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Datasets for benchmarking 
antimicrobial resistance genes in 
bacterial metagenomic and whole 
genome sequencing
Amogelang R. Raphenya1,2,3, James Robertson   4, Casper Jamin   5, Leonardo de Oliveira 
Martins   6, Finlay Maguire7,8,9, Andrew G. McArthur   1,2,3 & John P. Hays   10 ✉

Whole genome sequencing (WGS) is a key tool in identifying and characterising disease-associated 
bacteria across clinical, agricultural, and environmental contexts. One increasingly common use of 
genomic and metagenomic sequencing is in identifying the type and range of antimicrobial resistance 
(AMR) genes present in bacterial isolates in order to make predictions regarding their AMR phenotype. 
However, there are a large number of alternative bioinformatics software and pipelines available, 
which can lead to dissimilar results. It is, therefore, vital that researchers carefully evaluate their 
genomic and metagenomic AMR analysis methods using a common dataset. To this end, as part of 
the Microbial Bioinformatics Hackathon and Workshop 2021, a ‘gold standard’ reference genomic and 
simulated metagenomic dataset was generated containing raw sequence reads mapped against their 
corresponding reference genome from a range of 174 potentially pathogenic bacteria. These datasets 
and their accompanying metadata are freely available for use in benchmarking studies of bacteria and 
their antimicrobial resistance genes and will help improve tool development for the identification of 
AMR genes in complex samples.

Background & Summary
Whole genome sequencing (WGS) is a technique used to analyse the genomes of both prokaryotic and eukary-
otic organisms. This includes a range of approaches including WGS of individual isolates (either via culture or 
single-cell methods) and the related simultaneous sequencing of all organisms present in a given sample (i.e., 
metagenomics)1. There are also a range of different sequencing technologies available such as technologies that 
generate ‘short-read’ or ‘long-read’ sequences2. Within the field of microbiology, sequencing is a valuable tool 
for mapping the epidemiology of bacterial isolates associated with clinical outbreaks of disease3, as well as for 
the identification of potentially pathogenic strains of bacteria that could be present in both food and environ-
mental samples4. It is increasingly common to use sequencing to identify the type and range of antimicrobial 
resistance (AMR) genes present in bacterial isolates in order to make predictions regarding the actual bacte-
rial phenotype of particular isolates5,6. These data have the potential to guide antibiotic treatment decisions 
and patient therapy in clinical cases of disease7. However, many different bioinformatic software and pipelines 
exist to predict AMR genes in genomic and metagenomic sequencing data. These include methods designed to 
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directly analyse unassembled short and long-reads as well as those involving the assembly of these reads into 
contiguous bacterial chromosomes, partial chromosomes (contigs) and/or mobile genetic elements, such as 
plasmids8–10. The ability to systematically compare and benchmark the range of WGS algorithms and pipelines 
available on a common dataset would provide increased confidence in the validity of interpreting the results of 
WGS genotyping, AMR carriage, and the inferred bacterial AMR phenotype11–13. Such benchmarking activities 
would be promoted by the availability of common gold standard reference datasets containing raw sequencing 
reads, contigs, chromosomes, and plasmid data14 and including software associated with the assembly of both 
short and long-read sequence results15. Such a gold standard reference set of bacterial WGS data (focussing 
on short read sequence data and including simulated metagenomic data) was generated during the Microbial 
Bioinformatics Hackathon and Workshop 2021, which took place virtually between the 11th and 13th October, 
2021. The event was jointly organized by the Public Health Alliance for Genomic Epidemiology (PHA4GE), the 
Joint Programming Initiative on Antimicrobial Resistance (JPIAMR), and the Cloud Infrastructure for Big Data 
Microbial Bioinformatics (CLIMB-BIG-DATA) initiative16.

Methods
A selection of benchmarking genomes was made by prioritizing ESKAPE pathogens (i.e., Enterococcus fae-
cium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and 
Enterobacter spp.) in addition to Salmonella spp. We selected only complete genomes from the NCBI Database 
Repository for Genome Access17, where the primary sequence data was available and the Illumina data depos-
ited included >40X coverage and >100 bp sequence read length.

Candidate genomes were processed using the workflow depicted in Fig. 1, with the genomes filtered accord-
ing to the criteria described below. Initially, Illumina read sets were downloaded from NCBI and assembled 
using shovill v. 1.1.018 using both SPades19 and Skesa20. Assembly metrics were determined using Quast v. 
5.0.221 and assemblies with N50 <50Kb and >100 contigs were excluded. Illumina reads were mapped against 
their corresponding NCBI genome using SNIPPY v. 4.3.622 using the default parameters (minimum coverage 
depth = 10, minimum VCF quality = 100, minimum fraction = auto). Regions of 0 read coverage were identified 
using bedtools v. 2.29.223 and genomes with >200Kb of no Illumina read coverage were excluded. Additionally, 
any samples where there were >10 SNPs detected by SNIPPY between the Illumina reads and its corresponding 
assembly were excluded. The mapped reads from the BAM were sorted so that read names appeared sequen-
tially before extracting the reads using bedtools v. 2.29.2 bamtofastq functionality. If the extracted read coverage 
depth was <40X it was excluded from further analysis. Reads were then assembled in the same manner as the 
unfiltered reads and samples were excluded if their assembly metrics did not meet the criteria above. AMR 
genes were predicted from each assembly using the Comprehensive Antibiotic Resistance Database (CARD)’s 
Resistance Gene Identifier (RGI) software v.5.2.0 and CARD reference data v.3.1.424.

Fig. 1  Diagram illustrating the sequence of steps and software involved in generating ‘gold standard’ bacterial 
whole genome sequence datasets for benchmarking bacterial assembly and prediction software.
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To generate a simulated metagenomic benchmarking dataset, a reproducible nextflow25 simulation work-
flow was used. The generated gold-standard WGS assemblies were randomly amplified following a log-normal 
distribution (μ = 1 σ = 2) to represent observed metagenomic species distributions26. Additional CARD (v3.1.4) 
AMR reference genes were randomly inserted into the contigs to ensure representation of the full canonical 
CARD database in the metagenome. ART v2.5.827 was then used to simulate 2.49 million 250 bp paired-end 
reads from these sequences using the Illumina MiSeqV3 error profile. Finally, using pysam (v0.16.0.1)27,28 and 
bedtools (v2.30.0)23 labels were generated for each read with the RGI (v5.2.0) annotated AMR gene from which 
that read was simulated.

We selected RGI as it performs at par with other AMR tools evaluated using the hAMRonization workflow29. 
The hAMRonization workflow uses 12 different AMR tools to predict AMR genes in genomic data and produces 
a standard report to compare results across tools. Five of these 12 tools work with genomic reads, while the other 
7 use assembled genomes. Analysis of 94 from 174 selected genomes was performed via the hAMRonization 
workflow using the 5 tools associated with assembled genome analysis. The RGI results produced were similar to 
the other 4 tools tested i.e., abricate, csstar, resfinder, and srax. The results are presented as a radar plot in Fig. 2 
and available at Zenodo30.

Fig. 2  Radar plot showing 94 samples analyzed using hAMRonization workflow. There are 579 genes 
comparing presence or absence for all the 5 tools tested.

Organism Sample Count

Acinetobacter baumannii 5

Aeromonas veronii 1

Citrobacter freundii 4

Enterobacter asburiae 2

Enterobacter bugandensis 1

Enterobacter cancerogenus 1

Enterobacter cloacae 3

Enterobacter hormaechei 10

Enterobacter roggenkampii 2

Enterococcus faecium 2

Enterococcus sp. 1

Escherichia coli 18

Klebsiella aerogenes 3

Klebsiella oxytoca 4

Klebsiella pneumoniae 56

Kluyvera intermedia 1

Providencia stuartii 1

Pseudomonas aeruginosa 6

Salmonella enterica 22

Staphylococcus aureus 30

Staphylococcus lugdunensis 1

Table 1.  Taxonomic composition of the benchmarking dataset.
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Data Records
The datasets are suitable for different AMR detection pipelines, as they provide assemblies using two differ-
ent widely used assemblers in addition to mapped reads from the primary data used to generate the assembly 
for 174 bacterial genomes representing 22 distinct species (Table 1). To enable benchmarking of metagenomic 
AMR detection pipelines, these datasets also provide simulated metagenomic reads and a “perfect” metagen-
omic assembly derived from these 174 assemblies. Since it is possible for records to be updated in NCBI, we have 
included reads in the dataset to ensure that they can be consistently used. Due to the size of the data, we have 
split the dataset into assemblies, 6 batches of genomic reads, and a separate metagenomic dataset (including 
assemblies, reads, and label information).

The assemblies (which include closed, draft versions for raw and filtered datasets) are located at Zenodo31.

The mapped raw reads (BAM files) are located at Zenodo:

Mapped Read Sets – 132

Mapped Read Sets – 233

Mapped Read Sets – 334

Mapped Read Sets – 435

Mapped Read Sets – 536

Mapped Read Sets – 637

The simulated metagenomic data (reads, assemblies, labels, simulation configuration) are located at Zenodo38, 
with corresponding simulation workflow available at Zenodo39.

The corresponding metadata for all isolates can be found can be found at Zenodo30.
The Resistance Gene Identifier predictions can be found at Zenodo30. Note that each file name is the complete 

assemblies’ accession number.

Technical Validation
The baseline data for the simulations were 100% completed genomes of ESKAPE pathogens, with accompanying 
FASTQ reads, all of which passed the National Center for Biotechnology Information curation process. The 
assembly and simulation software used to create benchmark metagenomic data sets have been previously vali-
dated in their own publications. As outlined in the Data Processing section, any assemblies or simulated reads 
not passing quality metrics were excluded.

Usage Notes
Not used.

Code availability
Custom code (hAMRonization v1.0.3) was used to compare different AMR tools to predict AMR genes in 
genomic data and produce a standard report to compare results across tools (Fig. 2.).This code is available at 
Github29.
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