INTERFACE

royalsocietypublishing.org/journal/rsif

Review M)

Check for
updates

Cite this article: Sharp JA, Browning AP,
Burrage K, Simpson MJ. 2022 Parameter
estimation and uncertainty quantification using
information geometry. J. R. Soc. Interface 19:
20210940.
https://doi.org/10.1098/rsif.2021.0940

Received: 20 December 2021
Accepted: 30 March 2022

Subject Category:
Life Sciences—Mathematics interface

Subject Areas:
systems biology, computational biology

Keywords:
inference, likelihood, population models,
logistic growth, epidemic models

Author for correspondence:
Jesse A. Sharp
e-mail: j3.sharp@qut.edu.au

THE ROYAL SOCIETY

PUBLISHING

Parameter estimation and uncertainty
quantification using information geometry

Jesse A. Sharp™?, Alexander P. Browning"*, Kevin Burrage'*
and Matthew J. Simpson™*

1School of Mathematical Sciences, Queensland University of Technology, Brishane, Queensland, Australia
2ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology,
Brishane, Queensland, Australia

3Department of Computer Science, University of Oxford, Oxford, UK

“Centre for Data Science, Queensland University of Technology, Brisbane, Queensland, Australia

JAS, 0000-0002-2865-4853; APB, 0000-0002-8753-1538; MJS, 0000-0001-6254-313X

In this work, we: (i) review likelihood-based inference for parameter estimation
and the construction of confidence regions; and (ii) explore the use of tech-
niques from information geometry, including geodesic curves and Riemann
scalar curvature, to supplement typical techniques for uncertainty quantifi-
cation, such as Bayesian methods, profile likelihood, asymptotic analysis and
bootstrapping. These techniques from information geometry provide data-
independent insights into uncertainty and identifiability, and can be used to
inform data collection decisions. All code used in this work to implement
the inference and information geometry techniques is available on GitHub.

1. Introduction

Computational and mathematical models are versatile tools, providing valuable
insight into complex processes in the life sciences. Models can further our under-
standing of mechanisms and processes, facilitate development and testing of
hypotheses, guide experimentation and data collection and aid design of targeted
interventions [1-5]. However, there are considerable challenges associated with
calibrating these models to data. For example, models need to be sufficiently
sophisticated to adequately reflect the behaviour of the underlying system,
while ideally admitting identifiable parameters that are interpretable and that
can be estimated from available or obtainable data [6,7]. Further, available data
can be limited and often are not collected for the express purpose of parameter
estimation; data may be noisy or incomplete, or may not provide the level of
detail or sample size required to obtain precise parameter estimates [8-12].
Owing to the challenges associated with parameter estimation, we are often
interested in not only point estimates, but also the associated uncertainty [13-
15]. Quantifying and interpreting this uncertainty establishes a level of confi-
dence in parameter estimates and, by extension, in the insights derived from
the model. Further, this uncertainty quantification can give insights into identifia-
bility: whether the information in a dataset can be used to infer unique or
sufficiently precise parameter estimates for a given model [16]. Often we are con-
cerned with both structural identifiability and practical identifiability [17-21].
Structural identifiability can be thought of as a property of the underlying
model structure and parametrization, and refers to whether it is theoretically
possible to determine unique parameter values, given an infinite amount of per-
fect noise-free data [16,22,23]. Structural identifiability requires that unique
parameter combinations precipitate distinct model outputs. Structural identifia-
bility occurs if and only if the Fisher information matrix, which we soon
discuss, is of full rank [24]. By contrast, practical identifiability is less well
defined, and depends on the quality and quantity of data available and existing
knowledge of the parameters [22]. In the context of profile-likelihood methods,
practical non-identifiability can manifest as contours of the log-likelihood
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function that do not admit closed levels; the log-likelihood
does not reach a predetermined statistical threshold within
the physical parameter regime [25]. If a model is not structu-
rally identifiable, it cannot be practically identifiable.
Practical non-identifiability may be addressed through
improving either data quantity or data quality [19,22]. Data
quantity can be improved by increasing the number of obser-
vations, such as by making additional observations at
different time points. Data quality may be improved through
reducing the noise present in the data; for example, by obtain-
ing a dataset with reduced measurement error or repeating
measurements across experiments [26,27]. It is also possible
to resolve practical non-identifiability through incorporating
existing knowledge about parameters, such as physical con-
straints or information established in previous studies; or
specifically in the Bayesian inferential framework, through
informative priors [28]. Addressing structural non-identifia-
bility is more challenging; for example, this may necessitate
a change to the underlying model structure [20,27,29]. Uncer-
tainty quantification takes many forms, with common
examples, including Bayesian methods, profile likelihood,
asymptotic analysis and bootstrapping [8,12,30-32]. Bayesian
methods are widely used for parameter estimation and uncer-
tainty quantification, with Bayesian computation being
employed throughout the mathematical biology and systems
biology literature. Broadly, these methods involve repeated
sampling of parameter values from a prior distribution and
invoking Bayes’ theorem to approximate the posterior distri-
bution; the posterior distribution describes knowledge about
the probability of parameter combinations after taking into
account the observed data and any prior information [22,32].
Well-known approaches include rejection sampling, Markov
chain Monte Carlo (MCMC) and sequential Monte Carlo
(SMCQ) or particle filtering. In rejection sampling, parameters
drawn from a prior distribution are used to simulate the
model. Simulated data are compared with the observed data
based on some distance metric; if this metric is within a pre-
scribed tolerance, the parameters are accepted as a sample
from the approximate posterior distribution, otherwise they
are rejected [30,33]. Rejection sampling can be computation-
ally expensive as the rejection rate can be significant with an
uninformative prior [34,35]. In MCMC, the parameter space
is sampled following a Markov chain—a memoryless stochas-
tic process where the probability of the next state depends only
on the previous state [36]—with a stationary distribution cor-
responding to the posterior distribution. Samples are accepted
or rejected based on the relative likelihood between the current
configuration and proposed sample [11,32,37,38]. For SMC,
rejection sampling can be used to produce an initial coarse
approximation of the posterior distribution. This coarse
approximation informs further (sequential) sampling efforts
in the region of parameter space corresponding to high likeli-
hood, reducing the rejection rate when compared with
rejection sampling alone [11,34,39]. MCMC and SMC
approaches can offer significantly improved efficiency in com-
parison with rejection sampling [32,34], but both involve
specifying hyperparameters and these choices are not always
obvious. In situations where the likelihood function is intract-
able or not easily evaluated, approximate Bayesian
computation (ABC) provides a range of related likelihood-
free methods for estimating posterior distributions [40]. Popu-
lar approaches include ABC rejection sampling [35,39-42],
ABC MCMC [43-45] and ABC SMC [11,34]; we do not focus

on ABC methods here, as the approaches we explore in this
work are applied to problems with tractable likelihoods. We
direct interested readers to the wealth of information in the
references provided.

For Bayesian inference methods, uncertainty can be quan-
tified based on features such as the coefficient of variation and
probability intervals of the posterior distribution [12]. There
are a variety of approaches for uncertainty quantification for
frequentist inference methods. In profile likelihood, a par-
ameter of interest is varied over a fixed set of values, while
re-estimating the other parameters; this provides insight into
identifiability and uncertainty [1]. In asymptotic analysis, con-
fidence regions can be constructed based on local information
via a Taylor expansion of the Fisher information about the
maximum likelihood estimate (MLE) [8,25]. In bootstrapping,
data are repeatedly sampled and parameter estimates are com-
puted from the samples; these estimates are used to construct
confidence intervals [31].

Through the geometric approaches we review in this work,
more akin to traditional approaches for sensitivity analysis
[14,46,47], we explore the curvature of the parameter space
through an information metric induced by the likelihood
function. Whereas likelihood-based approximate confidence
regions provide insight into specific level curves of the likeli-
hood function—the levels of which depend on an asymptotic
large sample argument [36]—this geometric approach provides
insight into the shape and sensitivity of the parameter space.
For example, we compute geodesic curves that describe the
geometric relationship between distributions with different par-
ameters [48]; and explore the scalar curvature throughout
parameter spaces. We review ideas from information geometry
in the context of inference and uncertainty quantification; not
with a view to replacing established methods such as profile
likelihood, asymptotic analysis, bootstrapping and Bayesian
methods [8,12,31,32], but rather to supplement them where
additional insight may prove useful.

Information geometry is a branch of mathematics con-
necting aspects of information theory including probability
theory and statistics with concepts and techniques in differen-
tial geometry [49]. In this exposition, we seek to outline only
the key concepts required to understand the information geo-
metric analysis in this work. However, we note that more
thorough and rigorous treatments of the concepts introduced
in this section, and mathematical foundations of information
geometry, can be found in texts and surveys such as [49-51].
Central to the information geometry ideas explored in this
work is the concept of a statistical manifold; an abstract
geometric representation of a distribution space, or a Rieman-
nian manifold consisting of points that correspond to
probability distributions, with properties that we later discuss.
For example, the set of normal distributions parametrized by
mean, u, and standard deviation, o> 0,

(x — p)?

1
p(x, M, 0') = mexp [—? , x e R, (11)

can be thought of as a two-dimensional surface with coordi-
nates (u, o) [50]. In this work, we will use € to refer to the
parameters of interest that we seek to estimate; i.e. 8= (u, o)
for the univariate normal distribution with unknown mean
and standard deviation. In §3, we consider various combi-
nations of components of 6, including model parameters,
variability in observations characterized by a separate
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observation noise model, and initial conditions associated
with a differential equation-based process model. When refer-
ring to all possible parameters, rather than solely the unknown
parameters to be estimated, we denote this 6.

In applications where we consider multiple datasets, or
different candidate models or candidate parameter values,
we are interested in methods of comparing distributions. A
well-known measure for comparing a probability distri-
bution, P, with another, Q, is the Kullback-Leibler (KL)
divergence from P to Q, denoted Dk (P, Q) [52]. The KL
divergence, or relative entropy, can be computed as [52]

p(x) p(x)

DxL(P, Q) = Jp(x) logm dx =, {logq(—x)] , (1.2)
where p(x) and g(x) are the respective probability density
functions of P and Q. Consider two sets of parameters, 6*
and 6; let log(p(x)) =log(p(x16%)=2£(@*) and log(q(x)) =
log(p(x|0)) = £(6), where #(-) denotes the log-likelihood, dis-
cussed in detail in §2. If p(x| %) is the true distribution and
p(x]0) is our estimate, then (1.2) is the expected log-likelihood
ratio and the relationship between MLE and KL divergence
becomes evident; maximizing the likelihood is equivalent to
minimizing the KL divergence [53].

An issue with the KL divergence is asymmetry;
Dki(P, Q) # Dxi(Q, P). It is not necessarily obvious in a
given situation which orientation of the KL divergence will
most appropriately inform decisions such as model selection
[54]. Owing to the aforementioned asymmetry, and its failure
to satisfy the triangle inequality, the KL divergence is not a
metric—it is not a measure of distance in a differential geo-
metric sense—on a given manifold [50]. One means of
addressing this asymmetry is through devising various sym-
metrized forms of the KL divergence to inform model
selection criteria [54]. Alternatively, we may approach the
issue from a geometric perspective. It is natural to think of
geometry in terms of objects or shapes in Euclidean, or flat,
space. Euclidean space is characterized by orthonormal basis
vectors; the standard basis in three dimensions being e = (1,
0,00" e,=(0,1, 07" e,=(0, 0, 1), where superscript T denotes
the transpose. In the n-dimensional orthonormal basis, we can
compute the squared infinitesimal distance between the
points S and S + ds, where ds has components ds;, as [55]

n

ds|* = (ds). (1.3)

i=1

Differential geometry extends ideas from Euclidean geometry
to manifolds. Manifolds are topological spaces that resemble
flat space about each individual point in the space; they can
be considered locally flat, but have a different topology glob-
ally. The sphere is a classic example, whereby points on the
surface are locally topologically equivalent to two-dimen-
sional Euclidean space, but globally the sphere is curved
and has a compact topology; it is bounded and closed [56].
In particular, we are interested in Riemannian manifolds; dif-
ferentiable manifolds—sufficiently locally smooth that our
typical notions of calculus remain valid—upon which we
are able to measure geometric quantities such as distance,
through the existence of a Riemannian metric on the tangent
space of the manifold, that generalizes the notion of an
inner product from Euclidean geometry [57].

A Riemannian metric is a smooth covariant 2-tensor field;
on a differentiable manifold M, the Riemannian metric is

given by an inner product on the tangent space of the manifold,
T,M, which depends smoothly on the base point p [57,58]. A
tangent space can be thought of as a multidimensional general-
ization of a tangent plane to a three-dimensional surface. Each
point p on a manifold is associated with a distinct tangent
space. An n-dimensional manifold has infinitely many n-
dimensional tangent spaces; the collection of these tangent
spaces is referred to as the tangent bundle of the manifold.
On a manifold each tangent space can have different basis vec-
tors, in contrast to Euclidean geometry, where tangent vectors at
any point have the same basis vectors. A consequence of the dis-
tinct basis vectors of tangent spaces on manifolds is that tangent
vectors at different points on the manifold cannot be directly
added or subtracted. Introducing an affine connection on
the manifold connects nearby tangent spaces, such that the
manifold looks infinitesimally like Euclidean space,
which facilitates differentiation of tangent vectors [59]. For-
mally, we introduce the unique, torsion-free Levi-Civita
connection, V; this is an affine connection on the Riemannian
manifold that yields isometric parallel transport, such that
inner products between tangent vectors, defined by the
metric, are preserved [60]. The coefficients of this connection
are the Christoffel symbols, which we discuss further in §2.
Readers are directed to [59-61] for further detail regarding the
Levi-Civita connection and how it relates to other concepts dis-
cussed in this work. A manifold equipped with such a
connection and a Riemann metric is a Riemann manifold.

Metric tensors can be thought of as functions that facili-
tate computation of quantities of interest such as distances
on a manifold. A metric matrix with elements g;;, G =1[g;1,
is positive definite and symmetric [57]. The metric matrix
defines an inner product between u and v as (i, v)g = uTGo,
and the length of u as |luls = /(1 u); [62]. On a Rieman-
nian manifold, we consider a generalization of the square
of the infinitesimal distance element (1.3), appropriate for
non-orthonormal bases [55], given by

n
||dS||2 = Zg,] dSi de.
ij=1

Foundational to information geometry is the notion that the
Fisher information matrix defines a Riemannian metric on a
statistical manifold [63]. The Fisher information, denoted
Z(0), describes the expected curvature of the log-likelihood
and gives information about the precision and variance of
parameter estimates. Therefore, Z(6) can incorporate infor-
mation about both the curvature induced by the data
through the observation process and the curvature induced
by parameter sensitivities through a mathematical model
that links parameter estimates to data. In the examples we
consider, deterministic model predictions are connected
to the data through the probabilistic observation process,
yielding a general formula for the Fisher information [64]

Curvature
induced
by data
Z(6) =NJ(0)" O(m) J(0) - (14
<~

Curvature induced
by parameter
sensitivities

Here, we denote O(m) the Fisher information matrix of the
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observation process, given a model, m = m(6), where J(6) is
the Jacobian of the model with respect to the parameters.
The number of independent, identically distributed (iid)
observations in the likelihood is given by N; with statistical
independence, the Fisher information is additive [65].

Expression (1.4) highlights a link between sensitivity analy-
sis, structural identifiability and practical identifiability [66]. For
sensitivity analysis and structural identifiability, only the curva-
ture of the model space is studied through J(6). In practical
identifiability analysis, the sensitivity of the model is linked to
the data through an observation process, and the curvature of
the parameter space is studied through, for example, Z(6).

In this review, we present and explore fundamental tech-
niques in inference and information geometry, including
confidence regions, geodesic curves and scalar curvature.
Through application to standard distributions and canonical
models in the life sciences, including population growth
processes and epidemic transmission, we demonstrate how
these techniques can be combined to provide additional insights
into parameter estimation and uncertainty quantification. Start-
ing with parameter estimates inferred from real data, we use
mathematical models to generate synthetic data with different
numbers of observations and at varying points in time, to
explore the impact that these aspects have on the inference
and information geometry results. Specifically, we consider uni-
variate and multivariate normally distributed observation
processes; linear, exponential and logistic models of population
growth; and the classical susceptible, infectious, recovered (SIR)
model of epidemic transmission [67,68]. Although the examples
considered in this work are based on ordinary differential
equation (ODE) process models drawn from the life sciences,
the techniques we consider are general and can be applied in
the context of parameter estimation and uncertainty quantifi-
cation in any discipline and for other model formulations.

By considering standard distributions and canonical models,
we are able to explore the inference and information geometry
techniques through a series of examples with incremental
increases in complexity. Through this approach, we consider
the techniques as applied to both linear and nonlinear ODE
models, coupled nonlinear ODE systems and data with both
one and many observed variables. We consider cases where
model parameters, initial conditions and the standard deviation
of the data are to be estimated from data. The inference and infor-
mation geometry techniques considered in this work are general,
and can be applied far more widely than the examples we con-
sider here. To improve the accessibility of these methods, code
used to implement the inference and information geometry tech-
niques applied in this work is written in the open source Julia
language [69] and is available on GitHub.

In §2, we describe the inference and information
geometry methods implemented in this work, including
maximum likelihood estimation, profile-likelihood-based
approaches, geodesic curves and scalar curvature calcu-
lations. Results of applying these techniques to univariate
and multivariate normal distributions, linear, exponential
and logistic growth models and the SIR model are presented
in §3. We discuss the utility of these techniques and identify
opportunities for extension and further consideration in §4.

2. Methods

Here we describe the parameter inference and information geo-
metry methods used to produce results in this work. We also

describe the numerical methods used to implement these tech-
niques. The techniques we discuss in this section readily
generalize to parameter spaces with an arbitrary number of
dimensions, so we discuss the techniques here for arbitrary
dimensions. However, for the sake of exploring the techniques
through visualization in §3, we restrict ourselves to two-dimen-
sional manifolds. In context, this means we consider only two
parameters to be inferred in any given example, treating other
parameters as known and fixed; for example, as if they are
drawn from prior knowledge or pre-estimated.

Although we consider deterministic mathematical models,
data used to estimate parameters can exhibit significant variabil-
ity. We follow a standard approach and assume that the
mathematical models describe the expected behaviour, and that
our observations are normally distributed about this expected be-
haviour [18]. This allows us to think about a statistical model,
m(6, t), in terms of its expected behaviour, g, and the standard
deviation of the observations, o,

m(6, 1) = (u(6, 1), o(6, 1)).

We restrict the examples in this work to cases where o is con-
stant, setting o(f, t)=o. In this work we focus on the most
commonly employed additive noise model [5,11,18,19,27]. Addi-
tive noise implies that the variance of the data is independent of
the mean behaviour. In cases where variance scales with mean
behaviour, multiplicative noise may be more appropriate. The
information geometric methods presented here are applicable
in cases where the Fisher information can be obtained, including
models with multiplicative noise and parameter- or time-
dependent standard deviation. However, obtaining the Fisher
information is a separate challenge, and can be difficult when
considering different process and noise models.

2.1. Parameter inference

In this work, parameter estimates are inferred from data follow-
ing a standard maximum log-likelihood-based approach. We
make observations at L time points, T=(t, t,, ..., ;). At each
time point, we make N observations, X = (xi(T), xo(T), ...,
xn(T)). With this notation, the log-likelihood function is

L N
06; X) = log f(xi(t;); m(0, t;), 0?), (2.1)
=1 1

]

=

where f(x; p, 0°) is the probability density function associated
with our observation process. In this work, we hold N constant
across time points, though non-constant N is easily incorporated
into equation (2.1) as N, I The likelihood function can be thought
of as the joint probability density of all the data for a given set of
parameters. In examples where ¢ is unknown, we treat ¢ as an
element of @, but note that the expected model behaviour is inde-

pendent of o. The MLE is the point estimate, , that satisfies

0= argmax/(6; X), (2.2)
0

where arg max(-) returns the argument, #, that maximizes
£(6; X) in (2.2). The associated maximum log-likelihood is 0(0).
MLEs of the parameters of interest are obtained by solving
(2.2) numerically as outlined later in §2. For an iid sample from
a univariate normal distribution, A (u, al), maximizing the like-
lihood function of u is equivalent to performing least-squares
estimation [22], although having access to the likelihood function
facilitates uncertainty quantification.

Presenting confidence regions alongside MLEs enhances
our interpretation of the likelihood function, while still acknowl-
edging that the estimates carry uncertainty [36]. We apply a
probability-based log-likelihood approach when constructing
confidence regions for model parameters. From Wilks’ theorem
[36], asymptotically as N — oo, an approximate a-level confidence
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region is given by

{0;5(0) > ((0) — A;/“}, (2.3)
where A, , is the ath-quantile of the ;(z(v) distribution, with v
degrees of freedom [1]. In this work, the degrees of freedom cor-
respond to the number of parameters of interest, i.e. v=dim(@).
To enable comparison between different datasets and models
in 83, we consider the normalized log-likelihood,
£(0) = £(0) — £(0). This forms the basis for log-likelihood ratio-
based hypothesis tests [36]. The normalized log-likelihood is
zero at the MLE: #(6) = 0.

2.2. Information geometry

As outlined in §1, the Fisher information describes the curvature
of the log-likelihood function. It describes how much information
a random variable, X, contains about a parameter, 6. For
unbiased estimators, the inverse of the Fisher information
provides a lower bound on the covariance matrix, via the
Cramér-Rao inequality [70]. Formally, the Fisher information is
the covariance of the score, where the score is defined as the par-
tial derivative of the log-likelihood with respect to @ [36,64]. The
Fisher information matrix can be written as [36,71]

70, = Ex 55108 (%:0)) <8%10gf wo)| ey

We can recover our expression for the Fisher information in
equation (1.4) from equation (2.4), by considering how equation
(2.4) changes under reparametrization and via application of the
chain-rule for differentiation [64]. With observations at L unique
times, T=(ty, ty, ..., t;), we can think of a model as a mapping
between the parameters and the outputs that we can observe,

m(0) 10— ((M’l(ol tl)/ 0'), (“'2(0/ tZ)/ U'), sy (I"L(or tL)/ U))
(2.5)

We consider some examples where ¢ is unknown and is esti-
mated as a part of the analysis; in these instances o € §, however
we express o explicitly in the mapping presented in (2.5) to
emphasize that it behaves somewhat differently from a model
parameter. The expected behaviour of the model does not
depend on o, and variability in the data maps directly to o. In
all the examples we consider, ¢ is constant. This could be
extended to incorporate variability dependent on the expected
behaviour; for example, logistic growth with standard deviation
that depends on the population density [72]. In the mapping, this
could be expressed as o(u(, t)).

Following equation (1.4), we can form the Fisher information
as a combination of the Fisher information matrix of the obser-
vation process, O(m), and the Jacobian of the model with
respect to the parameters, J(6). From (2.5), with v unknown par-
ameters (dim(0) = v), we can view the model Jacobian as

o O om
90 06, T 00,
Jdo  do Jo
90 06, T 06,
oy Oy omy
90 06, T 06,
Qda  Ja Joles
J(B) 06, 06, 06, |° (2~6)
90 06, T 06,
Jda  Ja Joles
90 06, T 06,

Noting that we are taking o to be independent of model par-
ameters, all of the partial derivatives of ¢ in (2.6) are zero, except
the case where 6; = o, for some i € {1, 2, ..., v}, whereby the corre-
sponding partial derivative is unity. Given a set of N normally

distributed observations at a single point in time, we have an
observation process characterized by a mean, y, and standard
deviation, o. The Fisher information for such an observation is
given by

N
Z(/“'r U) - ;D/

where D = diag(1, 2). (2.7)

This can be verified by applying equation (2.4) to (1.1). For
data at L time points with Ny, N, ..., Nj, observations at each
time, with constant standard deviation, the Fisher information
for the observation process is a 2L x 2L (block) diagonal matrix,

I(p, o) = diag (%D, %D, . %D). (2.8)

Similarly, for a model with M species, where we have observations
of all M species at only one time point we recover Fisher infor-
mation in the form of (2.8). For observations of M species at L
time points we form a 2LM x 2LM (block) diagonal matrix from
(2.8). Assuming a constant standard deviation, for the compu-
tations in this work we could more simply express (2.8) as the
diagonal matrix diag(N;/0?, Na/o?, ..., NL/d?, 25" Ni/d?),
where > N; is the total number of observations contributing to
our information regarding the standard deviation, and the
factor of 2 comes from (2.7). In this case, the model Jacobian as pre-
sented in (2.6) is modified such that only the final row includes the
partial derivatives with respect to the standard deviation.

Before outlining specific techniques of information geometry,
we present a conceptual example to develop some intuition for
information geometric concepts. Consider the manifold corre-
sponding to the family of univariate normal distributions
parametrized by mean, u, and standard deviation, c>0. Let
P~ N(u, o) and Q ~ N(py, o) be two normal distributions.
Geometrically speaking, increasing o reduces the distance
between P and Q; this corresponds to a contraction of the
space. Conversely, decreasing the variance dilates the space; as
0—0, the Fisher information, diag(1/ 6%, 1/0?), is degenerate
and the distance between P and Q tends to infinity.

Equipped with the Fisher information, we may begin to
explain some foundational ideas from information geometry,
including geodesic curves, geodesic distances between distri-
butions for statistical models and scalar curvature [49]. We
denote the elements of the Fisher information as Z(6) = [g;i(0)],
and its inverse 1(0)71 = [gif(ﬂ)], where 0= (61, 6>, ..., 6,) are
the coordinates of the manifold. While uncertainty in estimates
is typically characterized by the Fisher information at only a
single point, based on the Cramér-Rao inequality [70], infor-
mation geometry uses the Fisher information throughout the
parameter space. A Riemann geodesic is a curve forming the
shortest path between two points in a Riemannian manifold [73].
The length of this shortest curve is referred to as the Fisher
or Fisher-Rao distance [74]. We soon discuss a relationship
between confidence regions and the length of geodesic curves.
Informally, with greater information supporting an MLE,
coinciding with an increase in its relative likelihood, confidence
regions tighten. This also corresponds to a dilation of the par-
ameter manifold; thereby increasing the geodesic distance
between the MLE and other parameter combinations, reflecting
their relatively reduced likelihood.

A curve z(s), parameterized by s, connecting the points
z; = z(s1) and 2, = z(s;) on a Riemannian manifold, has length [58]

o= J > (500 UEDLED ) g5 2

st \[ij=1 $

A Riemann geodesic is a curve that minimizes L(z) (2.9), such
that the distance between two points on a Riemannian manifold
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is given by the curve that satisfies
d(z1,22) = min{L(z):2(s1) = z1, 2(s2) = z2}.

For Gaussian likelihoods, there is an asymptotic relationship
between the geodesic distance between the MLE, 6, and a
point 6, that corresponds to an a-level confidence region on
the manifold [75]. The geodesic distance between @ and 6,:
d(0, 6,) can be written in terms of the ath quantile of the )(Z(V)
distribution
d(0, 0,) = /A, (2.10)
Pairing equations (2.3) and (2.10) yields an asymptotic
relationship between confidence regions and geodesic length [75]
206(0) — £(0)) ~ d(8, 8,)> as N — co. (2.11)
In §3, we present likelihood-based confidence regions
alongside geodesic curves of the corresponding length, as charac-
terized by (2.10), and comment on the validity of equation (2.11)
in a range of scenarios.
Geodesic curves satisfy the following system of differential
equations in n dimensions [76]:

d%g " de;de;
" J /il R
ds? +”Z::l 7 ds ds o

m=1,...,n, (2.12)

where s is the parametrization of the geodesic curve, in accord-
ance with equation (2.9), and I’ are the Christoffel symbols of
the second kind [50], defined as

A (081, Ogi 08
[g_z;g (aei+aoj 26,)

(2.13)

We can convert from Christoffel symbols of the second kind
to Christoffel symbols of the first kind by lowering the contra-
variant (upper) index through multiplication by the metric:
;= gkm[;]” [77]. Here, repeated indices, in this case m, imply
that a summation is to be performed over the repeated index,
following the Einstein summation convention [56]. Conversely,
we can recover Christoffel symbols of the first kind from
Christoffel symbols of the second kind via the inverse metric:
&, kij = Fl;’ Christoffel symbols of the second kind are the
connection coefficients of the Levi-Civita connection; the
Christoffel symbols are symmetric in the covariant (lower)
indices [60]. On an n-dimensional manifold, the Christoffel
symbol is of dimension 1 xnxn. Geodesics can be used to
construct theoretical confidence regions, to measure the geo-
metric distance between probability distributions and to
perform hypothesis testing; for example, to test equality of
parameters [48,51,78].

Under certain conditions, analytical expressions can be
obtained for the solutions of the geodesic equations, and the cor-
responding Fisher-Rao distances, for example, in the case of the
univariate (1.1) and multivariate (3.2) normal distributions
[74,79]. However, we solve equation (2.12) numerically, after con-
verting the second-order ODE to a first-order system of ODEs
using standard techniques.

We are also interested in exploring the scalar curvature, also
known as the Ricci scalar, of our manifolds. To compute the scalar
curvature, we must first construct the Riemann tensor, and sub-
sequently the Ricci tensor. As we only require these tensors for
computation of the scalar curvature, and do not attempt to inter-
pret these tensors directly in this work, we provide only a limited
outline of their interpretation. The Riemann curvature tensor is
constructed from the Christoffel symbols and their first partial
derivatives. Here, it is convenient to think about these partial
derivatives as being with respect to the parameters of interest.
Owing to the possibility of raising or lowering indices of

Christoffel symbols and tensors via the metric, there are several
equivalent expressions for computing the Riemann curvature
tensor [77]. The elements of the Riemann tensor of the first
kind can be written as

(9Fj],’ _ 8F]'ki

ok ol + Filrr}"k - Ftkrrrl

! ! (2.14)

R =
The Riemann tensor of the first kind is a (0, 4) tensor (with no
contravariant indices and four covariant indices), and can be con-
verted to the (1, 3) Riemann tensor of the second kind via the
inverse of the metric: gi’"Ri,vkl = R’;}d. On an n-dimensional mani-
fold, the Riemann tensor is of dimension n x 1 x n x n; owing to
various symmetries, however, there are far fewer independent
elements [80]. The Riemann tensor provides information about
the intrinsic curvature of the manifold. A geometric interpret-
ation is that a vector from a point on the manifold, parallel
transported around a parallelogram, will be identical to its orig-
inal value when it returns to its starting point if the manifold is
flat. In this case, the Riemann tensor vanishes. If the manifold
is not flat, the Riemann tensor can be used to quantify how the
vector differs following this parallel transport [81].

From the Riemann tensor of the second kind, we can com-
pute the Ricci tensor of the first kind. The Ricci tensor, Ryj, is
obtained by contracting the contravariant index with the third
covariant index of the Riemann tensor of the second kind; that is,

Rjj = R}

ijm*

(2.15)

On an n-dimensional manifold, the Ricci tensor is of dimension
nxn and is symmetric [81]. The Ricci tensor can quantify the
changes to a volume element as it moves through the manifold,
relative to Euclidean space [81].

The scalar curvature, Sc, can be obtained as a contraction of
the Ricci tensor

Sc = g'R;. (2.16)

The scalar curvature is invariant; it does not change under a
change of coordinates (re-parametrization). For Gaussian likeli-
hoods, the corresponding manifold is flat, characterized by
zero scalar curvature everywhere. As such, the scalar curvature
provides a measure of how the likelihood of the underlying stat-
istical model deviates from being Gaussian—often referred to as
non-Gaussianity in the physics and cosmology literature—irre-
spective of the parametrization [60]. As we will explore in §3, it
can also provide insights into parameter identifiability.

2.3. Hypothesis testing

Here we outline the approach for performing likelihood-ratio-
based hypothesis tests, and hypothesis tests based on geodesic
distance. As we consider synthetic data in this work, we know
the true parameter values, 6. In practical applications this is
not the case. As such, we may seek to test whether some pre-
viously held notion about the true parameters, 6=, is
supported by the data, based on the computed MLE. This
could be investigated via the following hypothesis test:

Hoiotzoo }

and Hy:0, # 6. (2.17)

From equation (2.3), the test statistic for such a likelihood-ratio-
based hypothesis test can be expressed as

Aur = ~2(€(60) — £(9)), (2.18)

where asymptotically as N — oo, A g~ z*(v), following Wilk’s
theorem [36]. From the asymptotic relationship given in equation
(2.11), it follows that under the same asymptotic relationship
the test statistic for a hypothesis test based on geodesic distance

0V60LZ0T ‘6L pua3ul 20s 4 °r  yisi/jeusnol/bio buiysijgndAiaposiesol H



is [78]

Acp = d(6, 6)*. (2.19)

The likelihood values required to compute equation (2.18)
can be obtained directly by evaluating equation (2.1). To com-
pute the geodesic distance between two specific points in
parameter space, as required by equation (2.19), it is necessary
to solve a boundary value problem to obtain the geodesic
curve between @, and . Approximate p-values can be computed
from these test statistics as 1 — F,2(,)(ALr) and 1 —Fa,(Acp),
respectively, where F ., is the cumulative distribution function
of x*(v) [1]. We provide practical examples of each of these
approaches to hypothesis testing in §3.

2.4. Numerical implementation

All numerical techniques used to produce the results in this work
are implemented in the open source Julia language [69]; we use a
combination of existing Julia packages and bespoke implemen-
tations. There are several aspects of numerical computation in
this work, including approximate solutions to systems of
ODEs, differentiation with both finite differences and forward
mode automatic differentiation, likelihood computation and non-
linear optimization. Nonlinear optimization for obtaining MLEs
and parameter combinations corresponding to particular confi-
dence levels is performed with the Julia package NLopt.jl,
using the Bound Optimization by Quadratic Approximation
(BOBYQA) algorithm. BOBYQA is a derivative-free algorithm
for solving bound constrained optimization problems [82].
Approximate solutions to ODEs are obtained using the Julia
package DifferentialEquations.jl [83]. The second-order Heun'’s
method [84], a two-stage Runge-Kutta method, is used for
obtaining contours of the log-likelihood function to form
approximate likelihood-based confidence regions [1]. Heun's
method is implemented as Heun () in DifferentialEquations.jl.
Approximate solutions to geodesic differential equations are
obtained using the Tsitouras implementation of the Runge-
Kutta method, which employs Runge-Kutta pairs of orders 5
and 4 [85], implemented as Tsit5 () in DifferentialEquations.jl.
Boundary value problems for geodesic-distance-based hypoth-
esis tests are solved wusing the DifferentialEquations.jl
implementation of a shooting method, using Tsit5(). Code
for reproducing all examples in this work is available on GitHub.

3. Results

In this section, we present results combining likelihood-based
parameter inference and uncertainty quantification with
ideas from information geometry, including geodesic curves
and scalar curvature. We apply these techniques to univariate
and multivariate normal distributions, linear, exponential
and logistic population growth models and the SIR model.
Through these canonical examples, we explore pedagogically
differences in the inference and information geometry results
that arise as we consider parameter estimation and uncer-
tainty for increasingly complex systems.

Synthetic data for the univariate and multivariate normal
distributions are generated by sampling from the respective
distributions given in equation (3.1). For simplicity, in this
work we consider synthetic data from uncorrelated obser-
vation processes with constant standard deviation in both
time and parameter space. However, we note that the tech-
niques presented in this work can be generalized to handle
data with non-constant variance and for other distributions

where the Fisher information is available [72].

Univariate: x; ~ A (u, 0%),
Multivariate: x; ~ MVN(pu, 3), (3.1)

where 3 = diag(¢?) is the covariance matrix. For the popu-
lation growth and SIR models considered in this work,
synthetic data are generated by drawing from a normal
distribution with mean described by the model solution
and a prescribed standard deviation, effectively substituting
u=u(d,t) in equation (3.1) for observation processes with a
single variable and u =pu(0, t) for observation processes with
several variables. When o is one of the parameters to be esti-
mated, o€ 6, but 4 does not depend on o. Parameter values
that we use to generate synthetic data correspond
to parameter estimates inferred from field data in the
literature [2,16].

We present a series of figures in this section visualizing
the normalized log-likelihood, Z, and scalar curvature, Sc, as
heatmaps, with likelihood-based 95% confidence regions
and geodesics with a length corresponding to a 95% confi-
dence distance superimposed. All results are computed
numerically, as outlined in §2, with code available on
GitHub. Unless otherwise indicated, each set of geodesics
includes 20 geodesics with initial velocities corresponding
to equidistant points uniformly distributed on the circumfer-
ence of a unit circle. As such, the apparent clustering of
geodesics in some examples highlights differences in the scal-
ing and stretching of parameter spaces. Each scalar curvature
and log-likelihood heatmap is computed on a uniformly
discretized 100 x 100 grid.

3.1. Normal distributions

We first consider parameter inference and information
geometry techniques applied to observations drawn directly
from univariate and bivariate normal distributions, with no
underlying process model. In figure 1, we present results
for the univariate normal distribution (1.1), estimating
0= (u, 0). The true mean and standard deviation used to gen-
erate data are (u, o) =(0.7, 0.5). Estimates are obtained via
maximum likelihood estimation. MLEs of normal variance
are known to provide biased underestimates [36], and the
derivation of the Fisher information assumes an unbiased
estimator [86]. This may partially explain the particular
differences observed between the likelihood-based confi-
dence region and the endpoints of the geodesics in figure 1,
wherein the geodesics not only appear to suggest a tighter
confidence region but also appear to be biased towards par-
ameter space with smaller standard deviation. As the number
of observations increases from N =10 to N =100, we observe
not only that the MLE more precisely estimates the true par-
ameter values, but also that the endpoints of the geodesic
curves more closely correspond to the likelihood-based confi-
dence regions. This is consistent with both the theoretical
asymptotic relationship between geodesic length and likeli-
hood-based confidence regions given in equation (2.11), and
also the bias of the MLE for standard deviation decreasing,
as N increases.

The manifold representing the family of normal distri-
butions parametrized by 6#=(u, o) has constant scalar
curvature Sc=-1. Owing to the additive nature of the
Fisher information, having N observations results in a
constant scalar curvature of Sc=-1/N, as presented in
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Figure 1. Univariate normal distribution with inferred mean, £, and standard deviation, o. Heatmaps visualize the normalized log-likelihood, 0 (a,b), and the scalar
curvature, Sc (¢,d). True parameter values, (1, o) = (0.7, 0.5), are marked with green discs, with the MLEs indicated using red discs. Magenta curves correspond to
likelihood-based 95% confidence regions. Black lines are geodesic curves emanating from the MLEs, with a geodesic length corresponding to a theoretical 95%
confidence region. Increasing the number of data points, N, tightens the confidence regions, improves the correspondence between geodesic curves and likelihood-

based confidence regions and reduces the scalar curvature.

figure 1c,d. It is straightforward, although tedious, to verify
this result through combining equations (1.4), (2.13)—(2.16).
The probability density function for the multivariate
normal distribution with two independent
x, ¥y € R, with constant standard deviation o is

(x—m)2+(y—uz)2>>_

variables,

1
p(x/ Y My, Mo, (T) —Zm_zexp<_< 52

(32)

In equation (3.2), there are three parameters that we could esti-
mate from data: @ = (u;, u,, o). As we estimated the mean
and standard deviation for the univariate normal distribution
in figure 1, we consider inference of both means for the multi-
variate normal, = (u3, ). Results are presented in figure 2.
Even with a small number of observations (N=10), we
observe an excellent match between the likelihood-based con-
fidence regions and geodesics when only estimating means. As
expected, increasing N results in an MLE closer to the true
values, and tighter confidence regions. We also observe that
the confidence regions are symmetric with respect to each
mean parameter. When estimating only the mean parameters
of the multivariate normal distribution, we see that the
scalar curvature is zero everywhere. This is to be expected,
as the Fisher information for normally distributed observation
processes, equation (2.7), depends only on the standard devi-
ation and not the mean. As such all of the partial derivatives
used to construct the Christoffel symbols (2.13) are zero; this
vanishing of the Christoffel symbols translates to zero scalar

curvature through equations (2.14)-(2.16). We also observe
that, in contrast to the evident curvature of the geodesics for
the univariate normal case presented in figure 1, the geodesic
curves in figure 2 appear perfectly straight when plotted in
Euclidean geometry. The Riemann tensor (2.14) is zero every-
where when inferring multivariate normal means. This
suggests that the manifold is flat.

Results presented in this work predominantly feature 95%
confidence regions. We note that, although this choice is
common [87], it is also arbitrary, and equivalent analysis
could be performed at different confidence levels. In examples
where the geodesic endpoints approximately align with
the likelihood-based confidence regions at the 95% level, we
expect intermediate points along the geodesics to also
approximately align with corresponding likelihood contours,
in accordance with equation (2.11). However, in examples
where we observe a mismatch between geodesic endpoints
and likelihood-based confidence intervals at the 95% level,
we do not expect intermediate points along geodesics to corre-
spond to likelihood contours. This is demonstrated in figure 3.

Having considered the techniques as applied directly to
distributions, we now incorporate ODE-based process
models, such that our observations are normally distributed
about the solution of a mathematical model.

3.2. Population growth models
The canonical logistic growth model, alongside generaliz-
ations and related sigmoid models such as Gompertz and
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Figure 2. Multivariate normal distribution with inferred means, 1, and u,, with known constant standard deviation, & = 0.3. Heatmaps visualize the normalized
log-likelihood, 0 (a,b), and the scalar curvature, Sc (¢,d). True parameter values, (u+, i) = (0.8, 1.2), are marked with green discs, with the MLEs indicated using
red discs. Magenta curves correspond to likelihood-based 95% confidence regions. Black lines are geodesic curves emanating from the MLEs, with geodesic lengths
corresponding to a theoretical 95% confidence region. Increasing the number of data points, N, tightens the confidence regions. In contrast to the univariate case
where we infer standard deviation in figure 1, when only inferring the mean parameters of the multivariate normal distribution, we see that even with few
observations, N =10, the geodesics and likelihood-based confidence regions match closely. As we are estimating means only, and there is no model-induced

curvature, the scalar curvature is zero everywhere.

Richards’” models, have been extensively applied to study
population growth dynamics in the life sciences [16,88].
In figure 4, we present data from the literature describing
the area covered by hard corals in a region as they regrow fol-
lowing an adverse event. This can be modelled as a logistic
growth process [16]. Logistic growth of a population with
density C(t) is characterized by a growth rate r>0, initial
condition C(0) >0 and carrying capacity K> 0. Treating para-
meter values (r, C(0), K) = (0.9131 (yr™!), 0.7237%, 79.74%),
and standard deviation o = 2.301%, inferred in the litera-
ture from this field data as the true values, we generate
various synthetic datasets with multiple observations at
various time points.

The logistic growth model is well approximated by the
exponential growth model when C(t) <K [89], and early time
exponential growth is approximately linear. Before consider-
ing the inference and information geometry techniques
as applied to the logistic model, we first consider the more
fundamental linear and exponential growth models. In
figure 5, we present example synthetic linear and exponential
data, and in figure 6 synthetic logistic data. In the context of
population growth models, the presence of variability in
observations at a single time point could reflect, for example,
measurement error, variability in population estimates or
expert judgement [90].

3.2.1. Linear growth

Linear growth describes growth at a constant rate, indepen-
dent of the population density. The linear growth model
and solution are given by

de =a and C(t) =at+ C(0).
dt
With parameters @ = (a, C(0), o), w(0, t) = at + C(0) descri-
bes the expected model behaviour. In figure 7a-f, we
present inference results for the linear model for all pairwise
combinations of @. The partial derivatives of the linear model
with respect to the parameters a and C(0), required to form
the Jacobians, J(@), are

om0, t) om0, t)

o t and ~ac(0) =1.
Recall from equation (2.6) that we only require the partial
derivatives corresponding to unknown parameters in any
given example. When estimating 6 = (1, C(0)) we find that, simi-
lar to the multivariate normal case where we estimate means,
the scalar curvature is zero everywhere. We also observe that
the endpoints of the geodesics align with the likelihood-based
confidence region. We stress that this arises through the
relationship in equation (2.11), and is not forced to occur via
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Figure 4. Markers correspond to data from field studies, representing the percentage of area in a region covered by hard corals, as the coral population regrows
following depletion by an external event [16]. Data originally extracted from the Australian Institute of Marine Science (AIMS) Long Term Monitoring Program (LTMP)
eAtlas (eatlas.org.au/gbr/ltmp-data). A logistic model is fitted to the data in [16], with inferred parameters: r=0.9131 (yr™"), C(0) = 0.7237%, K = 79.74%

and standard deviation o = 2.301; this is reproduced here as the green curve.

termination of the numerical solution of the ODE once it reaches
the likelihood-based confidence region. However, due to the
relationship between a and C(0), we find that the confidence
regions in this case are not symmetric about the MLE with
respect to each parameter. Rather, we see that for a given nor-
malized log-likelihood value a larger growth rate corresponds
to a smaller initial condition, and vice versa. This aligns with

our intuition when considering fitting a straight line through
data, as presented in figure 54; lines with a greater slope (1)
must start lower (C(0)) to fit the data.

When one of the parameters to be estimated is o, we
observe similar results to the univariate normal case; geodesic
endpoints are offset in the direction of decreasing o relative to
the likelihood-based confidence regions, and there is constant
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Figure 5. Example synthetic data generated from the linear and exponential models with comparison of early time linear and exponential model fits, inferring a
and ((0). N'= 10 observations per time point, with time points T= (0.1, 0.25, 0.5). True parameter values are a = 0.9131, ((0) = 0.7237, with known standard
deviation, o= 0.2301. For generating synthetic early time linear and exponential data, we reduce the standard deviation relative to the o = 2.301 computed from
the logistic model, as early time data produced with ((0) = 0.7237 and o= 2.301 produce negative population density observations. Inference produces MLEs of
(@, €(0)) = (0.8988, 0.6642) for the linear model and (a, C(0)) = (0.9412, 0.6695) for the exponential model.

scalar curvature of Sc=—1/N. The geodesics and confidence
regions appear symmetric with respect to the model
parameter, about the MLE.

3.2.2. Exponential growth

Exponential growth describes growth at a rate proportional
to the size of the population. The exponential growth
model and solution are

(31—(; =aC and C(t) = C(0)exp(at).
With parameters 0 = (2, C(0), o), w(0,t) = C(0)exp(at)
describes the expected model behaviour. The partial derivatives
of the exponential model with respect to the parameters a and
C(0), required to form the Jacobians, J(6), are
ou(o, 1) (0O, t)

—————= = 1tC(0) exp(at) ————~ =exp(at).

aa and - =500)

By construction, as detailed in figure 5, the linear and
exponential models with identical parameters and initial

conditions produce very similar behaviours over a sufficiently
small time scale. This is seen when comparing the inference
results for the exponential model, presented in figure 7g-1,
with the corresponding linear results in figure 7a—f. When infer-
ring 6 = (a, 0), deviations from the corresponding linear results
are minimal. The likelihood-based confidence region and corre-
sponding geodesic endpoints for 8= (a, C(0)) are marginally
tighter and less elliptical. When inferring 6 = (C(0), o), we find
that the confidence region for the exponential model is nar-
rower with respect to C(0) than that of the linear model,
though near-identical with respect to o. As for the linear case,
the scalar curvature is Sc=—1/N everywhere when o is one
of the unknown parameters, and zero everywhere otherwise.

3.2.3. Logistic growth

Logistic growth describes growth at a rate dependent on the
size of the population, with growth ceasing once the popu-
lation reaches a carrying capacity. For sufficiently small
populations relative to the carrying capacity, logistic growth

0V60LZ0T ‘6L pua3ul 20s 4 °r  yisi/jeusnol/bio buiysijgndAiaposiesol E



logistic — inferring r, C(0)

—~
S
=

80

60

40}

=== model fit

population density (%)

20 © data
=== true model
0 L
0 2.5 5.0 7.5 10.0
time (years)
b) logistic — inferring r, K
80 f
S
Z\‘ 60 B
2
S
o 40f
S
s === model fit
g 201 © data
=5 = true model
0 5
0 2.5 5.0 7.5 10.0
time (years)
© logistic — inferring r, ©
80

60 |

=== model fit

© data

=== true model

20

population density (%)
AN
S

0 2.5 5.0 7.5 10.0
time (years)

Figure 6. Example synthetic data generated from the logistic growth model.
The logistic model is fitted to the synthetic data, inferring pairwise combi-
nations of r with ((0), K and o. Observations are made at T=(2.74,
6.84, 10.95) years, with N = 10 observations per time point. True parameter
values are r =0.9131, ((0) =0.7237, K=79.74 and o = 2.301.

is approximately exponential [89]. As the population
approaches the carrying capacity, the rate of growth slows.
The logistic growth model is

dc() ()

with solution

- C0)K
) = O T K= ) oxp (=B 33)

The long-time limit of equation (3.3) is lim ;. ,C(f) =K.
The behaviour of the logistic model can be described by
the three model parameters and standard deviation:
O = (r,C(0), K, o). We can compute the partial derivatives

required to form the Jacobian matrices, J(6), analytically,

CO)K

w6, 1) = Clr, €O K ) = Eh K=oy exp (— 7B

ou(0,t)  C(O)KHK — C(0))exp (—rt)
I ((K—C(0))exp(—rt) +C(0)*’
oo, t) K2exp ()
aC(0)  (C(0)(exp (rt) — 1) + K)?
om0, 1) C(0)* exp (rD)(exp (rt) — 1)

d - .
MK T (C0)exp D — 1) + K

(3.4)

Recall that 8 includes only the unknown parameters to be
estimated, so the components required from equation (3.4) to
form J(#) depend on the specific example.

Example synthetic logistic data are presented in figure 6,
demonstrating the model fits for 8= (r, C(0)), 8= (r, K) and
0=(r, 0). With data at early, mid- and late time, T =(t, t,,
t3) =(2.74, 6.84, 10.95) yr, we observe an excellent model fit
in all cases. The fit is best when 8= (r, o), as only one
model parameter is unknown. Comparing 6= (r, C(0)) and
0=(r, K) we observe a marginally better fit at late time
when K is known, and at early time when C is known,
as expected.

We present inference results for the logistic model for
0=(r, C(0)) in figure 8a—f and for @=(r, K) in figure 8g-I.
We do not present further results of inferring o for the logistic
model, as little insight is gained beyond what we glean from
the linear and exponential growth results. For 8 = (1, C(0)), the
normalized log-likelihood reflects the same relationship
between growth rate and initial condition as for the linear
and exponential cases. With early-mid time data and early-
mid-late time data, we are able to infer 8= (r, C(0)). With
only mid-late time data, we find that the parameters are
not practically identifiable. This can be seen from figure 8c;
the normalized log-likelihood remains above the threshold
prescribed in equation (2.3), and a closed likelihood-based
95% confidence region cannot be constructed. This is also
reflected in figure 8f alongside zero scalar curvature, such
that the plot appears empty. Comparing figure 8a,b, and
noting that they each rely on the same total number of obser-
vations, the importance of early and mid-time data when
inferring 6= (r, C(0)) is reinforced. The confidence region is
tighter with only early-mid data than with the same
amount of data spread across early, mid- and late times.

Inferring 6= (r, K) reflects similar behaviour. In figure 8j
and the associated zoomed-in view (figure 8g), inferring the
carrying capacity from only early-mid time data results in
an extremely wide confidence region, though the parameters
remain identifiable. The geodesics emanating from the MLE
match the likelihood-based confidence region very well in
directions where the normalized log-likelihood is steep; how-
ever, they do not quite reach the true parameter value in the
direction where the normalized log-likelihood is relatively
flat. Comparing figure 8¢,/ with figure 8k,i, the MLE for
0= (r, K) appears to be relatively poor when only early—mid
time data are used.

When considering @ = (r, C(0)), we see that, with early—
mid time data and mid-late time data, the scalar curvature
is zero everywhere. introducing a third
time point (early-mid-late data) results in a non-constant
negative scalar curvature. We expect that this relates to the

However,
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Figure 7. Linear (a—f) and exponential (g—/) merIs with inferred pairwise combinations of growth rate, g, initial condition, ((0), and standard deviation, o.
Heatmaps visualize the normalized log-likelihood, ¢ (a—c, g—i), and the scalar curvature, Sc (d—f, j—I). Observations are made at 7= (0.1, 0.25, 0.5), with 10
observations per time point, corresponding to the example data presented in figure 5. The true parameter values are marked with green discs, with the MLEs
indicated using red discs. Magenta curves correspond to likelihood-based 95% confidence regions. Black lines are geodesic curves emanating from the MLEs,
with lengths corresponding to a theoretical 95% confidence distance. True values of model parameters correspond to the logistic growth parameters; a = 0.9131,

((0) = 0.7237, with reduced standard deviation o= 0.2301.

relationships between the parameters, and the difference
between a mapping (where we have two pieces of infor-
mation and two parameters to estimate) and a fit (where
we have three pieces of information and two parameters
to estimate). We do not observe similar behaviour for
0 = (r, K) with data at three time points; the scalar curvature
still appears to be zero everywhere. One explanation for this
is that data at t;, where C(t) < K, may be effectively indepen-
dent of K, providing no information about K [15]. This may
effectively reduce the problem to a mapping. Given that the
scalar curvature is a feature of the manifold rather than the
data, it is of interest to investigate what would happen were
the true parameters to lie within this region of non-constant
scalar curvature.

To address this, we generate an alternate set of synthetic
logistic growth data using parameter values from within
the high curvature region, (r, C(0))=(0.9, 0.2), with

(K, 0) =(79.74, 2.301) as before. Inference results are presen-
ted in figure 9. We still observe correspondence between
the endpoints of the geodesics and the likelihood-based
confidence region; however, the confidence region is now
significantly narrower and reflects a more hyperbolic
shaped relationship between r and C(0) in terms of the
normalized log-likelihood. Increasing the number of obser-
vations, as depicted in figure 9c, has the expected effects
of tightening the confidence region and reducing the scalar
curvature. This reduces the apparent curvature of the
confidence region.

3.3. SIR epidemic model

The SIR model describes the dynamics of epidemic trans-
mission through a population [2]. Populations are assumed
to be composed of susceptible, s(f), infected, i(t), and
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Figure 8. Logistic growth model with inferred growth rate, r, and initial condition, ((0) (a—f), and with inferred growth rate, r, and carrying capacity, K (g—/). True
parameters are as noted in figure 6, with known standard deviation, o = 2.301. Heatmaps visualize the normalized log-likelihood (a—c¢, g—j) and the scalar cur-
vature (d—f, k—/). The true parameter values are marked with green discs, with the MLEs indicated using red discs. Magenta curves correspond to likelihood-based
95% confidence regions. Black lines are geodesic curves emanating from the MLEs, with lengths corresponding to a theoretical 95% confidence distance. Columns of
the figure correspond to observations from early—mid time (7= (t;, t,)), early—mid—late time (7= (t;, t,, t3)) and mid—late time (T = (t,, t3)), where (t;, £,
t3) = (2.74, 6.84, 10.95) yr. Each plot reflects a total of 30 observations, distributed equally between the specified time points. The red outline in (j) corresponds
to the (zoomed in) region (g), also outlined in red. In (g,/), we plot 1000 geodesics to observe the geodesic near the true parameter values. We do not present Sc

corresponding to (g,/); however, it is zero everywhere.

recovered, r(t), individuals. The total population, ./, is held
constant. When analysing the SIR model in this work,
we consider each population as a proportion of the total
population, such that S(t) =s(t)/A", I(t) =i(t)/ A" and
R(t) = r(t)/A". Quantities A", s(t), i(t) and r(t) are dimen-
sional with dimensions of number of individuals, whereas
S(t)elo, 11, It) [0, 1] and R(t) €[0, 1] are dimensionless
quantities with the property that S(¢) +I(t) + R(t) =1. While
the coral re-growth process considered in the population
model examples takes place over many years, epidemics
occur over a time scale of days or weeks. As such, we now
take t to represent time as measured in days, rather than
years. The parameters of the SIR model are the infection

rate, B (d™'), and the rate at which infected individuals are
removed, y (d7), for example, via recovery from the infection

ds

a - b

dI

P _ 3.5
T BSI —yI (3.5)
dR

Alongside  and y we could also treat the initial conditions,
5(0), I(0) and R(0), as unknown parameters to be estimated.
The standard SIR model presented in equation (3.5) is
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Figure 9. Logistic growth model with inferred growth rate, r, and initial condition, ((0), with known standard deviation, o =2.301, and carrying capacity,
K =179.74. Heatmaps visualize the normalized log-likelihood (a) and the scalar curvature (b,c). Data are observed at = (2.74, 6.84, 10.95), with 10 (a,b) and
50 (c) observations per time point. The true parameter values are marked with green discs, with MLEs indicated using red discs. Magenta curves correspond
to likelihood-based 95% confidence regions. Black lines are 100 geodesic curves emanating from the MLEs, with lengths corresponding to a theoretical 95% con-
fidence distance.

sufficient for our purposes in this work; however, numerous birth and death, exposed but not yet infected individuals, sea-
extensions to the SIR model are considered in the literature. sonality, competition between infectious strains, waning
These extensions incorporate factors such as age structure, immunity, vaccination and spatial structure [2,91-93].
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Figure 10. Data marked with red discs represent the number of infected
individuals during an influenza outbreak in a boarding school [2]. Suscep-
tible, S(t), infected, /(t), and recovered, R(t), populations are modelled
according to equation (3.5 based on parameters inferred in [2], B=
1.6633, v = 0.44036; we treat these as the true parameters when generating
synthetic data. Initial population proportions are S(0) = 762/763, /(0) = 1/763
and R(0) =0.

Data pertaining to the proportion of a population infected
during an influenza outbreak in a boarding school
are presented in figure 10. Observations in the original data
record the number of infected individuals over a 14-day
period [2], in a population of ./ =763, with initial popu-
lations (s(0), i(0), r(0)) =(762, 1, 0). These data are used in
[2] to estimate parameters for the SIR model, which, after
scaling such that S+1+R=1, are f=1.6633 and y = 0.44036.
We treat these values as the true parameters when generating
synthetic data, examples of which are presented in figure 11.
In the context of an SIR model, the presence of multiple
observations at a single time point could reflect, for example,
reporting errors, uncertainty in test accuracy or expert judge-
ment [94,95]. In the boarding school data considered in
[2], observations pertain only to the number of infected
individuals. Given that the SIR model features multiple popu-
lations, data could in theory contain observations of the other
populations also. Example synthetic data with observations on
all three populations are presented in figure 11b.

The SIR model as described in equation (3.5) does not
admit a closed form analytical solution, so we apply numeri-
cal techniques to solve the system. This becomes somewhat
computationally expensive, as the Fisher information compu-
tations rely on partial derivatives of the model solution with
respect to the parameters to form the model Jacobian, and
the information geometry computations require partial
derivatives of the Fisher information up to second order.
Approximating these partial derivatives using numerical
techniques entails solving the system of ODEs several
times. Some computational cost may be spared through
taking advantage of the known relationship that S+I+R=1.

For brevity, we restrict our investigation of the SIR model to
the cases where 6 = (3, y) and 6 = (8, 0). Results in figure 12 cor-
respond to the case where observations pertain only to the
number of infected individuals, while those in figure 13 are pro-
duced from data containing observations of all three
populations. In both cases, the results for 8 = (3, o) align with
those observed in previous results; the geodesics appear to
define a marginally smaller area and are offset from the likeli-
hood-based confidence regions in the direction of decreasing
o and the scalar curvature is the constant Sc=—1/N.

Regardless of whether we observe only the infected
population or all populations, inferring 6= (5, y) produces a
non-constant positive scalar curvature. In figure 12b, where
only I is observed, we see that the geodesics emanating from
the MLE extend beyond the likelihood-based confidence
region. This also occurs in figure 13b, where all three popu-
lations are observed, however it is difficult to perceive at this
scale. Based on this result, and the observations involving
negative scalar curvature when inferring o, it might seem
that positive scalar curvature produces geodesics that extend
beyond corresponding likelihood-based confidence regions,
whereas negative scalar curvature has the opposite effect.
However, repeating the analysis with different synthetic data-
sets—generated from a different random seed—suggests that
in some cases the geodesics will extend beyond the likeli-
hood-based confidence regions, and in some cases they will
fall short, however the scalar curvature remains positive in
all cases.

3.4. Hypothesis testing

In figure 14, we present several example hypothesis tests,
using both likelihood-ratio-based and geodesic-distance-
based approaches, as outlined in §2. Test statistics and corre-
sponding p-values for each hypothesis test are provided in
table 1. For the multivariate normal distribution, where we
observe that the endpoints of geodesics corresponding to a
theoretical 95% confidence distance align closely with the like-
lihood-based 95% confidence regions, we find that the results
of the hypothesis tests are near-identical. Further, the hypoth-
esis test results are consistent with our interpretation of the
95% confidence regions; test points within the confidence
regions have p-values greater than 0.05, while test points
outside the confidence regions have p-values less than 0.05.

We also perform hypothesis tests for the logistic model in
the high curvature region of parameter space. Like before,
results are comparable for different numbers of observations
at each time point, N = (10, 10, 10) and N = (50, 50, 50), as con-
sidered in figure 9. Even in this high curvature region, we
find that the endpoints of geodesics corresponding to a theor-
etical 95% confidence distance very closely match the
likelihood-based 95% confidence regions. This is again
reflected in the results of the hypothesis tests, where very
similar results are obtained from the likelihood-ratio-based
hypothesis tests and the geodesic-distance-based hypothesis
tests, even for relatively extreme 6. As the number of obser-
vations increases, we observe for each 6, considered that, in
accordance with the confidence regions tightening, the test
statistics increase and accordingly p-values decrease.

As we are using synthetic data and know the true
parameters, we can use hypothesis testing to pedagogically
investigate Wilks” theorem [36] and the asymptotic relation-
ship given in (2.11). We generate 1000 synthetic datasets
and for each dataset perform a hypothesis test for the true
parameters. This is repeated for the univariate and multi-
variate normal distributions with N=10 and N=1000
observations. In figure 15, we present densities for both the
likelihood-ratio-based and geodesic-distance-based test stat-
istics, alongside the probability density of x3. For the
multivariate normal distribution with 6 = (u3, u,), the density
profiles for A g and Agp are near-identical, as expected fol-
lowing the results in figure 14 and table 1. We also observe
a good match between these profiles and )3, even with
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Figure 11. Example synthetic data generated from the SIR model under the scenarios where: (a) only the number of infected individuals is observed and (b) we
have observations pertaining to all three populations. Observations are marked with discs. Populations are modelled according to equation (3.5) based on parameters
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the data generated consist only of positive observed population proportions.
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Figure 12. Inferring @ = (B, ¥) in (a,b) and @ = (5, o) in (c,d) for the SIR model with observations only on the number of infected individuals. Observations in the
synthetic data occur at T = (4, 7, 10), with N = 10 observations per time point. True parameters, (3, v, o) = (1.66334, 0.44036, 0.05), are marked with green discs,
with MLEs indicated using red discs. Magenta curves correspond to likelihood-based 95% confidence regions. Black lines are geodesic curves emanating from the
MLEs, with lengths corresponding to a theoretical 95% confidence distance. Initial populations are as described in figure 11.

just N = 10. For the univariate normal distribution with 6 = (4,
o), when N =10 we observe differences between A; g and Agp.
Both profiles are similar to x3, though there appears to be a
higher density in the tails of the distributions of the test stat-
istics. As the number of observations increases to N = 1000,
the difference between A g and Agp reduces significantly,
and both closely match 3.

From Wilks’ theorem [36] and (2.11), asymptotically 95%
of the 95% confidence regions we construct should contain

the true parameter values. We can determine what proportion
of the likelihood-based and geodesic-distance-based 95% con-
fidence regions that we construct contain the true parameter
values using the information presented in figure 15. This is
done by comparing the test statistics with the critical value,
Az 05 from (2.3). For the multivariate normal distribution
with N = 10 we find that 95.7% of the likelihood-based and geo-
desic-distance-based confidence regions contain the true
parameter values. With N =1000 we find that 94.8% contain
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Figure 13. Inferring @ = (B, ) in (a,b) and @ = (B, o) in (c,d), with observations on all three variables, S, / and R. Observations in the synthetic data occur at
T=1(4, 7, 10), with three observations of each population at each time point; 27 observations in total, as depicted in figure 11b. True parameters, (3, ¥,
o) = (1.66334, 0.44036, 0.03), are marked with green discs, with MLEs indicated using red discs. Magenta curves correspond to likelihood-based 95% confidence
regions. Black lines are geodesic curves emanating from the MLEs, with lengths corresponding to a theoretical 95% confidence distance. Initial populations as

described in figure 11.

the true parameters, approaching the theoretical 95%. For the
univariate normal distribution with N=10 we find that
93.2% of the likelihood-based confidence regions contain the
true parameter, while only 88.0% of the geodesic-distance-
based confidence regions contain the true parameters. With
N =1000, we find that 95.2% of the likelihood-based confidence
regions and 95.1% of the geodesic confidence regions contain
the true parameters.

4. Discussion

Parameter estimation is wrought with challenges relating to the
availability and quality of experimental or field data [8,9,11,12].
This prompts a strong consideration of uncertainty quantifi-
cation to support point estimation of model parameters [13].
In this section, we discuss the results presented in §3. We high-
light opportunities for application of information geometry
techniques, including geodesic curves and scalar curvature,
to supplement traditional maximume-likelihood-based par-
ameter inference and uncertainty quantification. We conclude
by outlining areas for further investigation.

Even for relatively small sample sizes, we observe good
correspondence between the likelihood-based 95% confi-
dence regions and the endpoints of geodesic curves
corresponding to a theoretical 95% confidence distance, in
accordance with the asymptotic relationship described in
equation (2.11), particularly when estimating model

parameters. When estimating standard deviation, as outlined
in §3, geodesics appear to suggest a tighter confidence region
and appear to be biased towards parameter space with smal-
ler standard deviation. We observe this effect decreasing as
the number of observations increases, in line with the
known underestimation bias of minimum-likelihood esti-
mates of variance [36]. The misalignment of likelihood-
based confidence regions and geodesic endpoints appears
to occur more frequently in examples with non-zero scalar
curvature, although we observe a good match in figure 9
despite the non-constant scalar curvature.

Visualizing the scalar curvature throughout a parameter
space can indicate areas where there may be issues with
identifiability. Areas with significant non-constant scalar cur-
vature can suggest a complicated relationship between
parameters in terms of the normalized log-likelihood, such as
the hyperbolic confidence region observed in figure 9. How-
ever, it is possible to produce examples, such as figure 8cf,
where there is practical non-identifiability despite zero scalar
curvature everywhere. Although we do not show it here, for
the logistic model with #=(r, K) in the region of parameter
space where C(0)~ K, computation of the scalar curvature
breaks down as the Fisher information matrix becomes
singular. Here, it may be obvious that we cannot identify the
growth rate, 7, from a process that is initialized at its steady
state (C(0) = K). However, observing this behaviour in general
may help to detect issues with identifiability, particularly for
models without analytical solutions.
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Figure 14. Example hypothesis tests for the: (a) univariate normal distribution, with 8 = (u, o), 0= (0.5050, 0.4846); (b) multivariate normal distribution, with
0= (uq, 1), 0= (0.7109, 1.1498); logistic model with &= (r, C(0)) in the high curvature region as considered in figure 9, with () N=(10, 10, 10),
0= (0.9195, 0.1723), and (d) N = (50, 50, 50), 0= (0.9287, 0.1682). In each case, we test several example hypotheses, 6, marked by coloured discs. Geo-
desics between the MLEs (red discs) and each @) are shown in red. Magenta curves correspond to likelihood-based 95% confidence regions. Black lines are geodesic
curves emanating from the MLEs, with lengths corresponding to a theoretical 95% confidence distance.

The information geometry techniques we discuss are
primarily implemented numerically; as such there is a com-
putational cost to consider. For the normal distributions
and population growth models in this work, where analytical
solutions are available, the information geometry techniques
are not disproportionately more computationally expensive
than the traditional likelihood-based inference and confi-
dence regions. Examples such as the SIR model, where no
analytical solution is available, represent a significantly
greater computational burden. However, this impacts both
the likelihood-based inference and information geometry
techniques as the underlying system of ODEs, for example
equation (3.5), must be solved numerous times. The compu-
tational cost associated with the information geometry
techniques depends significantly on the desired resolution
for the scalar curvature surface, and on the number of geode-
sic curves. A suitable approach may be to first compute the
scalar curvature on a coarse grid to identify areas of interest
to investigate with a refined grid. Further, the geodesic
curves and scalar curvature computations are highly amen-
able to parallelization, which can significantly reduce
computation time. This computational cost will generally
pale in comparison with the costs associated with collecting
experimental or field data, and may be easily justified if the
information geometry techniques are used to guide data col-
lection. If information geometric analysis identifies a region
of parameter space with significant non-constant scalar cur-
vature for a model, such as in figure 9, and practitioners
have a prior expectation that the true parameter values fall

somewhere within this region, this may indicate that a greater
quantity or quality of data is needed to improve identifiabil-
ity for that particular model. Alternatively, such analysis may
guide practitioners in choosing favourable experimental con-
ditions; for example in cell culture experiments, where it is
possible to vary the initial cell seeding density [1]. Exper-
imental design is a process wherein experiments are
performed or simulated iteratively with perturbations, such
that some measure of information is maximized. Through
this process, the most informative experiments are identified,
facilitating design of optimal experimental protocols [96-98].
Common to these approaches is the importance of quantify-
ing and comparing information. While we do not consider
optimal experimental design in this work, there is potential
to incorporate information geometric techniques in the exper-
imental design process as a means of comparing information
between experimental perturbations. This is an area for
further investigation. Although we focus on how information
geometry can supplement traditional maximum-likelihood-
based inference and uncertainty quantification, primarily
through visualization, it should be noted that concepts from
information geometry have also found application in the
inference context from a computational efficiency standpoint.
For example in Bayesian inference, by defining Monte Carlo
sampling methods on a Riemann manifold, the geometric
structure of the parameter space can be exploited [99]. Simu-
lated paths across the manifold automatically adapt to local
structure, facilitating efficient convergence, even in higher
dimensions and in the presence of strong correlation
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normal

logistic
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[99,100]. Concepts from information geometry, including
geodesic curves, are also implemented in methods for
model reduction [101]. These applications of information
geometry techniques to improve computational algorithms
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highlight further utility of geometric concepts for inference
in higher dimensions, beyond that which we demonstrate
through visualization in this work. Geodesics can be used
to measure the distance between probability distributions.
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As demonstrated in §3, it is possible to perform hypothesis
tests based on geodesic distance [48,51,78]. The approach for
performing a hypothesis test is to solve a boundary value pro-
blem to find the geodesic connecting two points in parameter
space, and use the corresponding geodesic distance to com-
pute a test statistic. For the examples considered in this
work, such boundary value problems are readily solved
numerically using standard techniques, such as those included
in the Julia package DifferentialEquations.jl [83]. Careful
numerical handling may be required for geodesic curves
close to boundaries of parameter space. For more complicated
examples, particularly those in high-dimensional manifolds,
achieving converging solutions to geodesic boundary value
problems can prove challenging. There is scope for a review
of the different numerical methods for solving boundary
value problems, with a particular focus on their applicability
to solving geodesic boundary value problems for hypothesis
testing in high-dimensional manifolds.

In this work, we only consider models that admit unimodal
likelihoods. In cases where the likelihood is multimodal, pro-
vided that we are able to obtain the Fisher information
required to compute the Christoffel symbols, we are still able
to compute the scalar curvature and perform hypothesis tests
based on geodesic distance. With multimodal likelihoods, it
would not be possible to construct confidence regions from
geodesics emanating from the MLE. Although, we note that
constructing confidence regions for multimodal likelihoods is
also problematic with traditional likelihood-based inference
methods. There are several avenues for future research in this
area. Here, we consider two-dimensional manifolds to facilitate
convenient visualization; however, the inference and infor-
mation geometry techniques are general, and can be readily
applied to higher dimensional manifolds [36,59], albeit with
increased computational cost. Extending this analysis to three
dimensions would enable consideration of situations where
there is scalar curvature associated both with the variability
of the observation process, o, and also with interactions
between model parameters; for example, it may be insightful
to consider 8= (B, y, o) for the SIR model, where we associate
a constant negative scalar curvature with ¢ and non-constant
positive scalar curvature due to interactions between f and y.
In three dimensions, likelihood-based confidence regions can
be visualized as a series of two-dimensional slices oriented in
three-dimensional space [1]; this technique could be applied
to visualize slices of the scalar curvature in three dimensions.
One approach for visualization in higher dimensions is to
produce an ensemble of these two- or three-dimensional
confidence regions for various combinations of parameters of
interest, with other parameters fixed at their MLEs. Alterna-
tively, in higher dimensions it may be more appropriate to
use non-visual techniques, such as hypothesis testing.

While we have considered ODE models, there is appetite
in the literature for parameter estimation, uncertainty
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