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Multiple myeloma (MM), the second most common hematological malignancy, is an
incurable cancer of plasma cells. MM cells diffusely involves the bone marrow (BM) and
establish a close interaction with the BM niche that in turn supports MM survival,
proliferation, dissemination and drug resistance. In spite of remarkable progress in
understanding MM biology and developing drugs targeting MM in the context of the
BM niche, acquisition of multi-class drug resistance is almost universally inevitable.
Exosomes are small, secreted vesicles that have been shown to mediate bidirectional
transfer of proteins, lipids, and nucleic acids between BM microenvironment and MM,
supporting MM pathogenesis by promoting angiogenesis, osteolysis, and drug
resistance. Exosome content has been shown to differ between MM patients and
healthy donors and could potentially serve as both cancer biomarker and target for
novel therapies. Furthermore, the natural nanostructure and modifiable surface properties
of exosomes make them good candidates for drug delivery or novel immunomodulatory
therapy. In this review we will discuss the current knowledge regarding exosome’s role in
MM pathogenesis and its potential role as a novel biomarker and therapeutic tool in MM.
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INTRODUCTION

Multiple myeloma is the second most common hematological malignancy in the Western world
after non-Hodgkin lymphoma, accounting for approximately 13% of all hematological cancers (1).
About 32,270 new cases of MM and 12,830 MM-related deaths are expected in 2020 (2). Although
autologous stem-cell transplantation and agents targeting both MM and the BM niche, such as
immunomodulatory drugs (IMiDs), proteasome inhibitors, and monoclonal antibodies, have
profoundly extended the overall survival of MM patients, the disease remains incurable (3).
Multiclass relapsed/refractory MM patients face a dismal prognosis with limited therapeutic
options, and thus there is an urgent need to understand better the biology of MM and explore
new therapeutic approaches (4).

MM is characterized by end organ damage caused by monoclonal expansion of malignant
plasma cells within the BM, associated with an excess of monoclonal protein in the blood or urine
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(5). Recent data show that MM consistently progresses from a
precursor state of monoclonal gammopathy of undetermined
significance (MGUS) or smoldering multiple myeloma (SMM)
(6, 7). The facts that the primary oncogenic mutations observed
in MM patients are already present in MGUS or SMM and that
genomic landscape appears remarkably similar across the plasma
cell disorder spectrum, suggest that the BM microenvironment
may play a crucial role in disease progression from an
asymptomatic state to malignant neoplasms (8, 9).

It has been widely demonstrated that the BMmicroenvironment
promotes tumor growth, angiogenesis, and osteolysis (9). Among
various interactions within the bone marrow, recent studies reveal
that exosomes are important cross-talking mediators during tumor
growth and progression (10). Exosomes are small (30-100nm
diameter) membrane vesicles generated in multivesicular
endosomes (MVEs) and released upon the fusion of MVEs with
cell membrane (11, 12). These nano vesicles are secreted by most
cell types under both physiological and pathological conditions,
mediating local and systemic cell-to-cell communication through
selective transfer of mRNA, non-coding RNA (ncRNA), proteins,
and lipids (13, 14). There is a growing interest in understanding how
exosomes contribute to MM pathogenesis and if they could be use
as a therapeutic vehicle in MM treatment.
EXOSOME BIOGENESIS

Exosome biogenesis starts in the endosomal system as
endosomes accumulate intraluminal vesicles and mature into
multivescular endosomes (MVEs or MVBs) (15, 16). During the
process, cargo macromolecules including lipids, proteins, and
nucleic acids are clustered and recruited via ESCRT (endosomal
sorting complex required for transport)–dependent or ESCRT-
independent mechanisms (12, 15). Once matured, MVEs that are
not destined for degradation are transported along microtubules
and docked to the plasma membrane, after which exosomes are
released upon the fusion of MVEs and the plasma membrane
(12, 16). When exosomes reach the recipient cells, they exert
their effects by binding to the cell surface and triggering
downstream intracellular signaling; by fusing directly with the
plasma membrane to deliver cargos; or by being internalized
through pathways such as endocytosis and phagocytosis (12).

Exosomes were initially thought to be means for cells to
eliminate unwanted materials, but they are now considered more
as biological active entities that play a role in intercellular
communication and contribute to many physiological and
pathological functions (16–19). In recent reports, exosomes
have been shown to be an important element mediating cell
recruitment, immunosuppressive effects, and horizontal
transfer of genetic information either locally or systemically to
ensure continuous crosstalk between the tumor and its
microenvironment (18, 20). Emerging evidence supports that
MM-derived exosomes (MM-EXs) reprogram recipient cell
functions in the BM to modulate and mold a pro-tumor
environment capable of supporting disease progression (21).
MM-EXs affect the function of several components of the BM
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milieu, including natural killer (NK) cells, myeloid-derived
suppressor cell (MDSC), mesenchymal stem cells (MSC),
endothelial cells, osteoblast (OB), and osteoclast (OC)
(Figure 1). Exosome signaling is bidirectional and bone
marrow stromal cells (BMSCs)-derived exosomes (BMSC-EXs)
have been shown to induce MM growth, survival, and drug
resistance (22).
EXOSOMES ROLE IN MM PATHOGENESIS

Roccaro et al. demonstrated that BMSC-EXs obtained from MM
patients promoted tumor growth while BMSC-EXs from healthy
donors inhibited MM cell proliferation (23, 24). Exosome
profiling showed MM-BMSC-EXs expressed a lower level of
tumor-suppressive factor miRNA-15a, and a higher level of
chemokine C-C motif ligand (CCL) 2, interleukin (IL) 6, and
fibronectin, which play a crucial role in MM pathogenesis and
tumor progression (24). A distinct study similarly confirmed the
difference in exosomal content between normal and MM in the
5T33 murine model (25). BMSC selectively transferred certain
proteins into MM cells that induced p38, p53, c-Jun N-terminal
kinase (JNK), and Akt pathways to promote MM cell survival
(25). Interestingly, Wang et al. also reported that exosomes
obtained from both normal donor and MM patient BMSCs
induced drug resistance of human MM cells. They proposed
that BMSC-EXs-mediated upregulation of anti-apoptotic B-cell
lymphoma (Bcl)-2 and downregulation of apoptotic Caspase 9
and Caspase 3 in MM cells inhibited spontaneous and
bortezomib-induced apoptosis (25). Recently, a study showed
that BMSC-derived exosomes from PI-resistant MM patients
transferred PSMA3 and PSMA3 Antisense RNA1 to MM cells,
causing increased proteasome activity and thus mediating PI
resistance (26).

Rather than a one-way order, the mutual communication
between MM and BMSC cells via exosomes enables a feedback
loop in the BM microenvironment to support MM progression.
Our group showed that co-culture of MM induced HDAC3
expression in BMSC cells, while HDAC3 knock down in BMSC
lead to quantitative and qualitative changes in secreted exosomes
that contributed to MM cell growth arrest (27). Moreover, De
Veirman et al. examined the miRNA changes in human MSC
after culture with conditioned medium of MM cells and found 19
dysregulated miRNAs, including upregulated miR-146a. They
further demonstrated that exosomes transferred miR-146a from
MM cells into MSC. In return, the overexpression of miR-146a in
MSC increased the secretion of cytokines and chemokines
including C-X-C motif chemokine ligand (CXCL) 1, CXCL10,
IL6, IL8, CCL2, and CCL5, resulting in the enhancement of MM
cell viability and migration (28).

Uptake of BMSC-derived exosomes by MDSCs in MM
patients results in accelerated tumor growth and generation of
an immunosuppressive BMmilieu. An in vitro study showed that
BMSC-derived exosomes induced the survival and expansion of
MDSCs through activating signal transducer and activator of
transcription (STAT) 3 and STAT1 pathways and increasing the
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anti-apoptotic proteins B-cell lymphoma-extra large (Bcl-xL)
and induced myeloid leukemia cell differentiation protein
Mcl-1 (29). The same group also showed that exosomes from
BMSCs further activated MDSCs in vivo to increase their nitric
oxide production, which contributed to the inhibition of T cells
(29, 30). They later showed that MM-EXs also activated STAT3
in MDSCs to express high levels of both arginase 1 and inducible
nitric oxide synthase, which enhanced T-cell suppression (31).
EXOSOME IMPACT ON BM
MICROENVIRONMENT REMODELING

Osteolysis is a common characteristic of MM resulting from a
disrupted equilibrium between OBs and OCs, which are
responsible for new bone apposition and bone resorption,
respectively to guarantee adequate bone mass (32, 33). Exosomes
in the BM have been shown to contribute to this pro-OC
microenvironment, resulting in impaired bone formation and
MM-related bone disease. Emerging evidence suggests that
exosomal ncRNAs play an important role in this regard (34, 35).

Raimondi et al. were the first to show that exosomes derived
from MM cells and MM patient’s sera directly influenced OCs
Frontiers in Oncology | www.frontiersin.org 3
differentiation and function. MM-EXs not only supported
migration of pre-osteoclast cells (pOCs) through the increasing
of C-X-C chemokine receptor type 4 expressions, but also
induced their differentiation into multinuclear OCs with
specific OCs markers such as cathepsin K, matrix
metalloproteinases 9 (MMP9), and tartrate-resistant acid
phosphatase (TRAP). Besides promoting their bone resorptive
activity, MM-EXs suppressed apoptosis of pOCs and enhanced
their survival by activating the Akt pathway (36). Recent studies
confirmed those observations and further explored the effective
contents in MM-EXs and their mechanisms to exert functions on
MSCs. LncRNA RUNX2 antisense RNA 1 (RUNX2-AS1),
amphiregulin, and miR-129-5p were identified to be
specifically enriched in MM-EXs. Upon internalization of the
exosomes by MSC, these molecules reduced RUNX2 splicing
efficiency, activated the epidermal EGFR pathway, and
downregulated the expression of the transcription factor Sp1,
respectively (37–39). Each pathway has been demonstrated to
decrease the osteogenic potential of MSCs, increase
osteoclastogenesis, and contribute to osteoblast deficiency. A
new study also identified UPR (unfolded protein response)-
related signaling molecules in MM-EXs that were proposed to
induce osteoclastogenesis through activation of the XBP1/IRE1a
FIGURE 1 | Exosomes mediate cross-cell communication in the multiple myeloma (MM) bone marrow microenvironment (BMM). Tumor-derived exosomes remodel
stromal cells, affect osteogenesis, induce angiogenesis, and help create an immunosuppressive microenvironment. Small dark blue spheres represent MM-derived
exosomes and brown spheres represent MSC/BMSC-derived exosomes contribute to MM survival, proliferation, and drug resistance. Dotted arrows indicate
differentiation, whereas solid arrows indicate effects on a target cell. Cells and associated effects are shown. BMSC, Bone marrow stromal cell; CAF, Cancer-
associated fibroblast; ECs, Endothelial cells; MSC, Mesenchymal stem cell; MDSC, myeloid-derived suppressor cells; NK, Natural killer cell; OB, Osteoblast; OC,
Osteoclast; pOC, Pre-osteoclast cell; RBCs, Red blood cells. AREG, amphiregulin; ArgI arginase 1; bFGF, basic fibroblast growth factor; Bcl-2, B-cell lymphoma 2;
Cas3, Caspase-3; Cas9, Caspase-9; CCL2, chemokine C-C motif ligand 2; HSP70, Heat Shock Protein 70; IL6, Interleukin 6; IL15 Interleukin 15; IL15RA IL15
Receptor Subunit Alpha; iNOS, Inducible nitric oxide synthase; NO, Nitric oxide; PSMA3, Proteasome subunit alpha type-3; PSMA3 asRNA1, PSMA3 antisense
RNA1; VEGF, Vascular endothelial growth factor; LncRNA RUNX2-AS1, Long non-coding RNA Runt-related transcription factor 2 antisense RNA1.
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axis (40). Additionally, MM-EXs promoted secretion of pro-
osteoclastogenic cytokine IL8 and IL6 via APE1/NF-kB pathway
and suppressed osteoblastic differentiation proteins Runt-related
transcription factor 2 (Runx2), Osterix and osteocalcin (38, 39,
41). Exosomes derived from 5TGM1, murine MM cells also
demonstrated the ability to block osteoblast differentiation and
functionality in vitro. Faict and colleagues suggested that the
transfer of dickkopf WNT signaling pathway inhibitor 1 (DKK1)
triggered inactivation of the Wnt signaling pathway that lead to a
reduction in Runx2, Osterix, and Collagen 1A1 in osteoblasts (42).

Several studies indicated that soluble factors from MM cells
stimulated the overexpression of miR-135b in MSCs, which was
associated with the negative regulation of MSCs osteogenesis and
their impaired osteogenic differentiation ability inMMpatients (43).
Umezu et al. later showed that exosomes from chronic hypoxia-
resistant MM (HR-MM) cells, which mimicked tumor cells from
the BM, were highly enriched in miR-135b (44). They provided new
evidence that exosomal miR-135b directly suppressed factor
inhibiting HIF-1 (FIH-1) to accelerate hypoxia-inducible factor
(HIF)-1 transcriptional activity in endothelial cells and attributed
to hypoxia-driven accelerated tube formation (44, 45). As BM is
highly vascularized and naturally hypoxic and the MM-infiltrated
BM even more hypoxic due to the massive proliferation of MM
cells, exosomes target it primarily to increase angiogenesis (46, 47).
Using the same HR-MM model both in vitro and in vivo, Umezu
demonstrated that miR-340 from healthy BMSC exosomes
inhibited angiogenesis via the hepatocyte growth factor/c-MET
(HGF/c-MET) signaling pathway in endothelial cells. However,
BMSC exosomes from older donors with senescent profiles were
less effective in reducing angiogenesis (48). Inmurinemodels,Wang
et al. confirmed a strong pro-angiogenic effect of MM-EXs and
identified multiple angiogenic factors as cargo proteins, including
angiogenin, basic fibroblast growth factor (bFGF), and vascular
endothelial growth factor (VEGF) (31, 49). They further
demonstrated that MM-EXs enhanced phosphorylation of Stat3,
JNKs, and p53 in endothelial cells and directly facilitate their
growth (31).
DIAGNOSTIC AND PROGNOSTIC ROLE
OF EXOSOMES

Accurate diagnosis and prognosis with a close monitor of disease
progression are essential in designing appropriate therapy for
patients. There are significant research interests in identifying
biomarkers and other non-invasive approaches for diagnosis and
disease classification to facilitate patient follow up and care. As
previously shown, exosomes are actively secreted by cells and can
be isolated from the peripheral blood, making them suitable
candidates as biomarkers (50). Proteomic characterization of
exosomes secreted by different MM cell lines revealed that they
contained a common pattern of proteins and thus could
potentially represent an important tool to detect low burden
disease (51). Exosomal lncRNA profiling distinguished MM and
MGUS patients from healthy donors (14, 52). MicroRNAs are
also important components of exosomes, delivering tumor-
Frontiers in Oncology | www.frontiersin.org 4
promoting messages and impacting signaling and protein
expression in target cells (53). A study of circulating exosomal
miRNAs isolated from the serum of 156 patients identified 22
miRNAs expressed at a significantly lower level in MM patients
compared to healthy individuals. Among those, let-7b and miR-
18a were significantly associated with both progression-free
survival and overall survival. Patients characterized by lower
exosomal let-7b and miR-18a levels were more likely to present
with high stage in the International Staging System and have a
poor outcome (54). Another study found that miR-129-5p,
which targeted OBs differentiation markers, was enriched in
exosomes from MM patients compared to those from SMM
patients, suggesting exosomes may be a useful marker of disease
progression (39). Higher expression of exosomal miR-214
detected in osteoporotic patients also suggested exosome’s
potential as a biomarker for MM bone diseases (34, 35).
Further validation in other independent MM patient cohorts
will explore the potential of circulating exosomal miRNAs to
improve the prognostic and risk stratification.

Tools to predict drug resistance are becoming increasingly
important in the era of personalized medicine. Zhang et al.
focused on the predictive value of exosomal miRNA for primary
or acquired drug resistance in MM patients. They analyzed 204
patients data and discovered that exosomal miR-16-5p, miR-
15a-5p and vmiR-20a-5p, miR-17-5p were downregulated in
patients resistant to bortezomib (55). Another study identified
circulating exosomal PSMA3 and PSMA3-AS1 as clinically
relevant biomarkers correlated with PI resistance. Newly
diagnosed, MM patients with a low exosomal expression of
PSMA3 and PSMA3-AS1 were sensitive to bortezomib,
whereas patients with a high expression responded poorly (26).

Allogeneic hematopoietic stem cell transplantation (HSCT) is a
treatment strategy that can be carefully considered in young patients
with aggressive MM as a tool to achieve long-term disease
remission. However, transplant-related complications, primarily
acute and chronic graft-vs-host disease (GVHD) are a substantial
cause of morbidity and mortality (56). Lia et al. conducted an
exploratory study of 41 MM patients undergoing allogeneic HSCT
to investigate exosomal surface antigens as potential predicative
biomarkers for acute GVHD. CD146 correlated with a 60%
increased risk of developing GVHD, whereas CD31 and CD140-
a with a 40% and 60%, respectively, reduced risk (57).
EXOSOME-RELATED TARGETS
AND THERAPIES

Exosomes are important message carriers that contribute to
generate a tumor permissive microenvironment in the BM. A
number of studies have investigated the therapeutic potential of
targeting exosome secretion in MM. In murine MM models,
sphingomyelinase inhibitor GW4869 blocked exosome secretion,
preventing exosome-mediated bone lesions and increasing
cortical bone volume. Importantly, GW4869 also strongly
synergized with bortezomib in mediating anti-myeloma
activity, suggesting that perturbation of exosomes can directly
November 2020 | Volume 10 | Article 608815
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affect MM survival and proliferation (37, 42). However, ceramide
C6 (C6-cer), an exogenous ceramide supplement, dose-
dependently increased MM exosome secretion but inhibited
cell proliferation and induced apoptosis (58). Interestingly,
after C6-cer treatment, Cheng et al. detected decreased levels
of tumor suppressive miRs including miR 202, miR 16, miR 29b,
and miR 15a in MM cells and increased levels of these miRs in
exosomes. While discrepancy of alterations in intracellular miRs
and MM proliferation and apoptosis upon C6-cer treatment still
requires further investigation, they demonstrated that those
MM-EXs with elevated tumor-suppressive miRs exhibited
paracrine effects on recipient MM cells that suppress tumor
growth (58).

Apart from targeting exosome secretion, disrupting
interactions between exosomes and recipient cells to prevent
exosome uptake or content loading also has therapeutic value.
Purushothaman et al. discovered that heparan sulfate plays a
dual role in exosome-cell interaction, capturing fibronectin on
exosomes and acting as a receptor for fibronectin on target cells.
Fibronectin-mediated binding of exosomes to target cells can
trigger signaling pathways like p38 and pERK and downstream
expression of DKK-1 and MMP-9, two molecules with well-
known roles in MM progression (59). They further showed that
removal of heparan sulfate with bacterial heparitinase or using
antibody specific for the Hep-II heparin-binding domain of
fibronectin dramatically inhibits exosome-target cell interaction
(59). The heparin-derived compound Roneparstat significantly
inhibited interactions between exosomes and the target cells with
a high safety profile in a phase 1 clinical trial (NCT01764880)
(60). While the efficacy of Roneparstat still needs more
investigation, interfering with fibronectin-heparan sulfate
interactions to suppress exosome-mediated cross talk provides
a novel insight to target myeloma tumor growth or progression.

However, despite the tumor-promoting and immunosuppressive
effects of exosomes discussed previously, some studies showed that
exosomes displaying high levels of heat shock protein 70 (HSP70)
could boost NK cell responses (61). A study demonstrated that upon
doxorubicin and melphalan treatment, MM cells significantly
increased released exosomes that could stimulate interferon
gamma (IFNg) production, probably through mechanisms
involving toll-like receptor (TLR) 2 and HSP70-dependent
activation of the NF-kB pathway (62). Another study indicated
that low doses of doxorubicin and melphalan could induce
senescence to boost the expression of IL15/IL15RA complex
on the surface of MM cells and their exosomes, promoting
NK cell activation and proliferation (63). Therefore, suitable
chemotherapeutic regimens may target and modulate exosomes to
elicit anti-myeloma immune response. Tumor-derived exosomes as
a source of tumor antigens for vaccines have also been explored. Xie
et al. showed that membrane-bound HSP70-engineered myeloma
cell-derived exosomes were able to induce DCs maturation and
stimulate efficient CD4+ Th1, CD8+ CTL, and NK-mediated
antitumor immunity. Membrane-bound HSP70 functioned both
as an antigenic peptide chaperone and a danger signal that triggered
DCs and therefore contributed significant adjuvant effects to
exosome-based antitumor vaccine (64).
Frontiers in Oncology | www.frontiersin.org 5
Besides providing novel therapeutic targets, the natural
nanostructure and modifiable surface properties of exosomes
make them a good candidate for drug delivery or
immunomodulatory therapy. Knowing that cancer cells have
selective sensitivity to TNF-related apoptosis-inducing ligand
(TRAIL), Rivoltini et al. genetically modified cells to express
TRAIL that could be subsequently embedded in secreted
exosomes (65, 66). Those TRAIL-armed exosomes induced
potent target cell apoptosis in vitro and controlled cancer
progression when directly injected into tumor lesion. Though
TRAIL exosomes had a preferential interaction with TRAIL-
death receptor (DR) 5, in vivo study still showed increased areas
of necrosis together with augmented levels of dead cells even in
MM cells expressing other DR (66). Moreover, TRAIL exosomes
can be easily produced in large amounts and stored before
administration, making this a versatile, off-the-shelf therapeutic
approach. Given their high stability in body fluids and natural
delivery functions, TRAIL exosomes can also be loaded with
drugs and genetic material and delivered to cancer cells through
uptake process to elicit antitumor effects. Researchers are also
exploring exosome-mimetic nanovesicles of similar sizes,
morphologic features, and targeting abilities to replace
exosomes in drug delivery (67, 68). With rapid technology
advancement, engineering exosomes or their mimics to carry
tumor-suppressive molecules or signals will, alone or in
combination with other therapeutic approaches, contribute to
innovative and effective MM treatment regimens.
CONCLUSIONS AND FUTURE
PERSPECTIVE

Despite tremendous progress in the treatment of MM, this
remains an incurable disease. It is well established that the BM
microenvironment supports tumor in multiple aspects, while
accumulating evidences demonstrate that exosomes plays a
crucial role in the microenvironment network. Through selective
transfer of mRNA, ncRNA, proteins, and lipids, exosomes are
shown to mediate cell-to-cell communication and promote MM
proliferation, drug resistance, immunosuppression, osteolysis, and
angiogenesis. Recent studies are also investigating exosomes as
potential biomarkers for MM diagnosis and predictive markers of
drug response. In addition, the natural nanostructure of exosomes
and their capacity to deliver molecules to target cells make them
excellent drug carrier. Overall, exosomes offer the opportunity to
both deepen our understanding of the molecular mechanism of
MM pathogenesis and to provide a potential useful biomarker and
therapeutic strategy in MM.
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