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Kinase inhibitors as targeted therapies have played an important role in
improving cancer outcomes. However, there are still considerable challenges,
such as resistance, non-response, patient stratification, polypharmacology,
and identifying combination therapy where understanding a tumor kinase
activity profile could be transformative. Here, we develop a graph- and
statistics-based algorithm, called KSTAR, to convert phosphoproteomic
measurements of cells and tissues into a kinase activity score that is general-
izable and useful for clinical pipelines, requiring no quantification of the
phosphorylation sites. In this work, we demonstrate that KSTAR reliably cap-
tures expected kinase activity differences across different tissues and stimu-
lation contexts, allows for the direct comparison of samples from independent
experiments, and is robust across a wide range of dataset sizes. Finally, we
apply KSTAR to clinical breast cancer phosphoproteomic data and find that
there is potential for kinase activity inference from KSTAR to complement the

current clinical diagnosis of HER2 status in breast cancer patients.

Kinases make up the largest fraction of FDA-approved drugs for
oncology', a reflection of their importance in oncogenesis and cancer
progression. These drugs are also one of the most prevalent examples
of precision medicine. For example, patients with BCR-ABL leukemias,
HER2-overexpressing breast cancers, or EGFR-driven lung cancers
benefit immensely from kinase-targeted therapies (often as adjuvants
to chemotherapy, radiation, and/or surgery). Unfortunately, the
selection and success of kinase inhibitors is often hampered by
development of resistance mutations>®, failure to respond to
treatment®, and a limited set of current targets'— most new molecular
entities target kinases for which inhibitors already exist. Hence, there is
a need in the field of oncology to identify whether a patient might
benefit from a kinase-inhibitor therapy and which kinase target(s)
would be most beneficial.

In recent years, due to advances in proteomics, large-scale mon-
itoring of protein phosphorylation is closer to being used within

clinical profiling of tumor biopsies*®. Since phosphorylation is a direct
consequence of active kinases, or inactive phosphatases, this mea-
surement might hold the key to better precision medicine. However,
generating kinase activities from this data requires overcoming several
challenges, including: (1) data sparsity or missing data—in shotgun
phosphoproteomics (i.e., discovery-based approaches) lack of detec-
tion of a phosphorylation site may not be evidence thatitis not present
in the sample and although CPTAC approaches often use a reference
standard, only 5 to 15% of all phosphorylation sites are common across
patient cohorts, (2) there is an extreme paucity of data regarding the
direct connection between phosphorylation sites and their kinases
(only 5% of phosphorylation sites are annotated with a kinase)’, and (3)
challenges in relating quantitative data available from phosphopro-
teomics experiments to kinase catalytic activities. Quantification is
particularly challenging—unless one uses a known spike-in for absolute
quantification for every phosphopeptide of issue, all quantification
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(label and label-free) is relative—i.e., it is not possible to understand
differences in quantities between peptides, only differences of a pep-
tide between conditions. This is due in large part to peptide-specific
sample losses and ionization'®. For example, if there are two kinases,
each with a different substrate, and one substrate changes from 1fmol
to 2fmol, but the second substrate changes from 8pmol to 16pmol,
there is a 4000-fold difference in catalytic activity between the two
kinases, but relative quantification interprets both of those as the same
(2-fold different). Despite these challenges, phosphorylation is still
more closely connected to kinase activity than commonly used prox-
ies, such as mRNA, which rarely correlates with protein expression' or
kinase activation loop phosphorylation, since kinase activity is regu-
lated by a myriad of complex mechanisms*™.

Although there has been excellent progress in algorithm devel-
opment to convert phosphoproteomic data into scores, rankings, or
activity values for kinases, these algorithms often suffer from the
major issues of phosphoproteomics (see Supplementary Table 1 for a
summary). All but one algorithm we assessed, KEA3'®, depends heavily
on the use of quantification of phosphorylation sites in a calculation
for activity, via paired samples with relative quantification (PTM-SEA",
KSEA%, IKAP?*), single sample normalized intensities (KARP?), or
spectral counts (INKA*), despite the limitation that these values are
not comparable across peptides or indicative of concentrations or
substrate amounts. Most algorithms rely on sparse kinases-substrate
information, most commonly from PhosphoSitePlus (KARP, IKAP,
KSEA), where 95% of the phosphoproteome is unlabeled (no known
kinase interaction). This results in the absence of kinase information
for >80% of sites identified in a typical phosphoproteomic experiment
(Supplementary Note 1). For those algorithms that turn to global
kinase-substrate predictions, specifically NetworKIN*, to expand the
number of useable phosphorylation sites in an experiment (INKA and
KSEA), NetworKIN predictions are used by applying a threshold to the
weighted graph (edges indicating likelihood of a kinase-substrate
interaction), where only edges above a certain score are kept. How-
ever, we recently showed that these thresholded graphs are highly
problematic® and is likely the reason a systematic evaluation showed
that NetworKIN-based annotations in KSEA performed worse than
literature-based annotations?.

In this work, we were explicitly seeking to create an algorithm that
would be useful for patient care and: (1) can be used without requiring
pooled or comparative samples (single sample), (2) avoids depen-
dencies on the highly problematic nature of mass spectrometry-based
quantification, (3) utilizes more of the phosphorylation data, but
handles the issues with kinase-substrate predictions, and (4) avoids
proxies of activity, like activation loop phosphorylation. Here, we
present an algorithm that uses statistical and graph-theoretic
approaches to infer the likely kinase activities from large-scale phos-
phoproteomic data. The underlying hypothesis is based on the action
of kinases—given increasing activity, there will be an increasing num-
ber of observed substrates from a kinase’s network. Ultimately our
algorithm’s kinase activity score is a reflection of “net kinase activity”,
since substrate phosphorylation is a reflection of the balance between
kinase and phosphatase activity. In this work, we explain the details of
our algorithmic approach and explore experiments to test whether the
inferred kinase score changes with kinase activity. We demonstrate
that we can predict: (1) increases in expected kinases as a result of
network stimulation, (2) decreases in expected kinase activities as a
result of kinase inhibition, and (3) tissue-specific kinase activity pro-
files, which are significantly more robust than the phosphoproteomic
profiles, even across samples collected in different labs on different
proteomic pipelines. Finally, we apply KSTAR to breast cancer biopsy-
derived phosphoproteomic data and find that kinase activity profiles
predicted by the algorithm can help identify misclassified HER2-
positive breast cancer patients and identify clinically diagnosed HER2-
negative patients that might respond to HER2-targeted therapy. Based

on these experiments and comparison to existing algorithms, KSTAR is
a first-in-class algorithm that can utilize phosphorylation sites
observed from single or multisample experiments and convert that to
quantifiable, physiologically relevant, and interpretable insight into
kinase activity with special strengths in accuracy in tyrosine kinase
prediction and increased sensitivity to smaller numbers of phosphor-
ylation sites and decreased reliance on a small subest of well-
studied sites.

Results

The KSTAR algorithm (Fig. 1) is based on the hypothesis that the more
active a kinase is, the more of its substrates will be observed in a
phosphoproteomic experiment. At its core, KSTAR is an algorithm that
takes, as input, a set of phosphorylation sites observed in a mass
spectrometry experiment, maps them onto global kinase substrate
prediction graphs of KinPred”, and converts the experimental input
into a statistically robust KSTAR ‘score’ for each kinase, which increa-
ses with increasing representation of substrates from that kinase’s
network. When an experiment contains multiple conditions with
relative quantification across all sites, the reported abundances are
converted to binary evidence using a threshold relevant to the biolo-
gical problem in question. We found that KSTAR predictions are fairly
robust to changes in the threshold used as inclusion criteria for
phosphorylation sites of an experiment (Supplementary Note 1).

KSTAR algorithm

The first key development of KSTAR was to avoid the use of annota-
tions alone, since so few phosphorylation sites are annotated, and to
improve the usability of kinase-substrate predictions. As published and
traditionally used (thresholded by removing edges below a cutoff
score), predicted kinase-substrate networks suffer from the following
issues: (1) the exclusion of a large number of phosphorylation sites
from the human phosphoproteome, (2) high degrees of overlap
between kinases, leading to a lack of discriminability for algorithms
relying on these networks, and (3) high centrality of well-studied
kinases and substrates (the more a substrate is annotated, the more
kinases it is connected to)*. To overcome the challenges of prediction-
based networks, we developed a “heuristic pruning” approach (Fig. 1)
to create many possible, alternate representations of kinase-substrate
relationships from global kinase-substrate prediction algorithms. In
this work, all results are generated using the kinase-substrate graph of
NetworKIN**, with serine/threonine and tyrosine graphs being treated
independently, since they are non-overlapping.

To achieve the objectives of pruning, we probabilistically select
edges from a dense graph including all kinase-substrate predictions of
the human proteome based on edge weights, where higher edge
weights are more likely to be selected. This continues until all kinases
are attached to a fixed number of substrates. The probabilistic selec-
tion introduces heuristic effects - creating different versions of output
graphs each time the algorithm is run. To overcome the issues that
happen when selecting only high edge weights in the graph (i.e., as
done by thresholding), we apply constraints on the selection of edges
to maintain specific properties of the output network. These con-
straints are: (1) the distribution of substrate “study bias”—as defined by
the number of compendia substrates are documented in—is the same
for all kinases based on the distribution of the entire phosphopro-
teome in order to reduce kinase- and experiment-specific false positive
rates (Supplementary Note 2) (2) edge selection is impossible once a
substrate and/or kinase hits a maximum target in order to avoid the
emergence of “hub substrates” and/or “hub kinases” and ensure each
substrate only provides evidence for its most likely kinases, and (3) all
kinases have the same number of edges in the final network to ensure
that kinases are not isolated from the network, due to having only low
probability edges. The example graphs shown in Fig. 1 depicts the
success of this approach for reducing homologous kinase overlap - on
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Fig. 1| Overview of KSTAR algorithm. First, we heuristically prune dense and
highly overlapping weighted kinase-substrate prediction graphs from NetworKIN*
into many sparse, binary graphs. Statistical enrichment is calculated for an
experiment that has a defined set of phosphorylation sites for every kinase across
all networks using a hypergeometric distribution. We generate and calculate
enrichment in 150 random experiments using the same approach. Next, we use the
Mann-Whitney U test to measure the likelihood that the enrichment p-values in the
real experiment are more significant than the random experiments, giving us a final
p-value, which accounts for the underlying enrichment of substrates in a network,
aggregates that information across the different network configurations, and

controls for the kinase- and experiment-specific behavior of enrichment that
occurs by random chance. We measure the false positive rate by measuring the
distribution-based test for a random experiment against the remaining 149 random
experiments, repeating this for 100 times. Finally, the numerical KSTAR “score” (the
-logl0 transformation of the Mann-Whitney U-test) is presented in graphical for-
mat where the dot size is larger when there is more evidence phosphorylation sites
are coordinately sampled from a kinase network. The FPR is indicated by “Sig-
nificance” of having less than a specific empirical FPR. Source data are provided
with this paper.

average, KSTAR networks reduce the overlap of evidence between
EGFR and ERBB2 for sites observed in an experiment from 80% in a
thresholded network to 18% overlap. We have provided an extended
description of the problems addressed by the prune procedure as well
as pseudo-code for the generation of KSTAR networks in Supplemen-
tary Methods. Final pruned networks are then cast into unweighted
graphs (i.e., binary graphs), which, relative to PhosphoSitePlus anno-
tations and a thresholded NetworKIN graph, include more unique
substrates, has lower overlap of evidence between kinases, and has
better network coverage of experimentally identified sites (Supple-
mentary Note 1).

The first statistical test in KSTAR measures overrepresentation of
substrates in each kinase network, controlling for the likelihood that
the observation happened by random chance. Since we use binary
evidence (asubstrate was observed) with binary networks, we can use a
well-defined theoretical probability function to estimate this over-
representation - the hypergeometric distribution, where we calculate
the probability of having observed k or more substrates of a kinase in
an experimental dataset with n phosphorylation sites, when the full
graph (all sites in the human phosphoproteome) has N total phos-
phosites and a kinase has K total substrates. This approach has the
benefit of scaling with the size of the dataset and the distribution of
edges in the graph. The output of this calculation is a p-value for each
graph (i.e., a set of 50 p-values for every kinase).

We next wished to control for the variability of the resulting
hypergeometric p-values across the different network configurations
and the likelihood of making the same observations in a random
experiment exhibiting similar properties as the experiment under
consideration. To do this, we create 150 random experiments, where
we randomly draw the same number of phosphorylation sites as the
real experiment from the background phosphoproteome, such that
the distribution of substrate study bias is the same as the real experi-
ment. For each random experiment, we calculate enrichment in each
kinase network as we did for the real experiment, producing a “ran-
dom” distribution of p-values. This random distribution can then be
compared to the real distribution using the Mann Whitney U-test, a
non-parametric, distribution-based test which estimates the

probability that the ranked p-values of the real experiment are more
significant than those of the random experiments. Fig. 1 shows exam-
ples of distributions that arise from this process. For EGFR, Fig. 1
indicates that some random networks with real data give low -loglO0 (p-
values), yet the preponderance of evidence across all networks is more
significant than what was observed in the random experiments,
resulting in a small U-test p-value and a large KSTAR ‘score’ (the
-loglO(MW U-test p-value)). In contrast, it is clear that the p-values
observed in SRC networks of the real experiment are no more sig-
nificant than what occurs in random experiments, resulting in a small
KSTAR score. Finally, we measure a false positive rate for the observed
Mann Whitney p-value by measuring how often that p-value or more
significant is observed in an empirical null model (repeatedly calcu-
lating the Mann Whitney p-values for treating a random experiment as
the real experiment and comparing it to the remaining random
experiments). The KSTAR score must be interpreted with the false
positive rate (FPR) as we have observed some experiments result in
large kinase-specific KSTAR scores that occur by random chance, due
to the particular composition of the experiment. We detail the process
by which we arrived at this approach to control and measure for
kinase- and experiment-specific false positive rates in Supplementary
Note 2, which also shows before these controls were added we saw
very high false positive rates for kinases that demonstrate high study
bias (e.g., 100% FPR for FYN, LCK, and HCK). Hence, the final KSTAR
score is a statistically powered value that ultimately reflects the fun-
damental measurement of the proposed hypothesis - an activity score
that increases when more evidence is observed across many different
possible network architectures and is more significant than what is
observed by random chance alone.

KSTAR correctly infers expected tissue-specific kinases, kinase
activation, and kinase inhibition

We wished to understand if KSTAR scores correlate with kinase
activities and so we explored KSTAR predictions in-depth for spe-
cific physiological test cases of kinase activation and inhibition.
Here, we summarize a set of key kinase predictions from KSTAR,
with full activity predictions and their false positive rates presented
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in Supplementary Note 3. We find that KSTAR predicts expected
activity changes in response to either activation or inhibition and
introduces interesting hypotheses. We also found from these
experiments that using the base kinase-substrate prediction net-
work from NetworKIN** results in predictions consistent with
physiological expectation, but using kinase-substrate networks
from other prediction algorithms (GPS?” and PhosphoPICK?®), did
not result in physiologically relevant hypotheses. For example,
PhosphoPICK-based networks failed to show ABL activity in BCR-
ABL driven cancers and GPS failed to show HER2-activity in any
breast cancer sample, where HER2-activity is a driving oncogene in
many of these samples. Instead, GPS-based networks suggested
that ERBB2 activity increases in Jurkat cells in response to TCR
activation, inconsistent with tissue-specific expectations. There-
fore, we have used NetworKIN as the foundation for KSTAR.

In our first study we explored growth factor stimulation in epi-
thelial cells. We used two phosphoproteomic studies of a human
mammary epithelial cell line (184A1) stimulated with EGF to explore
whether KSTAR accurately predicts the onset of EGFR activation and
other related EGFR-network kinases. One of the studies additionally
includes a HER2-overexpressing model of 184Al cells (24H cells,
expressing 600,000 vs. 20,000 copies of HER2/ERBB2)* and mea-
sured response to EGF- and HRG-stimulation, where EGF drives
EGFR:ERBB2 dimers and HRG drives ERBB2:ERBB3 dimers. Despite the
different phosphoproteomic pipelines used in the two studies, the
KSTAR predictions are similar for parental 184A1 cells stimulated with
EGF (Supplementary Note 3 and Fig. 2a), suggesting no basal EGFR or
ERBB2 activity exists after serum starvation and is followed by rapid
onset and peak activation between 4 and 10 min post-stimulation.
Notably, cytosolic kinases that are not expected to be in the epithelial
lineage are not predicted to be active in any condition (Supplementary
Note 3). In the HER2-perturbation experiment there are predictions of
both dynamics and activity differences between cell lines and growth
factors (Fig. 2a), consistent with the expected biology of the cells. For
example, there is basal EGFR activity in HER2-overexpressing cells,
slower dynamics of ERBB2 activation by HRG, and lower activity of
both receptors from HRG-treatment - all of which are consistent with
the effects of HER2-overexpression, the increased migration of 24H
cells in the absence of stimulation, and the maximal migration upon
EGF-addition®. Finally, and somewhat surprisingly, we see maximal
statistical significance of ERBB2 in the EGF stimulation of both cell
lines, with some indication that HER2-overexpression sustains that
activity longer in the 24H cells. The failure to see additional increases in
ERBB2 activity in HER2-overexpressing cells may be a result of our
statistical limit, as no additional gains can be seen beyond this amount
of evidence that is already present in the parental cells stimulated by
EGF. Taken together, the specific kinases predicted active, their asso-
ciated scores, and their patterns of activation suggest that KSTAR
predictions are capable of reproducing expected biology and that the
use of evidence in experiments alone (i.e., the removal of quantitative
fold changes) is useful for making comparative hypotheses between
conditions.

Next, in order to explore a cell lineage that is expected to have a
distinctly different fingerprint of kinase activities than epithelial cells,
we turned to datasets available in hematopoietic lineages, including
several datasets in K562 (chronic myeloid leukemia) (Supplementary
Note 5) and Jurkat cells (Supplementary Note 3). The Jurkat cell
experiment by Chylek et al.*® captured the fast dynamics of TCR acti-
vation at 5, 15, 30, and 60 s after stimulation. Importantly, the KSTAR
predictions result in robust tissue-specific signaling expectations
(Fig. 2b), predicting fast and robust (statistically saturated) activity of
cytosolic kinases downstream of TCR, including LCK, FYN, HCK, BTK,
and ITK (an important observation—our approach to controlling for
high study bias of LCK, FYN, and HCK did not prevent them from giving
robust activity values in a physiologically-relevant system). Slower to

reach maximal detectable activity include YES], BLK, and FGR. Addi-
tional hypotheses suggested by KSTAR predictions include a slower
(30-second) onset of the RTK activity of VEGFR2 and NTRKI. Most
importantly, these tissue-specific kinases were not predicted to be
active in the epithelial experiments and epidermal growth factor-
specific kinases are not predicted to be active in Jurkat/TCR signaling.
Hence, KSTAR predictions are consistent with tissue- and signaling-
specific expectations.

Following exploration of stimulation experiments, we next wished
to explore whether KSTAR could predict inhibition of kinases. The
oncogenic BCR-ABL fusion protein drives some chronic myeloid leu-
kemias (CML) and represents an important target for treatment. Unlike
many kinase inhibitors, inhibition of BCR-ABL can initiate cell death
pathways within the first hour of treatment. This occurs even though
ABL activity has been shown to be recovered within 4-8 h after drug
washout, depending on the study®~*. To validate the predicted tyr-
osine kinase activities from KSTAR, we compared the kinase activity
profiles of the CML cell line K562 in response to treatment with the
ABL-inhibitor dasatinib from a study by Asmussen et al., who profiled
phosphopeptide abundance before treatment, at the time of drug
washout (EOE), and 3 and 6 h post drug washout (HDP3 and HDP6,
respectively)**. KSTAR predictions for ABL1 and ABL2 activity show a
decrease following treatment, although the activity levels remain sig-
nificant across all time points (Fig. 2c, Supplementary Note 3). Also, as
expected, this activity is partially recovered after drug washout and the
dynamic patterns of ABL kinases are mirrored in the Src family kinases
(SFKs) BLK, HCK, and FGR, known alternate targets of dasatinib
Finally, we note that there is robust down-regulation of a number of
receptor tyrosine kinases, which is consistent with the conclusions of
the original study* and others*, which suggests dasatinib treatment in
K562 cells is dependent upon on the elimination of ABL-GF-R interac-
tions more than the elimination of ABL activity.

To this point, we have demonstrated the utility of KSTAR for
predicting tyrosine kinase activities. To validate serine/threonine
kinase predictions, we profiled the response of the breast cancer cell
BT-474 to five different clinically relevant AKT inhibitors (Fig. 2d,
Supplementary Note 3), based on data obtained from Wiechmann
etal.. BT-474 is a cell line that overexpresses ERBB2, which commonly
leads to increased AKT activity. Upon applying KSTAR to this dataset, a
complete elimination of AKT activity was predicted across all five
inhibitors, suggesting that each inhibitor is highly effective at targeting
AKT. While AKT3 was not identified by chemical proteomics in
Wiechmann et al., our results suggest that AKT3 is active basally in BT-
474 cells and that AKT3 activity is equally affected by treatment with
these AKT inhibitors. We validated that the coordinated AKT1/2/3
predictions are not due to indiscriminate kinase networks—no AKT
kinase shared more than 20% of substrates in KSTAR networks with any
other AKT kinase. Hence, the basal activity predictions and predicted
decrease of AKT family kinases in response to drug comes from
independent networks.

Figure 2d highlights two interesting predictions from KSTAR.
First, AKT inhibition appears to increase CSNK2A1 (Casein Kinase 2)
activity in four of the five drugs. There is evidence that there is com-
plex interconnections between CSNK2A1 and AKT kinases® and these
predictions suggest that there might be an unintended increase in
casein kinase activity as a result of AKT inhibition. Second, we
observed interesting patterns in PRKACA/B, which shows decreasing
activity with the ATP competitive inhibitors, but not the PH-domain
binding allosteric inhibitor MK-2206. Hence, these predictions suggest
the competitive ATP inhibitors bind to PRKACA/B kinases, and the
greatest decreases predicted by KSTAR in PRKACA/B (GSK2110183,
GSK690693, and AZD5363) were shown to bind PRKACA/B by
chemoproteomics®. Hence, KSTAR predictions accurately predict AKT
inhibition and help identify cross-talk at the network level (CK2) and
the inhibitor level (PRKACA/B).
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Fig. 2 | KSTAR applied to diverse cell models of kinase activation and inhibi-
tion. Full KSTAR results for data in this figure available in Supplementary Note 3).
Panel titles give the reference for the publication study of the phosphoproteomic
data. All KSTAR predictions use the same legend for score size and significance as
given above panel A. a Predicted activation patterns of HMEC cell lines (P for
parental 184A1 and 24H for HER2 overexpressing 184A1) in response to EGF and
HRG stimulation. b Predicted activation patterns of TCR stimulation in Jurkat cells
shows early and robust activation of TCR-specific kinases (this figure is in seconds).
c Predicted kinase patterns in response to inhibition of BCR-ABL inhibition by
dasatinib in K562 cells with a detailed plot of significance changes for the ABL

Time (minutes)

family kinases demonstrating a decrease, but continued activity of the oncogene.
Kinase activity decreases in receptor tyrosine kinases (RTKs) correspond with
findings of the original publication®* as do changes in the off-target interactions
with Src family kinases (SFKs). d AKT inhibition by five inhibitors, all competitive
ATP inhibitors, except MK-2206 an allosteric inhibitor of AKT, demonstrate robust
inhibition of all AKT homologs and interesting increases in CSNK2AL.

e Vemurafenib treatment, targeting the BRAF"**°f mutation found in Colo205 col-
orectal cancer cells, but not the HCT116 cell line, demonstrates a decrease in MAPK
activity specific to BRAF mutation, although still statistically significant MAPK
activity. Source data are provided with this paper.

While the previous studies help to demonstrate how KSTAR
effectively predicts changes to kinases directly impacted by stimula-
tion or inhibition, KSTAR is currently limited by the kinases that are
present in NetworKIN and some commonly studied cancer-specific
kinases do not currently have predictions, such as AXL, DDR2, and RAF.
In order to determine whether KSTAR is still applicable in cases where
direct kinase targets may be absent from predictions, we profiled the
response of colorectal cancer cell lines to RAF inhibition by vemur-
afenib, using a time-resolved dataset generated by Kubiniok et al.””.
Vemurafenib is commonly used to target cells that harbor a BRAF"¢°%*

mutation, such as the colorectal cancer cell line Colo205. However, it
has achieved limited clinical utility, in part, because tumors that con-
tain a RAS mutation or overactive RTKs often see an adverse response
where the MAP-ERK pathway is activated rather than inhibited”,
HCTI116 cell line harbors a mutation in KRAS and provides an example
of a cancer cell that exhibits this paradoxical response, which was also
treated in the study by Kubiniok et al.

KSTAR predicts a clear decrease in MAPK1/3 activity over time in
Colo205 cells, and a small increase in ERK activity is observed
in HCT116, consistent with the paradoxical effect of RAS mutation in
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Fig. 3 | Comparing accuracy of KSTAR to other available kinase activity algo-
rithms. KSTAR and four other publicly available kinase activity algorithms (KSEA,
PTM-SEA, KARP, KEA3) were applied to a suite of inhibition and stimulation data-
sets. Accuracy measures expected activity changes as defined by Pp;—the fraction
of conditions for which a perturbed kinase was found differentially active, either
based on activity rank (in the top 10 kinases) or significance (FDR <= 0.05), which is
not available (NA) for KARP and KEA3. a Global accuracy of each algorithm for
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tyrosine or serine/threonine kinases. b Kinase-specific accuracy of each kinase
activity algorithm, separated based on accuracy metric (rank, upper left triangle or
significance, lower right triangle) and kinase type (Tyrosine, Y or Serine/Threonine,
ST). The heatmaps only include kinases for which all algorithms had available
predictions (full heatmaps in Supplementary Note 4). Source data are provided
with this paper.

HCT116 (Fig. 2e, Supplementary Note 3). However, the basal activity
values limits the ability to observe significant increases in activity due
to the statistical limit. The increase in activity becomes more apparent
when the kinase activity profiles are transformed via quantile nor-
malization across samples (Supplementary Note 3). Importantly, pre-
treatment MAPK1/3 activity levels are comparable between HCT116
and Colo205, indicating that differences are a result of treatment and
not basal activity. While the ultimate goal might be to expand Net-
worKIN and KSTAR to include these kinases in predictions, these
results indicate that KSTAR is able accurately predict kinase activity
profiles affected by missing kinases.

Global accuracy benchmarking and comparison to other
algorithms

Having observed that KSTAR activity scores are consistent with the
detailed physiology of test cases, we next sought to globally compare
KSTAR predictions to other available algorithms. Global benchmarking
is difficult for three key reasons: (1) each algorithm is dependent on
varying types of information such as relative intensities??, differential
fold-changes*’, or gene lists'®, (2) each algorithm produces very dif-
ferent types of outputs from ranks, to scores, or scores with accom-
panying significance values for a algorithm-specific number of kinases
(see Supplementary Note 4), and (3) encoding globally positive and
negative kinase sets for a given stimulation or inhibition condition is
not necessarily biologically relevant or known, as kinase networks are
inherently interconnected. For example, in the case of BCR-ABL driven
CML cells, ABL inhibition is therapeutically effective by reducing RTK
activation rather than causing a significant reduction in ABL activity.
However, despite these complications, global benchmarking allows for
a greater understanding of the general accuracy and best use cases of
algorithms across a broad range of conditions and kinases. We adop-
ted a similar benchmarking approach as Yilmaz et al.*°, in which we
defined a hit as any instance in which a kinase expected to be per-
turbed was identified as differentially active, and a miss as any instance
when the expected kinase is not identified as differentially active. We
compiled multiple publicly available datasets representing a total of
15 studies with 51 total conditions allowing for the testing of 38 dif-
ferent serine/threonine (Supplementary Table 4) and 19 different tyr-
osine kinases (Supplementary Table 3). To be able to measure
performance for the vast majority of algorithms, we used a rank-based

statistic—considering a kinase as a hit if it appears in the top ten most
affected kinases. Additionally, for those algorithms that provide a
binary active/inactive call based on statistical significance, we also
measured a hit as whether the kinase was correctly considered as
activated or inactivated in a differential condition. To avoid over/
underestimation of accuracy in benchmarking as a result of multiple
studies of the same kinase, we first measured the average accuracy for
each tested kinase (heatmaps in Fig. 3b and Supplementary Note 4),
then recorded the global accuracy as the average accuracy across all
kinases (see methods for details). We compared KSTAR to the fol-
lowing four available algorithms that were compatible with bench-
marking studies: KSEA*, KARP?, PTM-SEA"”, and KEA3',

Figure 3 highlights the average prediction accuracy for tyrosine
and serine/threonine networks, both globally and for individual kina-
ses. These results demonstrate that KSTAR consistently recovered
tyrosine kinases expected to be perturbed. This performance is espe-
cially notable in cases where a binary call for activity is necessary,
where KSTAR outperforms the next best algorithm by almost 50% and
only fails for one kinase condition common to all algorithms (ABL). It is
also notable that KARP, the only other algorithm that takes deliberate
steps to account for study bias in kinase-substrate networks, exhibited
the second best performance for tyrosine kinases based on rank
(Fig. 3a). KSTAR’s binary predictions for serine/threonine kinases also
outperforms other algorithms, but to a lesser extent than tyrosine
kinases. Interestingly, where KSTAR improves in performance as a
binary predictor compared to rank-based measurement, KSEA and
PTM-SEA significantly degrade in performance. KSTAR likely improves
due to statistical saturation for certain kinases across most datasets,
namely certain MAPKs and CDKSs as is observed in the BRAF inhibition
test case described in Fig. 2e, which makes rank-based performance
difficult for other S/T kinases (for example, RPS6KB1 and AURKA were
not found in the top ten, but were considered differentially active by
their false positive rate). On the other hand, the reason for degradation
of KSEA and PTM-SEA are likely two fold. First, kinases only have an
associated activity score if at least one substrate of that kinase is
identified in the sample, leading to variability in the number of kinases
with predictions for each condition (Supplementary Note 4). This
could lead to inflated rank-based accuracy, as it is easier to be in the
top 10 of all kinases if there are only 20 other kinases (instead of 100)
with predictions (a notable weakness of this benchmarking approach,
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which does not account for total set size of kinases). Second, many
kinase scores, particularly for tyrosine kinases, rely on only a few
substrates, so if any of these substrates exhibit large fold-changes in
the dataset, they will likely lead to large kinase scores. However, these
scores are not robust, leading to low statistical significance. For this
reason, the authors of both KSEA and PTM-SEA recommend restricting
analysis to kinases with a set number of identified substrates, but this
severely reduces the total number of kinases with predictions (Sup-
plementary Note 4).

To assess whether the performance of other algorithms could be
improved by expanding the number of kinase-substrate connections
with the pruned networks developed in KSTAR, we applied KSEA to the
benchmarking dataset using the pruned kinase-substrate networks
generated for KSTAR (Supplementary Note 4). We found that over half
of the individual pruned networks tested improved rank-based per-
formance of KSEA compared to thresholded NetworKIN, but generally
failed to outperform KSEA predictions generated from known kinase-
substrate annotations from PhoshphoSitePlus. However, rank-based
accuracy for tyrosine kinases was best when aggregating information
across all 50 pruned networks using the median activity scores, sug-
gesting that pruned network ensembles could potentially improve the
performance of other algorithms for tyrosine kinases. These same
gains were not observed for serine/threonine kinases, though. Poor
significance-based performance was observed for both tyrosine and
serine/threonine kinases, highlighting the value of generating the
random null distribution used in KSTAR to improve statistical
robustness of predictions. While reformulation of other algorithms
like KSEA for use in the KSTAR framework is intriguing, the use of
quantification in these algorithms make the generation of a random
null distribution that correctly reflects the study bias and quantifica-
tion distribution of real experiments more difficult and beyond the
scope of this work.

Benchmarking sensitivity and study bias
In addition to globally testing recovery of specific kinases, we hypo-
thesized that KSTAR’s unique ability to use most of the phosphoryla-
tion sites identified in an experiment (Supplementary Note 1) would
allow KSTAR to be more sensitive to identifying signal in smaller
datasets. We were also interested in understanding if KSTAR predic-
tions were less reliant on well-studied sites than other methods, which
was a key goal of generating the pruned networks and well-controlled
random experiments in Fig. 1. In addition to the observation that
kinase annotations and predictions encode study bias®, we found that
phosphoproteomic studies are more likely to identify those sites of
high study bias and that the more well-studied sites tended to exhibit
larger fold-changes across the benchmarking dataset, particularly for
tyrosine sites (Supplementary Note 2). Inspired by the idea of testing
random versus targeted attacks on networks by Albert et al.*, we
developed an experiment to assess changes to the predicted activity of
a kinase as data is removed, either by random loss of phosphorylation
sites from an experiment or by targeted removal of the most well-
studied sites, defined by the number of compendia a site is recorded
in. If losses of both types are equivalent, it suggests low dependency on
study bias, whereas a faster change in prediction significance for tar-
geted loss suggests a high dependency on specific phosphorylation
sites (Fig. 4b). We defined the tolerable loss of an algorithm as the
maximum percent of sites that can be removed from a dataset before
the majority of experiment replicates no longer indicate significant
activity (FDR < 0.05). To measure global differences between the ran-
dom or targeted removal of sites, we also defined an algorithm’s
“sensitivity to data loss” as the area under the random attack curve and
an algorithm’s “sensitivity to study bias” as the area under the curve
between the random and targeted removal of sites (Fig. 4a).

We performed our network loss experiment across all conditions
for which the perturbed kinase was found to have significant activity

when the full dataset was used (FDR < 0.05), comparing all algorithms
that give a defined statistical call for kinase activity: KSTAR, KSEA, and
PTM-SEA. We found that KSTAR predictions were remarkably stable,
with most conditions tolerating >60% data loss and some conditions
able to maintain significant predictions using only 5% of the data
(Fig. 4c). While there is a decrease in the median tolerable data loss
between the random and targeted removal approaches for tyrosine
kinases (75 to 65%), these differences were not found to be statistically
significant, suggesting that KSTAR is not heavily reliant on well-studied
sites. On the other hand, both tyrosine and serine/threonine kinase
predictions from KSEA, as well as serine/threonine kinase predictions
from PTM-SEA, exhibited significantly less tolerable loss under tar-
geted attack, demonstrating a high dependency on a few well-studied
sites. A measure of study bias for PTM-SEA tyrosine kinase predictions
is not attainable, since performance degraded significantly under
random loss (17.5%).

To better understand global differences between how each algo-
rithm handles random and targeted losses, we next assessed the
cumulative sensitivity of each algorithm (areas under or between the
curves from 0-50% data loss, instead of the intersections of the curves
with the line of significance). Similar to what was observed in Fig. 4c,
we found that KSTAR was significantly less sensitive to both data loss
and study bias than KSEA and PTM-SEA for both tyrosine and serine/
threonine networks (Fig. 4d). PTM-SEA and KSEA were particularly
sensitive to these losses in tyrosine kinase networks. In many cases, we
found that predictions could often not be generated by KSEA or PTM-
SEA when 50% of the data was removed via the targeted approach due
to the loss of all known substrates of a kinase (Supplementary Note 4).
These experiments suggest that since KSTAR is built to retain and
integrate across more information from a phosphoproteomic dataset,
it is more robust for making inferences on smaller dataset sizes and is
significantly less dependent on high-study bias sites than KSEA and
PTM-SEA.

Kinase activity profiles are more robust than phosphopro-
teomic data

Due to the high complexity and stochastic nature of mass spectro-
metry measurements, obtaining reproducible results across studies
and across laboratories can often be difficult. Multiple inter-laboratory
studies have demonstrated that differences in instrumentation and
pipelines can greatly impact the peptides identified in a single run, with
reproducibility being highest between technical replicates from the
same instrument***’, In addition, the choice of phosphopeptide
enrichment method can further increase variability and lead to dif-
ferences in the type of phosphopeptides identified**. Here, we sought
to determine whether kinase activity profiles obtained from KSTAR
can robustly identify similarities and differences between samples,
even in cases where there is low overlap in the phosphopeptides
identified by mass spectrometry. To do so, we obtained a total of 11
different phosphotyrosine datasets from 7 different studies and 5
different labs. Of these 11 datasets, 7 profiled the phosphoproteome of
non-small cell lung carcinoma (NSCLC) cell lines with activating
mutations in EGFR (H3255 and HCC827)*** and 4 datasets profiled
K562 cells, a chronic myeloid leukemia (CML) cell line containing the
BCR-ABL fusion protein®>**,

Based on the Jaccard similarity between sites identified in each
dataset, most experiments exhibit low overlap with the other experi-
ments (Fig. 5). The datasets with the highest overlap all stem from
either the same study, the same lab, or both. In the only case where
both K562 cells and NSCLC cells were profiled by the same study
(dataset 6 and 10%), the NSCLC sample shared the highest site simi-
larity with the corresponding K562 sample rather than NSCLC samples
from other studies. Overall, it is difficult to identify a clear pattern of
separation between the NSCLC cell lines and K562 cells with the
phosphoproteomic datasets alone. However, kinase activity profiles
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Fig. 4 | Comparing sensitivity to data loss and study bias. a Metrics defined to
measure sensitivity to data loss and study bias. For a kinase in a prediction that
starts as significant, we select data to be removed based on completely random
selection or semirandom selection where high study bias sites are removed first.
Results were obtained at every 5% loss increment, with each data point in the curve
indicating the average false discovery rate across five replicates. Tolerable loss is
defined as the percent of sites that can be removed before the majority of trials (3
out of 5) stop showing statistically significant activity for the kinase. Sensitivity is
defined as the area under the random curve (data loss) or between the targeted and
random curve (study bias). b Example loss curves that illustrate the difference
between low or high sensitivity to data loss and/or study bias. The sensitivity to data
loss (blue) and sensitivity to study bias (green) for each curve are displayed in the
upper left of each plot. The right panels define the algorithm, kinase, and the
benchmark experiment number (indicated in Supplementary Table 3 and Supple-
mentary Table 4) that gave rise to these curves. The black dot in KSEA/EPHA2 in
lower left quadrant indicates that KSEA was no longer able to calculate EPHA2
activity at that value of targeted data loss. ¢ Tolerable loss under random (blue) or
targeted (green) removal for all tested conditions for each algorithm (each dot
represents the measurement of tolerable loss for a single condition, black line
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indicates the median). Results are provided for tyrosine kinases (left) and serine/
threonine kinase (right). Total number of conditions tested are given under the
algorithm name. Only conditions where the perturbed kinase had statistically sig-
nificant activity with the full dataset were used. To determine if the observed
decrease in tolerable loss obtained between random and targeted attacks was
statistically significant, a one-tailed Mann-Whitney U-test was used (*p =0.0099,
***p < 0.0001). d The global measure, based on algorithm, for sensitivity to data loss
(blue and left panels) or study bias (green and right panels). Box indicates median
(center line), 25th and 75th percentiles (box boundaries), 1.5x the IQR of the box
edge (whiskers), and any outliers beyond 1.5x IQR (points). If no outliers exist,
whiskers indicate maxima or minima. Statistical significance was obtained from a
two-tailed Mann-Whitney U test (*p =0.00007, **p <1le- 5, **p <1e-10). A subset
of biologically independent experiments from the benchmarking dataset in Fig. 3
were used for each algorithm, based on whether the perturbed kinase was pre-
dicted to have statistically significant activity (FDR < 0.05) when the complete
experiment was used (KSTAR (Y): n =33, KSTAR (ST): n =46, KSEA (Y): n=14, KSEA
(ST): n=12, PTM-SEA (Y): n=12, PTM-SEA (ST): n = 56). Source data are provided
with this paper.

are capable of identifying shared profiles amongst all cells of the same
type and reducing perceived similarity between studies from different
cell types—datasets from the same cancer type were either moderately
or strongly correlated (r>0.47, p <0.05), while those from different
cancer types were either uncorrelated or weakly negatively correlated
(r<0.15). When the same analysis was performed using KEA3', the
only other algorithm capable of generating predictions in non-
quantitative settings, kinase rankings tended to be highly correlated
across all datasets (r>0.68, p<0.05), regardless of tissue similarity
(Fig. 5d, Supplementary Note 5). This approach also represents a type
of benchmarking that overcomes the reliance on a priori assumptions
of kinase alterations—it only assumes that kinase profiles within a tis-
sue should be similar and between tissues should be dissimilar. Hence,
the transfer of phosphoproteomic data into kinase activity profiles
using KSTAR greatly improves the comparability of independent
phosphoproteomic experiments, a feat not currently attainable by any
currently available algorithm.

To verify that the kinase profiles that improved similarity within
cell types and discrimination between cell types was connected to
the underlying biology, we explored the top-ranked kinases across
each cell type (Fig. 5b). On average, EGFR was ranked as the most
active kinase across all of the NSCLC cell lines, which is consistent
with these lines carrying activating EGFR mutations. In K562 cells,
the most active kinases were hematopoietic kinases HCK and BTK.
Only MET appears as a highly active kinase in both cell types. We
found that using only these top-ranked kinases was sufficient to
separate the cancer types by hierarchical clustering (Fig. 5¢). Fur-
ther, the two NSCLC cell lines tended to cluster separately with this
subset of kinases, which was not observed when using the entire
kinase activity profile (Supplementary Note 5). Overall, these results
suggest that KSTAR is able to robustly predict kinase activity pro-
files that define a particular tissue type and results in robust iden-
tification of samples coming from similar tissues, which is not
possible from phosphoproteomics directly.
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Fig. 5| Tissue-specific profiles of kinase activities across independent studies of
non-small cell lung carcinoma (NSCLC) and chronic myeloid leukemia (CML)
cell lines. a Comparison of the phosphoproteomic results obtained by each study
(left) and the kinase activity profile predicted by KSTAR (right). We used similarity
metrics to match the different data types -- Jaccard similarity for phosphopro-
teomics and Spearman’s rank correlation for kinase activity profiles. The ordering
of the experiments in each heatmap is based on hierarchical clustering of the full
kinase activity profile (Supplementary Note 5). b Kinases with the highest average
activity ranking in NSCLC and CML cell lines. A rank of 1 indicates the most active
kinase and a rank of 50 indicates the least active. For each study, kinases were
sorted by their Mann-Whitney p-values to obtain the experiment-specific ranking,
and then the average rank across experiments was calculated for each kinase.

c Kinase activity profiles for top-ranked kinases. Both the kinases and experiments

were sorted using hierarchical clustering with ward linkage. Full KSTAR results for
data in this figure available in Supplementary Note 5. d A systematic evaluation of
how KSTAR and KEA3 perform at identifying similarities between tissues of the
same type and differentiate between tissues of different types based on predicted
kinase activity/enrichment. KSTAR activity scores (or KEA3 kinase rankings) from
each dataset were compared using Spearman's rank correlation, and results are
plotted for within-tissue comparisons (NSCLC vs. NCLSC or CML vs. CML, n=27
total pairwise comparisons across 11 biologically independent experiments) and
between tissue comparisons (NSCLC vs. CML, n = 28 total pairwise comparisons
across 11 biologically independent experiments). Box indicates median (center
line), 25th and 75th percentiles (box boundaries), and the maxima and minima
(whiskers). Points indicate a single pairwise comparison between experiments.
Source data are provided with this paper.

Kinase predictions in breast cancer

We next wished to ask if KSTAR predictions from bulk biopsy of human
tumors might be informative for identifying patient-specific kinase
activity profiles. We selected breast cancer in order to compare HER2/
ERBB2 activity with clinical diagnosis of HER2-overexpression. We
applied KSTAR to the CPTAC dataset of 77 breast cancer patients,
using data from the consortium as published in Mertins et al.’ that
passed quality control for phosphoproteomics. Figure 6a focuses on
ERBB2-activity predictions and the clinical status of the patient tumor.
We considered three different cutoffs for making a binary decision of
whether KSTAR predicts a tumor is “ERBB2 active”, based on FPR (less
than 0.05 and 0.1) or by the activity score (greater than 3, or having less
than 1 in a 1000 chance that the number of sites observed in ERBB2
networks occurred by random chance). These different cutoffs pro-
duced varying rates of “true positives” (HER2+ patients predicted as
having ERBB2 activity) from 27 to 50% and the selection of cutoff had a
minimum impact on the false negative rate (19-24% HER2-negative
tumors are considered active). All ranges showed excellent true
negative rates (76 to 81% of HER2-negative tumors are predicted as

inactive). Since there are different ways to convert KSTAR scores into a
binary prediction, we tested whether KSTAR rankings of ERBB2 activity
was coordinated with HER2-status. Using a GSEA-style analysis to
measure coordination between the continuous value KSTAR activity
score and the binary label of HER2-status, we found significant coor-
dination (p =0.023). Unsurprisingly, due to the poor performance of
other algorithms for tyrosine kinases and ERBB2 in particular in
benchmarking, no other algorithms appear to be capable of predicting
ERBB2 activity in a way that was correlated with HER2-status (Supple-
mentary Note 6).

To our surprise, despite the fact that KSTAR predictions are well-
correlated with HER2 status, some of the most ERBB2-active predic-
tions occur in HER2-negative patients. Also, some HER2-positive
patients demonstrate very low levels of ERBB2-activity. This differ-
ence between HER2-status and ERBB2-activity is feasible, since over-
expression of HER2 may not necessarily lead to functional ERBB2
receptors at the cell surface and all breast epithelial cells contain some
level of ERBB2, which could have activity without the requirement of
amplification or overexpression. However, from this data, which lacks
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Fig. 6 | KSTAR applied to breast cancer biopsies in three studies. HER2 is used
when referring to clinical diagnosis and ERBB2-activity for ERBB2/HER2 activity
predictions. a KSTAR predictions of ERBB2-activity for the 77 breast cancer patients
in the CPTAC dataset’ and their clinical IHC/FISH HER2-status is given (samples are
ranked by ERBB2-activity prediction score). The table gives the total number of
HER2-positive and HER-negative patients and the KSTAR predictions for ERBB2/
HER?2 activity for the best of three cutoffs (score-based) considered for designation
of ERBB2-active: FPR <= 0.05, FPR<=0.1, and score >3. b Predictions of EGFR and
ERBB2 activities for the patient-derived xenograft (PDX) models published in
Huang et al.® subset that were treated with lapatinib (EGFR/HER2 targeted therapy),
where WHIM14 is a HER2-negative tumor that showed a surprising response to

lapatinib treatment. The table reports the HER2-status of all 25 PDX tumors and
KSTAR ERBB2/HER2-activity predictions. ¢ The ERBB2-activity predictions for
tumor biopsies of patients enrolled in a HER2-positive study by Satpathy et al.*. Five
patients were non-pathologically complete responders (non-pCR) and the
remainder were pathologically complete responders (pCR). Biopsies were taken
pre-treatment and most patient's also had an on-treatment biopsy taken with
phosphoproteomic profiling. The first three non-responders were reclassified for
HER2-status upon additional analysis in Satpathy et al. and results are shown as one
false positive and two classified as “Pseudo-positives”. Full KSTAR results for datain
this figure available in Supplementary Note 6. Source data are provided with

this paper.

longitudinal patient information, it is not possible to know if KSTAR
predictions are accurately identifying the HER2-positive patients that
will not be responsive to HER2-targeted therapies, a number that
varies, but is thought to range between 35 and 50% of HER2-positive
patients**, or instead demonstrates issues with inferring tumor
activity from complex bulk biopsies.

In order to test whether the departure of ERBB2-activity from
HER2-status is clinically predictive of ERBB2-therapy response, we
sought out additional datasets. These additional datasets include the
phosphoproteomics of patient-derived xenografts (PDX) of breast
cancer tumors®, predominantly from HER2-negative patients, and the
phosphoproteomics of HER2-positive breast cancer patients with data
both before and 48-72 h after starting a combined chemotherapy and
HER2-targeted therapy*. Although small, each of these datasets inclu-
ded response data to HER2-targeted therapy, allowing us to query
whether KSTAR predictions are correlated with clinical response.

The PDX dataset® measured the phosphoproteomics of 25 breast
cancer PDX models, which were predominantly HER2-negative. Of the
three HER2-positive PDX models, we predict two of them are ERBB2-
active and represent the highest activity levels of HER2/ERBB2 that we
see across the entire dataset. We predict the third HER2-positive model
as having globally low tyrosine kinase activity, including insignificant
levels of ERBB2-activity. On the other hand, we predict 31.8% of the
HER2-negative PDX models have evidence of ERBB2-activity, double
the rate we observed in the CPTAC predictions. The researchers in this

study selected 4 PDX models to treat with the EGFR/HER2 inhibitor
lapatinib. They selected two HER2-positive models, WHIM35 and
WHIMS (both of which we predict are the models we predict are
ERBB2-active), and two HER2-negative models, WHIM14 and WHIM6.
The authors were surprised to find that WHIM14 demonstrated sig-
nificant response to lapatinib treatment. However, KSTAR predicts
that the tumor has significant levels of both EGFR and ERBB2 activity,
similar to WHIM35 and WHIMS, which also respond to lapatinib
treatment. Hence, KSTAR predictions of EGFR and ERBB2 basal activity
correspond with lapatinib response, including the surprising result of a
HER2-negative tumor responding to HER2-specific therapy. This data
suggests that kinase activity predictions from phosphoproteomic data
may be capable of identifying patients who could benefit from HER2-
targeted therapy despite being diagnosed in current clinical standards
as HER2-negative. Together with the the CPTAC analysis, it suggests
there are around 24 to 32% of HER2-negative patients that might
benefit from HER2-targeted therapy.

Having explored a study that gave insight to the validity of HER2-
negative patients with KSTAR-predicted activity, we wished to find
insight into the set of HER2-positive patients and consistency with
ERBB2-activity predictions. Satpathy et al.* focused entirely on HER2-
positive patients and they developed a method to section a biopsy for
a suite of molecular analyses, including microscaled proteomics and
phosphoproteomics. Microscaling the analyses allowed the research-
ers the ability to perform replicates and analyses on biopsies taken 48
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to 72h following the commencement of a combination of che-
motherapy and HER2-targeted therapy. Thirteen of the patients were
treated with docitaxel and the combination of trastuzumab and per-
tuzumab, while one patient (BCN 1369) received paclitaxel and tras-
tuzumab alone. In the study, 9 of the 14 patients were diagnosed as
pathologically complete responders (pCR) and 5 patients were non-
pathologically complete responders (non-pCR). This study provides an
excellent opportunity to explore the reproducibility of KSTAR pre-
dictions across replicates, the relationship between therapy response
and predictions of kinase activity pre-treatment, and the connection
between response and ERBB2-activity, including on-treatment biopsy
data, although complicated by the combination of treatment with
chemotherapy.

From kinase activity predictions, we focused on the prediction of
ERBB2 activity across replicates and samples, where we found con-
sistent predictions across all replicates of a patient sample (Supple-
mentary Note 6), which confirms that both the replication of the data
and predictions from that data are robust. We saw a larger range of
KSTAR activity scores in this dataset for ERBB2, compared to the
TCGA/CPTAC dataset, likely due to a larger sampling of pTyr sites. Of
all 14 patients that have been clinically diagnosed as HER2-positive, we
predict 3 of the patients (BCN1326, BCN 1335, and BCN 1359) lack
evidence of ERBB2-activity in the pre-treatment phosphoproteomic
data, and an additional patient, BCN1331 with the next lowest activity
and an FPR rate right at significance of 0.05. Three of these patients are
non-pCR, suggesting that lack of ERBB2-activity basally may be a rea-
son for non-response to chemotherapy combined with targeted HER2-
therapy (Fig. 6¢). In the original study, the researchers re-analyzed
patient data for the non-pCR patients and found that BCN1326 was a
HER2 false-positive, having no indication of ERBB2-amplification or
increased protein expression and it is also the patient we predict has
the lowest ERBB2-activity. Patients BCN1331 and BCN1335, also with
low KSTAR scores for ERBB2-activity, were re-labeled by the research
team as “pseudo-HER2-positive” having evidence of HER2 copy num-
ber increases, which did not translate to the protein levels. When KEA3
was applied to this same dataset, ERBB2 was not found to be higher
than the 6th ranked kinase in any patient sample (Supplementary
Note 6), whereas KSTAR predicted ERBB2 in the top 4 most active
kinases in all the true basally HER2-positive patient samples, with the
exception BCN1359. These results demonstrate that KSTAR predic-
tions of phosphoproteomic data can complement clinical diagnosis of
HER2 status, a designation that is clearly not perfect by IHC and FISH
alone**°,

KSTAR predictions from on-treatment samples are also promis-
ing, suggesting that six of the seven patients with pre-treatment
ERBB2-activity are predicted to demonstrate a decrease, below sig-
nificance, of ERBB2-activity on-treatment (Fig. 6c). There are two
patients where predictions suggest there is no response to ERBB2-
targeted therapy, BCN 1369 (non-pCR) and BCN 1300 (pCR). These
data suggest that these patients are not benefiting from the HER2-
therapy arm. Additionally, these two patients are most similar
according to their tyrosine kinase activity predictions (Supplementary
Note 6), suggesting that resistance to HER2-therapy might be encoded
by their particular pattern of tyrosine kinase activities. BCN 1371, the
last non-pCR patient, which has no on-treatment sample, has a similar
kinase activity profile to the HER2- non-responders BCN 1369 and BCN
1300. Similarly, BCN 1357 and BCN 1368, which have no on-treatment
phosphoproteomic data, cluster most similarly with BCN 1358 and BCN
1368, respectively, both of which show robust decreases in ERBB2-
activity on-treatment. Where these similarities between pre-treatment
patient responses and clinical outcomes are seen in tyrosine kinase
activity profiles, they are do not occur in serine/threonine kinase
activity profiles (Supplementary Note 6).

The final ERBB2-predicted negative patient, BCN1359, represents
a unique case, as we predict it has low pre-treatment activity that

increases on therapy. Satpathy et al. did not redefine the HER2-status
of this patient and their analyses show this patient also uniquely
undergoes an increase in ERBB2 mRNA and protein upon treatment. A
unique trait of BCN1359's pre-treatment kinase profile is EGFR-activity,
in the absence of ERBB2-activity. This status is rare as we have typically
observed, across the breast epithelial and breast cancer samples we
have profiled, that EGFR and ERBB2 activity are often jointly active or
inactive, consistent with the obligate dimer behavior of ERBB2. Ulti-
mately, BCN1359 went on to become a pathologically complete
responder. However, KSTAR predictions suggest that response may
have been a product predominantly of the chemotherapy component
of the treatment or that the pre- and post-treatment samples were
possibly swapped at some point in the study.

Discussion
We set out to develop a robust kinase activity inference method that
is generally useful for all phosphoproteomic pipelines, especially
clinical phosphoproteomics. The application of KSTAR to diverse
experiments supports the idea that the KSTAR score is a reflection of
kinase activity - the score increases with increasing kinase activities
and decreases as a result of direct kinase inhibition. We found that
these continuous-valued scores, up to the limit of statistical satura-
tion, can identify the most active kinases within tissues and differ-
ences in kinase activities between tissues. These results also suggest
that activity scores are comparable across kinases within an experi-
ment, as the kinases with the highest activity scores in each tissue
tended to be the ones you would expect, such as HCK and BTK in
chronic myeloid leukemia cells and EGFR and ERBB2 in non-small cell
lung carcinoma. This attribute is a result of creating uniform network
sizes for all kinases (treating tyrosine and serine/threonine kinases
independently)—if more phosphorylation sites were observed in one
kinase’s network, compared to another kinase network, then the
statistical score reflects that as higher activity for the first kinase.
Among available kinase activity prediction algorithms, KSTAR is
unique for several reasons. First, KSTAR is capable of utilizing any mass
spectrometry experimental pipeline as evidence of kinase activity,
irrespective of the type of quantification approach used, or in the
absence of quantitative data. KEA3 is the only other algorithm that
offers a similar flexibility, but we observed very poor performance of
KEA3 in predicting physiologically relevant kinase ranks, such as an
inability to produce results that improved tissue similarity/differences,
and KEA3 results often suggested that the same kinase was high-
ranking in both the most upregulated and downregulated of sites in an
experiment. Second, KSTAR provides both a measure of degree of
activity (score) and a binary cutoff indicating the significance of that
score, allowing for a clear definition of an active kinase. KSEA and PTM-
SEA also provide a binary call based on statistical significance, but
these algorithms require differential quantification, perform sig-
nificantly worse for tyrosine kinases, and are very sensitive to data
losses within both tyrosine and serine/threonine networks (particu-
larly losses of well-studied sites). Lastly, and perhaps most importantly,
KSTAR accounts for the undue influence of well-studied sites at both
the kinase and experiment level. We believe that existing activity
inference approaches are triply hit by study bias issues: (1) they tend to
rely on annotations, which are only available for well-studied kinases
and phosphorylation sites, (2) phosphorylation sites identified in a
phosphoproteomic experiment are more likely to be well-studied and
most algorithms (except KARP) do not attempt to account for that, and
(3) more well-studied sites tended to undergo larger fold-changes in
the benchmarking data and therefore exhibit higher influence on
predictions reliant on relative quantification (Supplementary Note 2).
Hence, we believe that the algorithmic developments of KSTAR, such
as enabling larger inclusion of phosphorylation evidence from
experiments, kinase- and experiment-specific false positive rate con-
trol, and lack of dependence on fold-change or quantitative data, has
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created an algorithm that is more broadly useful across kinases avail-
able in NetworKIN, but especially tyrosine kinase networks, which
generally demonstrate more issues with study bias®.

Finally, in our motivation to use kinase activity inference in a
clinical setting, we demonstrated that KSTAR activity inference of
tumor phosphoproteomic profiling can complement current clinical
markers for HER2-status. KSTAR accurately identified a false HER2-
positive patient and two HER2-pseudopositive patients in the micro-
biopsy study from Satpathy et al.*. KSTAR also correctly predicted that
a clinically diagnosed HER2-negative PDX model would be responsive
to EGFR/HER2 therapy, suggesting that phosphoproteomics combined
with KSTAR can offer an orthogonal clinical diagnostic for breast
cancer patients. On average, across all breast cancer samples analyzed
by KSTAR in this study, roughly 30% of HER2-negative patients might
have basal levels of HER2-activity, suggesting the possibility of a
therapeutic avenue not normally offered HER2-negative patients.

Methods

Data preparation and mapping

All phoshoproteomic datasets used in this study were downloaded
from the relevant journal site (typically found as supplementary data
or tables in Excel). We identified the datasheet columns (a protein
accession and a peptide indicating the phosphorylation site or an
amino acid position) that allowed us to map the specific protein and
phosphorylation site to the central ontology developed in KinPred®. If
Uniprot accessions were not available, we used Uniprot web services to
map to the Uniprot accession. KSTAR has a mapping function that
matches the protein record and site information to the central KinPred
ontology and appends two confirmed columns in that same ontology.
Failure to map the protein or the site results in exclusion of that
peptide from the mapped experiment, which happens in about 1 to
10% of peptides in any given dataset, an event that is logged. Also
logged by mapping is if the site position is altered from the dataset to
the ontology in cases where the reference protein is different than the
database representation used by the authors of the study. The mapped
files and their error and warning logs are provided in Supplementary
Data available on FigShare (10.6084/m9.figshare.14919726).

In the experiments where relative quantification of phosphosites
across multiple conditions was available, we used a relevant threshold
to include or exclude specific sites as evidence in that particular
experimental condition, while still ensuring that every experiment
contained a sufficient number of sites to be statistically powerful
(generally 50 or more sites for tyrosine, 1000 or more sites for serine
and threonine). These thresholds, their meaning, and the resulting
evidence sizes for experiments for all datasets are given in Supple-
mentary Table 2 and these experiments are stored in KSTAR outputs as
binary evidence used to generate kinase activity predictions (also
available in FigShare KSTAR Supplementary Data).

KSTAR algorithm implementation and details

All parts of the KSTAR algorithm, including pruning, mapping, activity
inference, and plotting were implemented using Python3. The KSTAR
code is highly customizable regarding the networks used, the limits on
when to stop network pruning, the number of random experiments,
and the number of decoy runs to use in FPR calculation. However, here
we used the same parameters for all analyses as described and all data
and code are provided on open source platforms (GitHub and Fig-
share), described below.

The 50 heuristically pruned networks were generated according
to the rules discussed in Algorithm Overview, where tyrosine kinases
had a finishing limit of 2000 substrates per kinase and serine/threo-
nine kinases had a finishing limit of 2500 substrates per kinase. Fur-
ther, substrates could be connected to no more than 10 tyrosine
kinases or 20 serine/threonine kinases. The final networks also guar-
anteed that each kinase had the same proportion of substrates based

on “study bias” according to the total number of compendia substrates
are annotated by and as defined by KinPred®. Substrates can be found
in none or any of the five compendia included in ProteomeScout’":
UniProt*?, phosphoELM®?, HPRD**, dbPTM™*, or PhosphoSitePlus®. The
networks used were downloaded from KinPred version 1.0 and based
on the February 2020 reference phosphoproteome. The final networks
used in this work are available on Figshare at https://figshare.com/
account/projects/117123/articles/14944305.

We generated 150 unique random experiments for every experi-
ment under consideration and such that the distribution of “study bias
class” was the same as the real experiment, where study bias was
defined as having low, medium, or high study bias based on being
annotated in 0, 1-2, or 3-5 compendia. Unlike network generation,
which uses the exact number of compendia annotations in the defini-
tion of study bias, random sampling groups the categories into classes,
in order to guarantee true random sampling from the high study bias
categories, since the number of total substrates annotated by 5 com-
pendia is small. The false positive rate of the p-value observed in an
experiment for a kinase is then calculated as the proportion of random
experiments that had that p-value or more significant across the set.

Statistical tests, including the hypergeometric test and the one-
sided Mann-Whitney U test, were performed using functions found
within the stats module of the SciPy Python package®. For cases where
datasets were large, such as for the two global phosphoproteomics
studies®? or for large serine/threonine networks, the KSTAR activity
predictions were performed using a highly parallel version of the ori-
ginal code, implemented using the Nextflow software package*®.

Compiling datasets for benchmarking analysis

In order to benchmark as many kinases and kinase families as possible,
we sought to compile datasets across a wide range of studies and
stimulation/inhibition conditions. Our final benchmarking dataset
shares overlap to the one compiled by Hernandez-Armenta et al.”®, but
has a larger breadth of tyrosine kinases profiled, as well as a few dif-
ferent serine/threonine kinases. For tyrosine kinases, 20 conditions
were tested impacting a total of 19 tyrosine kinases, compiled across
8 studies™?***°“% For serine/threonine kinases, 31 conditions
were tested impacting a total of 38 kinases, compiled across
10 studies®*>7°, All data were used as provided by the original authors,
with the fold-change relative to the control used in the study, typically
untreated cells. When assigning the expected perturbed kinases, we
focused on kinases that were either directly targeted (such as EGFR
during EGF stimulation) or had well characterized downstream activity
(such as ERK during EGF stimulation). In studies where chemical pro-
teomics data was available®*°, we defined the expected perturbed
kinases as the top 5 kinases based on strength of interaction from the
chemical proteomics data (unless the particular drug interacted with
fewer than 5 kinases). This allowed us to expand the benchmarking
dataset to kinases that are often difficult to directly target and mea-
sure. For specific details about each dataset used in this work, see
Supplementary Table 3 and Supplementary Table 4.

Applying available kinase activity inference algorithms

KSEA. KSEA was implemented in Python3 as described in the original
publication®* and at (https://github.com/casecpb/KSEAapp/) accord-
ing to using the z-score transformation to calculate the enrichment of
substrates for each kinase:

score, = S PVM @
6

where 5 is the mean log2fold abundance of the substrates of kinase k, p

is the mean log2fold abundance in the entire dataset, m is the number

of substrates of kinase k identified in the dataset, and & is the standard
deviation of log2fold abundance across the dataset.
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Significance is assessed using a right-tailed test and Benjamin-
Hochberg FDR correction is applied to obtain the final list of significant
kinases. Kinase-substrate annotations used for prediction were
downloaded from PhosphoSitePlus®®, and mapped to KinPred as
described in previous section. We compared our implementation of
KSEA results to the available KSEA webapp” and found them to be
consistent overall, but our mapping to PhosphoSitePlus (November
2021) increased the number of annotations in general, compared to
the webapp (2016 PhosphoSitePlus data).

PTM-SEA. PTM-SEA was implemented within Rstudio using the R-gui
provided in the ssGSEA2.0 github repo (https://github.com/
broadinstitute/ssGSEA2.0). Annotations were downloaded from
PTMsigDB v1.9.0". All default parameters were used, except that the
minimum number of substrates required (called min.overlap in
the gui) was reduced from 10 to 1 to expand the number of total
available predictions. To assess the impact of this substrate require-
ment, we also obtained which kinases maintained predictions when
requiring at least 10 substrates to be present and plotted the results in
Supplementary Note 4.

KARP. KARP was implemented in Python3 as described in Wilkes
et al.”, where the K-score for a particular kinase was generated using
the below equation:

m
_Xin O

K=
DY)

* (?)1/2 *10° )

where a and § are normalized intensities for an individual phosphor-
ylation site, n is the total number of phosphorylation sites in the
dataset, m is the number of substrates identified in the dataset asso-
ciated with the kinase, and ¢ is the total number of phosphorylation
sites associated with the kinase in PhosphoSitePlus. As was done
for KSEA, kinase-substrate annotations were downloaded from
PhosphoSitePlus™.

In order to identify the most perturbed kinases for a particular
condition in the benchmarking dataset, the difference between the
K-score for the experimental condition and the control was calculated,
and kinases were ranked based on this difference. A positive difference
indicated an increase in activity, while a negative difference indicated a
decrease in activity. For applying KARP to the CPTAC data in Supple-
mentary Note 6, the provided relative intensities were used to generate
K-scores for each patient sample.

KEAS3. In KEA3, kinases enrichment rankings are obtained for each of 11
different protein-protein interaction (PPI) or kinase-substrate interac-
tion (KSI) databases based on the results of a Fisher’s exact test. The
mean rank is then obtained by averaging the ranks from each database,
and it is the mean ranks that produce the final kinase enrichment
ranking.

To obtain results from KEA3, gene names were obtained for each
protein identified in a sample either from the original dataset itself or
by using the UniProt web services to convert Uniprot accessions to the
correct gene name. These gene names were then run through either
the KEA3 web app or the KEA3 API via python3. To make results
directly comparable to KSTAR results in figures 3-5, the same sites/
genes used for KSTAR predictions were used for KEA3. Further, for the
results in Fig. 5d, kinases without predictions in KSTAR were removed
and kinases were then ranked across these 50 kinases based on their
mean rank. Notably, the removed kinases include many serine/threo-
nine kinases, which are not relevant to the phosphotyrosine enriched
datasets where KEA3 is applied, hence the removal of non-overlapping
kinases in KEA3 ultimately resulted in more relevant predictions that
were dataset specific.

Calculating Pp;,

In this work, we have defined accuracy in a similar manner as in
Yilmaz et al.*°, where the accuracy, Py, is defined as the fraction of
times in which an expected positive kinase is found to be differentially
active. We utilized two seperate indicators of a kinase hit: (1) kinase
rank, where the perturbed kinase is found in the top 10 most differ-
entially active kinases, or (2) statistical significance of activity, where
the associated activity score was identified as statistically significant
(p <0.05). A miss is then any instance for which a kinase is expected to
be perturbed but is not defined as a hit.

_ hits
hits + misses

©)

P hit

We made an additional modification to the approach from Yilmaz
et al., where we measured accuracy as a function of individual kinase
performance, instead of as a function of individual experiment per-
formance (Fig. 3b, Supplementary Note 4). We made this change due
to the fact that both our benchmarking dataset and those compiled by
others tended to be over-represented by certain kinases, typically ones
that are easily targetable and/or well studied®. For example, in our
dataset, AKT1 is perturbed across 13 different experiments while ATM
is only perturbed in 2 experiments, contributing to 12% and 1.6% of
tests, respectively (Supplementary Note 4). Given that this is the case,
an algorithm that effectively predicts AKT1 activity, but not ATM
activity, will appear to be successful due to the high influence of AKT1.
Instead, by calculating the kinase-specific accuracy (fraction of
expected perturbations of an individual kinase that were defined as a
hit) and then averaging these scores to obtain the global accuracy in
Fig. 3a, we can then obtain a global accuracy assessment that is more
reflective of performance for all kinases present in the benchmarking
dataset. In practice, this looks like the below two equations:

hits,
o _ hits, \
Phick hits, + misses; “)
Py +P,. + .. +P,.
Phit global = hitk, ~~ hitks hitk, 5)

n

where Py s is the average accuracy for kinase k across conditions
where it is expected to be perturbed and n is equal to the total number
of kinases profiled in the benchmarking dataset (split by tyrosine and
serine/threonine kinases).

Random and targeted data loss experiments

To generate the random and targeted attack loss curves shown in
Fig. 4b and Supplementary Note 4, we first identified the conditions in
the benchmarking data where a statistically-based algorithm (KSTAR,
KSEA, andPTM-SEA) found the perturbed kinase to have statistically
significant differential activity (hits in Fig. 3) in the dataset. For each of
these conditions, we generated a set of reduced experiments ranging
from 5% to 95% data loss at increments of 5% data loss (5%, 10%, 15%,...).
We repeated this process five times to obtain multiple replicates.
KSTAR, KSEA, and/or PTM-SEA (depending on if initial activity was
significant) were then applied to all of the reduced experiments to
regenerate predictions at each level of data loss, and the average false
discovery rate curve was obtained by averaging across the five
replicates.

Datasets were reduced in two ways. For the random attack/
removal, sites were removed at random so that all sites were equally
likely to be removed from the experiment with each replicate. For the
semi-random targeted attack sites were first organized based on the
number of compendia they are recorded (an indicator of study bias).
The most well-studied sites, which are found in all five compendia
discussed in this work, are chosen at random for removal. If all of these
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sites are removed, the next most well-studied sites, which are found in
four of the five compendia, are chosen at random for removal. This
process continues until the correct amount of sites has been removed
from the experiment. As the targeted attack is only a semi-random
process, variance across the replicates tended to be smaller than for
the random attack.

Once all random and targeted attack curves were generated, tol-
erable loss and sensitivity could be calculated as described in Fig. 4a.
Tolerable loss was obtained using the entire loss curves (0 to 95%),
while sensitivity was calculated using only half of these curves
(0 to 50%).

Comparing phosphoproteomics datasets

When comparing different phosphoproteomics datasets, all data was
first mapped to KinPred, as described above. After mapping, the set of
phosphosites identified in each dataset was obtained, where any site
present in a sample, regardless of relative quantification, was con-
sidered in the set. The similarity of two sets of sites were compared
using the Jaccard index, defined by dividing the intersection of the two
sets (number of sites identified in both experiments) by the union (the
total number of unique sites identified across both experiments). To
compare these same experiments based on their KSTAR profiles, we
used Spearman rank correlation, as implemented in the SciPy Python
package”’.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The networks generated in this study have been deposited as data files
in Figshare at 10.6084/m9.figshare.14944305. The Resource Files,
along with network files, required to reproduce the experiments in this
work have been deposited in Figshare at 10.6084/m9.fig-
share.14885121.v6. All source data have been deposited within the
KSTAR Figshare project https://figshare.com/projects/KSTAR/117123
at the permanent doi 10.6084/m9.figshare.14919726. We have pro-
vided ancestry, age, and sex for cell lines used as models in published
experimental studies analyzed in this work in Supplementary Table 7.
For patient-focused demographic information, please reference the
original publications (Fig. 6a: Supplementary Table 1in Mertins et al.’,
Fig. 6b: Supplementary Data 1in Huang et al %, Fig. 6¢: Supplementary
Table 1b from Satpathy et al.*). Source data are also provided as a
Source Data file. Source data are provided with this paper.

Code availability

All code for KSTAR are available at our Git repository: https://github.
com/NaegleLab/KSTAR with a snapshot of the repository at the time of
this work at 10.6084/m9.figshare.20146016. Code for applying KSTAR
to data, including all examples within this paper, is available at our
KSTAR Applications Git repository: https://github.com/NaegleLab/
KSTAR_Applications with a snapshot of the repository at the time of
this work at 10.6084/m9.figshare.20146013.
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