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1. INTRODUCTION 
 
The spike protein on the envelope of SARS-coronavirus (SARS-CoV) guides viral entry 
into cells by first binding to its cellular receptor and then fusing viral envelope and 
cellular membranes.1 It consists of a large ecdotomain (S-e) (residues 12~1190), a trans-
membrane anchor, and a short intracellular tail. S-e contains two regions, a receptor-
binding region S1 and a membrane-fusion region S2. The S1 region contains a defined 
receptor-binding domain (RBD) (about residues 300~500).2,5 SARS-CoV uses a zinc 
peptidase, ACE2, as its cellular receptor.4 The crystal structure of ACE2 shows that it has 
a claw-like structure.5 Ligand binding triggers an open-closed conformational change 
between its two lobes. The SARS-CoV RBD is sufficient for tight binding to ACE2, and 
thus it is the most important determinant of virus-receptor interactions, viral host range, 
and tropism. It is believed that a few residue changes on the RBD play a pivotal role in 
the cross-species transmission of SARS-CoV.6,7 We have identified the boundaries of the 
RBD by limited proteolysis, purified the RBD, and determined its crystal structure in 
complex with ACE2 at 2.9 Å resolution. The structure reveals in atomic detail the 
specific and high-affinity interactions between the virus and its receptor. It sheds light on 
critical residue changes that dictate the species specificity of the virus. 
 
 
2. RESULTS AND DISCUSSION 
 

We constructed and expressed the SARS-CoV S-e in insect cells, purified it from the 
cell culture medium, and identified the S1/S2 boundary (after residue 667) by limited 
proteolysis of the purified S-e. We then constructed and expressed S1 in insect cells, 
purified it, and identified the N terminus of the RBD (before residue 306) by limited 
proteolysis of the purified S1. To obtain structural information on the RBD, we made a 
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series of constructs with the newly defined N-terminus of RBD but with different C-
termini. We expressed and purified each of these fragments. Extensive crystallization 
trials of these fragments, by themselves or in complex with ACE2, did not yield useful 
crystals. By further proteolysis of one of these fragments (306–575), we generated a 
shorter fragment (306–527) that corresponds to the most stable version of the RBD. This 
RBD binds to ACE2 with high affinity, as shown by gel filtration experiments (Figure 1); 
it was subsequently co-crystallized with ACE2 in space group P21 (Figure 2). 

The structure of the ACE2/RBD complex was determined by molecular replacement 
using ACE2 as the search model and refined to an R-factor of 22.1% (R free = 27.5%) at 
2.9 Å resolution.8 The final model of the complex contains the N-terminal peptidase 
domain of human ACE2 (residues 19–615) and the spike RBD of human SARS-CoV 
(residues 323–502, missing residues 376–381). The model also includes glycans N-linked 
to residues 53, 90, 322, 546 of ACE2 and to residue 330 of the RBD. 

The RBD structure contains two subdomains – a core structure and an extended loop 
(Figure 3A). The core structure is a five-stranded antiparallel ß-sheet, with three short 
connecting α helices. The extended loop presents a gently curved surface to interact with 
the receptor. The base of this surface is a two-stranded antiparallel ß-sheet that cradles 
 

Figure 1. Interactions between SARS-CoV spike RBD and ACE2 in solution. (A) Gel filtration 
chromatography on Superdex 200 of RBD (right), ACE2 (middle), and ACE2/RBD complex (left; RBD is in 
excess). The elution volumes of each sample are indicated above the peaks. (B) Coomassie-blue stained 
reducing SDS-PAGE. The right lane is the ACE2/RBD complex collected from the left peak in (A). 
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the N-terminal helix of ACE2. One ridge of the surface contacts a loop of ACE2, while 
the other inserts between two ACE2 loops (Figure 4). Because this extended loop makes 

In the crystal there are two complexes in each asymmetric unit. The ACE2 molecule in 

binds to the outer surface of the N-terminal lobe of ACE2, away from the peptidase active 
site (Figure 3B). Therefore, SARS-CoV binding is independent of ACE2 conformation and 
is unlikely to interfere with the peptidase activity of ACE2. 

At least four features contribute to the specific and high-affinity binding between 
ACE2 and the RBD. First, the two proteins are perfectly complementary in shape. Second, 
the RBM is rich in tyrosine that has both a polar hydroxyl group and a hydrophobic 
aromatic ring, generating a combination of specific hydrogen-bond interactions and strong 
nonpolar contacts. Third, the RBM is reinforced by a disulfide bond. Fourth, the binding 
buries 1700 Å2 at the interface. Thus, the interactions between the two proteins are both 
extensive and specific. 

The structure reveals important residue changes at the binding interface that determine 
the species specificity of SARS-CoV. Previous genomic analysis and mutagenesis studies 
suggested possible roles for residues 479 and 487 in cross-species infection by SARS-
CoV.6,7 Detailed structural analysis sheds light on the significance of these residues in 
virus-receptor interactions (Figure 4). On most human SARS isolates, 479 is an asparagine, 
while on most civet SARS-like viral isolates, it is a lysine. Lys479 would have steric and 
electrostatic interference with residues on the N-terminal helix of human ACE2 such as 
His34. A K479N mutation would remove an unfavorable interaction at the interface and  

Figure 2. Crystallization of the ACE2/RBD complex. (A) Crystals of the ACE2/RBD complex were grown at 
room temperature from a mother liquor containing 24% PEG6000, 150 mM NaCl, 100 mM Tris pH 8.2, and 
10% ethylene glycol. (B) Silver-stained reducing SDS-PAGE. Lane (1) is the ACE2/RBD complex purified by 
gel filtration chromatography as in Figure 1. Lane (2) is the crystal wash buffer from the last round. Lane (3) is 
dissolved crystal after several rounds of washes. 
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one of the complexes is in the open conformation; the other is slightly closed. The RBD 

all the contacts with the receptor, we refer to it as the “receptor-binding motif,” or RBM. 



F. LI ET AL. 

Figure 3. Crystal structure of the ACE2/RBD complex. (A) Structure of the RBD that contains two 
subdomains: a core structure (in cyan) and a receptor-binding motif (in red). (B) Structure of the ACE2/RBD 

enhance the binding affinity of the virus to its receptor. Hence the K479N mutation is a 
critical step for SARS to cross the species barrier to infect humans. In all human SARS-
CoV sequences from the year 2002–2003 SARS epidemic, 487 is a threonine; in all civet 
SARS-like viral sequences, it is a serine. In the structure, the methyl group of Thr487 lies 
in a hydrophobic pocket bounded by the side chains of Tyr41 and Lys353 from the 
receptor. Lys353 on the receptor is at the center of a complex interaction network. It 
forms a main chain-main chain hydrogen bond with Gly488 from the virus, its charge is 
neutralized by Asp38 from the receptor, and its side chain is sandwiched between 
Tyr41 from the receptor and Tyr491 from the virus. Thus a serine at 487 would leave 
a hole in this tight hydrophobic pocket and decrease the binding affinity. Unlike the 
previous year, 2003–2004 saw no human to human transmission of SARS. Sequences 
from the second year have a serine at 487. It appears that the methyl group on the 487 
side chain is a key factor in determining the severity of SARS and potentially viral 
transmissibility from human to human. Isolates from the 2002–2003 SARS epidemic all 
have a leucine at 472, but those from the second year have a proline. In the crystal 
structure, Leu472 forms a hydrophobic interaction with Met82 from the receptor (Figure 
4). So L472P could be another attenuation mutation for SARS-CoV, besides T487S. 

The crystal structure allows us to inspect and examine the evolutionary relationship 
between SARS-CoV and potential animal hosts. Rat ACE2 does not support SARS-CoV 
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complex. The RBD binds to the outer surface of the N-terminal lobe of ACE2 (in green). (See color plate). 
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Figure 4. Residues located at the ACE2/RBD interface and important to the species specificity of SARS-CoV. 
Leu472 on the RBD has a hydrophobic interaction with Met82 on ACE2. L472P mutation may attenuate the 
virus. On rat ACE2, residue 82 is glycosylated, preventing the binding of SARS-CoV. A K479N mutation on 
the RBD is critical for SARS-CoV to jump from civets to humans. Thr487 on the RBD forms a hydrophobic 
interaction with Lys353 on ACE2. A S487T mutation on the RBD is important for SARS-CoV to transmit from 
human to human. On both rat ACE2 and mouse ACE2, residue 353 is a histidine, disfavoring the binding of 

infection for two reasons. First, rat ACE2 has a histidine at 353, and it is thus unable to 
form the same interaction network at the interface as does Lys353. Second, rat ACE2 has 
an asparagine at 82, introducing a glycosylation site. A glycan at this position would have 
steric interference with the viral RBD. Mouse cells can be infected by SARS-CoV at low 
levels, probably because mouse ACE2 contains a histidine at 353 but does not have the 
glycan at 82. In fact, a single H353K mutation greatly enhances both binding affinity and 
viral infectivity.9

The structure provides insights into antiviral strategies. The RBD is sufficient to 
elicit neutralizing antibodies against the virus10,11 and thus could be used in subunit 
vaccines. To date, at least two neutralizing antibodies are known to recognize epitopes on 
the base of the RBM.11,12 Indeed, the structural properties of the RBM, including the 
relative flatness of the binding interface, the conservation in sequence, and the lack of 
glycosylation, suggest that immunization with the RBD could be a route to protective 
immunity. 

In summary, the crystal structure of SARS-CoV spike RBD in complex with ACE2 
has revealed detailed interactions between the virus and its receptor. Analysis of these 
interactions uncovers important aspects of the invasion mechanisms of SARS-CoV. It 
sheds light on the origination and severity of the SARS epidemic and can guide future 
antiviral studies. The approach we used to determine the crystal structure may be 
extended to study the interactions between other coronaviruses and their cellular 
receptors.
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SARS-CoV. (See color plate). 
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