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In this paper, we study and analyse the real-time information exchange strategy of big data in the Internet of Things (IoT) and propose a
primitive sensory data storage method (TSBPS) based on spatial-temporal chunking preprocessing, which substantially improves the
speed of near real-time storage and writing of microsensory data through spatial-temporal prechunking, data compression, cache batch
writing, and other techniques. The model is based on the idea of partitioning, which divides the storage and query of perceptual data into
the microperceptual data layer and the perceptual data layer. The microaware data layer mainly studies the storage optimization and
query optimization of raw sensory data and cleaned valid data; the aware data is the aggregation and statistics of microaware data, and
the aware data layer mainly studies the storage optimization and query optimization of aware data. By arranging multiple wireless
sensors at key monitoring points to collect corresponding data, building the core data service backend of the system, defining
multifunctional servers, and constructing an optimal database model, we effectively solve the parameter collection and classification
aggregation processing of different devices. To address the requirement of reliable and secure transmission in the process, we design a
highly concurrent and high-performance TCP-based socket two-layer transmission framework and introduce the asymmetric en-
cryption method (RSA) and data integrity verification method to design a transmission protocol that is both reliable and secure. The
integration of big data and IoT is bound to bring the intelligence of human society to a new level with unlimited development prospects.

1. Introduction

As the number of IoT sensing devices proliferates, the scale and
impact of IoT are expanding, making the market for IoT also
growing [1]. The services of IoT applications are based on the
collected data, so the core of IoT is data. With the increase of
the number of IoT sensing devices, the sensing devices in
various industries generate a huge amount of sensing data
every day. The basis of IoT development is extended and ex-
panded based on Internet, and its ultimate development goal is
to achieve comprehensive sensing, reliable transmission, and
intelligent processing [2]. The network architecture of IoT can
be divided into three layers: the first is the perception layer,
whose main role is to collect information, information pro-
cessing, and other operations (through radio frequency
identification devices, infrared sensors, card readers, etc.); the
second is the network layer, whose main role is to transmit
information (through mobile networks, the Internet,

broadband networks, wireless networks, etc.); and the third is
the application layer, whose main role is to complete the
analysis and processing of information and control and de-
cision-making. Among them, the network layer is the link
between the sensing layer and the application layer for in-
formation exchange. Through processing and sharing of
sensing information, the application layer provides powerful
resources to support the processing of various businesses, thus
truly realizing the intelligence and informatization of various
industries. So far, the development of IoT technology has been
very extensive; for example, smart city, intelligent medical care,
intelligent transportation, intelligent home, intelligent agri-
culture, and many other fields are used in IoT [3].

The Internet of Things (IoT) continues to evolve as
increased people use more easily connected devices, mod-
ified to the current time. The experiment is to get the
maximum writing speed and the maximum average speed of
the two writing methods, where the maximum writing speed
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refers to the maximum instantaneous writing speed that can
be achieved during the writing process, and the average
maximum writing speed refers to maintaining stability.
Under the premise of not exceeding the Redis cache
threshold, the maximum write speed can be maintained all
the time. The result is an exponential distribution of data
availability. With this vast amount of information, how can
we find truly valuable data? The development of IoT systems
has led to the rapid development of deep learning, and the
successful application of vision-based target tracking in the
fields of autonomous driving, behavioural analysis, intelli-
gent surveillance, and virtual reality has gradually made it
the focus of research in the field of deep learning and IoT
technologies, and these applications require the processing
of large amounts of spatial-temporal data [4]. For example,
in the field of autonomous driving, the target tracking al-
gorithm should be able to detect passers-by walking on the
road and follow moving cars in real-time and successfully
predict and judge their subsequent speed, trajectory, and
other spatial-temporal data information; in the field of
virtual reality, real-time human-machine interaction should
be completed based on the motion trajectory captured by the
camera [5]. However, practical applications of the system
will often suffer from system lag, untimely feedback, and
abnormalities in the collected spatial-temporal data, while
the IoT system needs to be able to quickly provide feedback
and processing of these collected data [6, 7].

Therefore, to achieve target tracking and an IoT search
system that can provide fast and correct feedback, it is especially
important to design an efficient IoT data processing method.
Based on the diversity of spatial-temporal data of IoT system, a
large amount of data, real-time, sensor node instability, and
other characteristics, this paper proposes a target tracking-
oriented IoT data processing technology, which can use a deep
learning model to quickly classify the spatial-temporal data
collected by IoT, clean the abnormal spatial-temporal data, and
finally design and implement an efficient spatial-temporal data
processing-based target tracking IoT search system.

L1. Current Status of Research. Chin et al. proposed an
Ethernet-based hybrid simulation technology solution for
the Industrial Internet of Things, which uses PLCs to
connect devices via Ethernet and uses a virtual environment
running in parallel with the plant floor equipment as a
reference to analyse performance, evaluate manufacturing
system performance in real-time, and transfer data and
coordinate actions [8]; Sankar et al. investigated some se-
lected test methods for real-time Ethernet technology closely
related to CNC system performance and also gave test
scenarios and Ether CAT case studies to illustrate the fea-
sibility of the designed test system with methods that can
simply evaluate real-time Ethernet used in CNC systems to
ensure the performance of CNC systems [9]; Li et al. studied
the performance of Ethernet networking approach for Linux
NC open-source CNC systems, which solves the real-time
communication problem between system components and
provides a new approach to integrate real-time Ethernet into
Linux NG, realizing a CNC system that is completely based
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on open-source software and has performance that can
compete with proprietary embedded CNCs [10]. With the
continuous development of big data storage and query
technology, IoT-aware big data technology is also moving
forward, but there is still a lack of system solutions for ef-
ficient storage and fast query of perceptual big data [11]. In
this paper, we study the high throughput writing technology
and fast query technology for IoT-aware big data and based
on the idea of data hierarchy and according to existing big
data technology and theory, this paper implements a hier-
archical storage and query system model (IoT-HSQM) for
IoT-aware big data, which provides a solution for near real-
time storage and fast-statistical analysis of IoT-aware big
data [12].

Researchers at Virginia State University designed the
Snuggle system, in which entities are described using a set of
keywords (text messages) stored in each sensor node, using
keywords to interrelate with physical entity sensors, and
using keyword information to represent IoT entities, so that
users can directly use keywords to search for IoT hardware
nodes that match the query target hardware nodes; the
system can then return the query to the most relevant and
matching spatial-temporal data information collected by
the K IoT hardware nodes [13-15].

With the increasing number of IoT hardware nodes, the
spatial-temporal data collected by the hardware nodes have
the characteristics of high dimensionality, complexity, and
real-time at the same time, which leads to the increasing
amount of data transmitted by the IoT system, the increasing
difficulty of data processing, and the increasingly complex
network structure between IoT nodes. And due to the in-
stability of network transmission and the characteristics of
hardware nodes and unreasonable storage mechanisms, it is
easy to cause a variety of problems such as abnormal data
saved to the background and slow system search efficiency.
Besides, when target tracking is performed, the target
tracking fails due to light, occlusion, and oversized network
model. The data is stored into different data blocks according
to the different characteristics of the spatial-temporal data
collected by the sensors. When the data collected by sensors
need to be transmitted to the background in real-time,
information entropy is used to classify and store the data
quickly, and a method is proposed for processing the
transient abnormal data collected by IoT nodes, using the
Influx DB time-series database with timestamps for partial
IoT data storage to facilitate the construction of IoT systems
and improve the search efficiency.

2. Analysis of Real-Time Exchange Strategy for
IoT Large Data Volume

2.1. Analysis of IoT Data Processing Methods. IoT spatial-
temporal data refers to data with spatial and temporal di-
mensions, and the data includes thematic attributes, time,
and space (geographic location information) and has
characteristics such as multisource sensing, large data vol-
ume, and high real-time. However, processing this spatial-
temporal data is complex, and in contrast to static data
where the image of the same car does not vary much between
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two adjacent frames, spatial-temporal data is completely
different, with more image variation [16-18].

With the rapid rise of the Internet of Things (IoT), its
technology and infrastructure are gradually improving, thus
using the characteristics of IoT can bring us a different life:
the current mutual communication of information in only 2
dimensions (e.g., any time, any place) can be extended to
another dimension through IoT, i.e., the 3rd dimension:
communication between any objects, as shown in Figure 1.

The main part of the IoT reference model can be divided
into 4 layers: the application layer, the business/application
support layer, the network layer, and the device layer. Also,
cross-layer management capabilities and security capabil-
ities are included. Among them, the application layer refers
to the wide variety of IoT applications that users can
eventually see. The business/application support layer in-
cludes two kinds of capabilities: general-purpose support
capability and dedicated support capability. At the same
time, the abnormal IoT data collected in real-time is cleaned,
and then different types of IoT data are stored in different
Influx DB data blocks. The system adopts a distributed
storage architecture to speed up the indexing rate. The
management capability of IoT contains fault management,

X, = axy_y = P,y — Xy + X,
tn — 5 4

fi= { 6(W(f)xt+1 + Ufht+1’ S(W(f)xtﬂ -

A single update gate is generated by combining the input
gate with the forget gate.

= x,sin(h, - 1),
y xts?n( (= 1) )
y =x,sin(h, - 1).

When analysing the operation of industrial equipment, it
is often impossible to know in advance the variation of an
indicator, i.e., the distribution that the indicator as a whole
follows, to calculate the mean, variance, extreme deviation,
etc., of the data collected, and obtaining this distribution
through hypothesis testing. Besides, it is possible to design a
safety range check of the indicator with the help of the mean
and variance.

(3)

configuration management, settlement, performance, se-
curity, etc. The management capabilities of IoT can also be
divided into generic management capabilities and dedicated
management capabilities due to the difference in the needs of
vertical and public industries. Security capabilities exist in
the application layer, network layer, business/application
support layer, and device layer. Security capabilities can also
be divided into generic security capabilities and dedicated
security capabilities due to the difference in demand between
vertical industries and public industries.

Based on the existing network infrastructure, the busi-
ness capability layer (the middlebox) provides new IoT
capabilities for traditional industry devices and customers’
existing IT systems to meet the needs of IoT services. Both
the network domain and the terminal domain contain the
application service layer, the business capability layer, and
the network connectivity layer that connects the two. The
management support system exists in the application service
layer, business capability layer, and network connectivity
layer of both the network domain and terminal domain.

Due to the IoT real-time search system, the collected data
is continuous and usually, not much variation is found
between adjacent numbers.

(1)
Uthl,Ct =(1+ ft)'C;_ft) *Cy.

By establishing a mapping function between the con-
trollable and target variables, the attribute characteristics of
the data are depicted and presented based on the time stamp.
The main technical means is to establish a regression model
of the data to obtain the corresponding regression function
so that, given an input value to obtain the corresponding
target value, the target value is compared with the measured
value to obtain the foreseen result. It is usually used for
studies of trends in indicators, forecasting of target values,
and correlations between variables.

2.2. Analysis of Real-Time Information Exchange Strategies for
Large Data Volumes. For this reason, we build the logical
structure of Influx DB-based IoT spatial-temporal data as
shown in Figure 2, where the real-time IoT data is first stored
to the edge nodes, and the EPLSN algorithm calculates and
classifies the real-time collected data on the edge nodes and
cleans up the abnormal IoT data collected in real-time. The
system adopts a distributed storage architecture. The system
adopts distributed storage architecture to accelerate the
indexing rate [19].

The data from the IoT nodes are monitored and tracked,
such as hydrogen sulphide gas concentration, dairy farm
temperature and humidity, and real-time target tracking
[20].

For the data writing throughput of the microaware data
layer, different amounts of data from the Beijing cab sensor
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FIGURE 1: IoT model architecture.
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FIGURE 2: Logical structure of information real-time exchange system.

history are written to HDFS using the directory structure
and file naming of the IoT-HSQM model. The average and
maximum data write speeds are compared between the
direct data storage in HDFS and the time-space block-based
caching and clustering approach. To ensure the accuracy of
the test results, most of the raw perceptual data are cached in
memory in advance, and the occurrence time of the data is
modified to the current time in advance when writing out.

The main goal of real-time extraction is to guarantee the
real-time nature of data extraction and aggregation of aware
data through big data processing techniques. Big data
processing techniques are divided into two categories: batch
processing techniques and streaming computing were big

data batch processing techniques, suitable for offline pro-
cessing of historical data. Streaming computing is a
microbatch data processing method that slices data
according to time intervals and processes them with multiple
small batch tasks to achieve low latency and near real-time
by rapidly executing multiple small tasks. To solve this
problem, the accuracy of real-time classification of the In-
ternet of Things is enhanced. The microaware data is
streamed into the aware data extraction model, in which the
real-time microaware data is appended to a multidimen-
sional data table, and the aggregated computation module
obtains the data directly from the multidimensional data
table for computation to obtain the aware data.
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To meet the different query statistics requirements of the
upper layer applications, different aware data need to be
preaggregated, but some aggregation calculations have to be
performed based on the existing aware data; i.e., new aware
data are obtained by reaggregating on top of the aware data
as needed. For the convenience of distinction, the data
aggregated from the microaware data layer is called fine-
grained aware data, and the data reaggregated from the fine-
grained aware data is called coarse-grained aware data, e.g.,
to get the results of a frequent query from the upper layer
application that requires a time-consuming statistical
analysis of one or more tables of fine-grained data [21].
Support capabilities refer to the basic service capabilities
used by various IoT applications, such as basic data pro-
cessing capabilities and basic data storage capabilities. The
coarse-grained aware data is obtained by reaggregating the
basic aware data and saving the new data after aggregation.

When extracting from fine-grained aware data, the data
source of the data extraction model is changed to the cor-
responding aware data, and the extraction process is the
same as the extraction from the microaware data layer. If the
extracted aware data is stored in Druid, you can use Druid’s
preaggregation function in addition to the real-time ex-
traction model. To use Druid’s preaggregation feature, you
need to predefine the aggregation granularity size in Druid.
When the data is ingested, Druid aggregates the data
according to the predefined granularity size; i.e., the data is
grouped by timestamp column, dimension column, aggre-
gation column, and aggregation granularity.

The sampled data from sensor sensing devices are
transmitted to the data centre through the network, and
there will be inconsistencies between the data reaching order
and the data generating order. Similarly, the valid data after
real-time cleaning, in addition to being stored in the
microaware data layer, will be used as the data source for
real-time extraction of aware data, so the data timing
problem should also be handled. This will help traffic au-
thorities to develop effective policies to reduce traffic con-
gestion. In addition, the data can be used to study the
behaviour of taxi drivers, and effective systems can be
designed to detect abnormal behaviour, increase the like-
lihood of finding new passengers, and take the best route to
their destination. In the real-time extraction model, the data
sliding time window is designed to store the data received in
the past period in the data time window, and the extraction
model simply moves the time window forward when the
aware data extraction is performed. The data stored in the
aware data layer is aggregated aware data with structured or
semistructured characteristics, so it is not necessary to
perform the complex transformation of aware data for
statistical analysis based on aware data.

When caching larger data, the cache tends to be filled up
quickly, which will lead to frequent cache replacement ac-
tions in the process of continuing the query. Therefore, in
equation (6), the larger the cached data block the lower the
cache weight, and large blocks of data exceeding the data
block size threshold are not cached. If there are queries with
long computation time and large and frequent result sets,
they should be aggregated and stored as aware data. HRPB

method records and saves the query history in the form of
logs set periodic timing tasks to analyse the query logs offline
and identifies and saves the regular query patterns among
them. If the queries that occur frequently together are
identified, the method is used in the cache model to use the
cache more effectively. If they are not accessed again for
some time, they are identified as a phase silent pattern. For
example, each time a query is made for the most recent
week’s statistical results, the data for the past few weeks of
the month is queried. After having performed a week of
statistics results, none of the weekly statistics will be per-
formed again for a few days. Such as in social media,
healthcare, agriculture, transportation, and climate science,
a large amount of spatiotemporal data is collected for
spatiotemporal data processing and information search. This
regular pattern was found to help further improve the cache
management in the HRPB method and increase the query
speed.

3. Analysis of Results

3.1. Analysis of IoT System Test Results. The data transfer
system is tested on the assumption that Katka and Zoo-
keeper are up and running, the network connection is
normal, and the data collection system is working properly.
The test mainly examines the throughput and latency per-
formance of the data transfer system in actual use. After
starting the system, we monitored and recorded the data of
the online system and plotted the throughput and latency
curves as shown in Figure 3. The low throughput and high
latency at the beginning were due to the initialization and
caching work after the system was cold started.

Figure 3 shows that the data transmission rate of the
transmission system can reach about 75,000 items/second
under stable working conditions, and the delay is also
maintained within 40 ms, which can fully meet the appli-
cation scenario of the manufacturing workshop. The visu-
alization system is tested on the premise that the
manufacturing big data processing system works normally.
The system efficiency of real-time search of the Internet of
Things is accelerated, and an Internet of Things search
system is finally realized. The visualization system adopts B/S
architecture, and the load is mainly on the server-side, so we
focus on the performance of the server-side. Starting from
zero loads of the system, we gradually added connected
clients and plotted CPU load and memory occupancy as
shown in Figure 4. The resource occupation at zero loads in
Figure 4 represents the system idle occupation rate, which is
occupied by other programs of the server; the resource
occupation at a single client connection reflects the resources
consumed for system initialization.

The visualization system has low initialization resource
occupancy, and the incremental resource occupancy is
small and smooth when the number of clients increases.
The deep learning model can be used to quickly classify the
spatiotemporal data collected by the Internet of Things,
clean the abnormal spatiotemporal data, and finally design
and implement an efficient target tracking Internet of
Things search system based on spatiotemporal data



85000

Computational Intelligence and Neuroscience

80000
75000

70000
65000
60000
55000
50000

Values

45000
40000
35000
30000
25000
20000

15000 i i i
1

Testing frequency

Throughput
— — Delay

FIGURE 3: Data transmission system throughput vs. latency.

Occupancy rate

o 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17 18 19 20

Number of linked clients

FIGURE 4: CPU and memory usage of the data visualization system.

processing. To evaluate the real-time effect of streaming
computing, the visualization system refresh frequency is
plotted against the streaming computing frequency as
shown in Figure 5, and the minimum computing frequency
is greater than the maximum refresh rate to meet the real-
time requirement.

To validate the whole system, a hardware experimental
platform is built and the steps of deploying and running each
component of the system are described in detail. Subse-
quently, this chapter also demonstrates the operation effect
of each module of the system to further verify the system
effectiveness. Finally, to guarantee the correctness and
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stability of the system, several software tests are designed and
implemented, including functional tests for verification
purposes and performance tests for stress testing purposes.
The tests show that the digital production workshop big data
processing platform developed in this paper can operate
normally and achieve the expected results. A series of tests
and practices prove that the digital manufacturing workshop
big data processing platform developed in this paper can
operate correctly and meet the expected design objectives.
However, in practical systems, there are often problems such
as system freezes, untimely feedback, and abnormal tem-
poral and spatial data collection. However, IoT systems need
to be able to quickly send feedback and process these col-
lected data. A heterogeneous equipment network structure is
designed and a unified equipment data collection system is
developed. Based on the in-depth study of the characteristics
of manufacturing big data, a four-layer network topology is
designed, and the role of each layer and the development and
implementation methods are elaborated for each network.
And through data collection and comparative analysis of
field devices, the correctness of the collection system is
proved. Finally, various tests were conducted on the ex-
perimental platform, and the designed network topology
and the developed data acquisition system were able to
accomplish the expected objectives.

3.2. Analysis of Experimental Results. There is a limit on the
number of connections that can be written at the same time
on HDFS, so only some of the file writing connections are
kept open, and when the data is continuously written, it
looks for open file connections based on the data, and if not,
it closes a recently unused connection and looks for the

corresponding file on HDFS, establishes a connection, and
then writes it. Therefore, a lot of time is spent on establishing
and closing connections, as shown in Figure 6.

Figure 7 gives the relationship between the size of the
assisted cache space and the terminal cost function, and it
can be seen that the cost function of the terminal increases
and then decreases, in line with the analysis of the terminal
cost function in the previous section, where there exists a
minimal value. From the figure, it can be seen that the
optimal cache space is different for each terminal since
different terminals have different response times, but it can
be seen that the shorter the response time, the more the
space available to participate in collaborative caching and
thus the lower the cost function of the terminal. Terminal 11,
when not participating in the assistance cache, has a cost of
1.93, while when participating in the assistance cache space
greater than 0.7, its cost increases instead, so its optimal
collaboration cache space is 0.7.

A large amount of collected data necessitates a corre-
spondingly powerful underlying framework to support not
only the storage and querying but also the valid data
extracted from it. To meet the requirements of performing a
variety of unique needs, data with various categories of
learning capabilities is required, to truly realize the intelli-
gence and informatization of various industries. So far, the
development of Internet of Things technology has been very
extensive, such as smart cities, smart medical care, smart
transportation, smart homes, smart agriculture, and many
other fields. For example, the ability to build aggregate
models by analysing historical data is one of the most
common requirements. However, this can be a very complex
process considering that the data may be stored in different
networks, let alone in different machines.
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adjacent frames is small, and the training set of images is
expanded, which is higher than the target tracking accuracy
of CNN-SVM prediction by about 0.2 for dynamic moving
objects. And as the number of training sets of the model
increases, the target tracking accuracy also increases. Data is
obtained from various sources, which is one of the most
significant features of IoT. The services of IoT applications
are based on the collected data. Therefore, the core of IoT is
data. With the increase in the number of IoT sensing devices,
sensing devices in various industries generate massive
amounts of sensing data every day. Combining and ana-
lysing heterogeneous data is a major challenge. Efforts to
standardize data have enabled communication protocols to
be developed to enable data exchange.

4. Conclusion

When big data is integrated into IoT, it will inevitably
improve the intelligence of human production and life,
and its application can be involved in almost all aspects.
The microaware data layer proposes a TSBPS method for
storing raw perceptual data based on spatial-temporal
chunking preprocessing, which significantly improves
the speed of storing and writing microaware data in near

real-time through spatial-temporal prechunking, data
compression, cache batch writing, and other techniques.
The real-time aware data extraction model aggregates the
aware data in real-time and stores them in the Druid and
HBase storage systems in the aware data layer, and the
fast-statistical analysis model based on the aware data
provides efficient query and statistical analysis of the
aware data. Mesosensing data is the aggregation and
statistics of microsensing data, and the mesosensing data
layer mainly studies the storage optimization and query
optimization of mesosensing data. The result data of
query and statistical analysis are cached in the aware data
layer using Redis, and an HRPB caching method based on
historical weights is proposed, which can effectively
identify phase hot data to improve the cache hit rate.
There are many types of IoT sensing data, and the data
with moving sensors and the sensor data with fixed lo-
cations are distinguished by whether the sensor location
is moving or not. The present model applies to both kinds
of data, but it can still be optimized and customized
differently according to the type of data stored, and how
to make targeted optimization to further improve the
performance of the system is one of the directions that
can be studied next.
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