
inducible b-cells-specific deletion of IRE1a, established the
importance IRE1a/XBP1s pathway for glucose-stimulated
insulin synthesis. The study revealed that this pathway
regulates recruitment and structure of the ribosome, translation
of pro-insulin mRNA, cleavage of the signal peptide, and
inhibition of oxidative/inflammatory stress. Early activation of
this UPR pathway appears to happen separately of ER stress and
precedes the glucose-stimulated insulin synthesis (47).

Prolonged upregulation of a stressed UPR induces
apoptosis, a process that involves JNK activation by the pro-
inflammatory cytokines that act upon pancreatic b-cells
through the progression of diabetes. It is not clear though
the definitive mechanisms that pro-inflammatory cytokines
use to induce IRE1a and JNK in human b-cells. This will
help build new strategies to inhibit the UPR-driven pro-
apoptotic signals without disturbing the other homeostatic
functions (70).

We previously defined the ER stress as a stressed/terminal/
decompensated UPR, the ultimate stage of UPR, with no
recovery, when the cell enters the apoptosis pathway. One of
the questions here is how do the cells get to the terminal UPR.
What are the stages that precede it and can be targeted through
therapies? We and others have challenged two different models
for UPR activation: 1) the “rheostat model”, when the UPR
sensors and targets get activated in a concerted fashion and they
are correlated with the level of stress - the more stress, the higher
the UPR. This model is described by different subclasses that are
characterized by the type and extent of the stress (52, 106). 2)
Some stressors induce a UPR subclass that causes a specific
outcome, physiological or pathological. This could vary from
“adaptive” to the “terminal” UPR, when the cell sees many facets
of UPR through a combination of different arms that are
activated differently. These are such broad definitions, and
future thorough characterizations are necessary to address the
precise role of each of them in the b-cells fate.

Possible therapies that use UPR for restoring b-cells
homeostasis should consider the existing b-cell stress level and
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action inside a narrow safe range to overcome the excess and cell
death. One possibility is employing agents that recover b-cell
stress from terminal stage to the adaptive stage thus to facilitate
the increase of b-cell mass through the mild stress. Therefore,
there is a need for more tools for measuring and modulating b-
cell stress in vivo.
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