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ABSTRACT

Although RNA-Seq data provide unprecedented
isoform-level expression information, detection of al-
ternative isoform regulation (AIR) remains difficult,
particularly when working with an incomplete tran-
script annotation. We introduce JunctionSeq, a new
method that builds on the statistical techniques used
by the well-established DEXSeq package to detect
differential usage of both exonic regions and splice
junctions. In particular, JunctionSeq is capable of de-
tecting differential usage of novel splice junctions
without the need for an additional isoform assembly
step, greatly improving performance when the avail-
able transcript annotation is flawed or incomplete.
JunctionSeq also provides a powerful and stream-
lined visualization toolset that allows bioinformati-
cians to quickly and intuitively interpret their results.
We tested our method on publicly available data
from several experiments performed on the rat pineal
gland and Toxoplasma gondii, successfully detect-
ing known and previously validated AIR genes in 19
out of 19 gene-level hypothesis tests. Due to its abil-
ity to query novel splice sites, JunctionSeq is still
able to detect these differences even when all alter-
native isoforms for these genes were not included
in the transcript annotation. JunctionSeq thus pro-
vides a powerful method for detecting alternative iso-
form regulation even with low-quality annotations.
An implementation of JunctionSeq is available as an
R/Bioconductor package.

INTRODUCTION

In 2015 alone, hundreds of research papers have reported
differential gene expression (DGE) based on RNA-Seq data
(1–10). In general, RNA-Seq studies focus primarily on de-
tecting gene-wide effects, in which entire genes are upreg-
ulated or downregulated depending on some experimental
or biological condition. Although the statistical methodolo-

gies have advanced considerably, these studies generally fol-
low the same basic design principles as previous microarray-
based expression research.

However, RNA-Seq data provide more than simple mea-
surements of gene-level expression. In theory, RNA-Seq can
be used to study more complex regulatory phenomena at
the isoform level, even when the isoforms in question are
unannotated. Numerous tools have been developed to de-
tect alternative isoform regulation (AIR; also known as dif-
ferential transcript usage or DTU) (11–19); however, only a
few of these tools have seen serious application outside their
respective methodology papers. Many RNA-Seq studies do
not even attempt the detection of AIR (1–10), with a few
notable exceptions (14,20,21).

Detecting alternative isoform regulation is inherently dif-
ficult in RNA-Seq, as sequencer reads are often one or more
orders of magnitude shorter than the transcripts themselves.
While there are several utilities that attempt to de-convolute
read data into isoform abundances, the accuracy and ro-
bustness of these methods is difficult to establish (22,23).
Isoform expression estimates seem to vary considerably be-
tween different tools, and generally depend on the quality
and completeness of the transcript assembly (24,25). Most
of the newest and most popular tools do not assess or model
unannotated isoforms (including eXpress (26), RSEM (27)
or Kallisto (unpublished)), and the presence of such iso-
forms can substantially alter the estimated abundances of
the known isoforms belonging to a gene. Thus: accurate
analysis of differential isoform regulation may be very diffi-
cult when the available transcript annotation is incomplete.

In addition, almost all existing AIR analysis tools share
one common shortcoming: the results are difficult to inter-
pret. This is not a trivial issue: unlike simple DGE, instances
of AIR cannot be adequately characterized by a single fold
change and P-value. Alternative isoform regulation is a
broad and diverse class of phenomena that can involve al-
ternative splice sites, alternative promoters, nucleosome oc-
cupancy, cassette exons, alternative donors/acceptors, long
non-coding RNAs, alternative polyadenylation, gene-level
differential expression, or any number of these factors in
combination. A gene may be composed of dozens of dis-
tinct isoforms, each controlled by its own set of regulatory
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mechanisms. As a consequence, the raw results of alterna-
tive isoform regulation analyses are often counterintuitive
and resistant to interpretation.

The interpretation of these results is critical: in order
to be considered credible by the community, any detected
instances of AIR will generally require validation by sec-
ondary methods (such as qRT-PCR or SMRT sequenc-
ing). Such validation is often costly and time consuming.
Detecting the mere presence of an effect is insufficient for
these purposes: the investigator must also be able to identify
which specific isoforms are being differentially used and as-
sess the strength, direction and credibility of the effect. Fur-
thermore, since hundreds of AIR genes may be detected,
this interpretation process must be streamlined, scalable,
and intuitive.

The DEXSeq software package tests for differential us-
age of exonic regions as a proxy for alternative isoform
regulation, and provides a powerful suite of visualization
tools (18,28). However, DEXSeq is only effective at detect-
ing AIR when it results in changes in the expression of the
annotated exonic regions. This method has two major weak-
nesses: firstly, it does not query all forms of alternative iso-
form regulation, as not all forms of AIR necessarily produce
differentials in the exon counts (for two illustrative exam-
ples of hypothetical scenarios in which AIR does not result
in large exon count differences, see Supplemental Figures
S14 and S15). Secondly, this method is strongly dependent
on the reference annotation, and cannot directly identify
differences in novel exons and splice junctions. Addition-
ally, DEXSeq output plots often obscure vital information,
particularly for genes with a large number of isoforms and
splice variants.

Here, we introduce JunctionSeq, a new method and as-
sociated Bioconductor package that builds upon the pop-
ular and well-established DEXSeq methodology in order
to detect differential usage of both exons and known or
novel splice junctions. Unlike most similar tools, Junction-
Seq can reliably detect alternative isoform regulation even
when the alternatively regulated isoforms themselves are
not annotated. JunctionSeq also provides improved visual-
ization tools that produce readable and informative expres-
sion profiles across all potential genes of interest, and across
the genome as a whole.

MATERIALS AND METHODS

Differential usage of exons and junctions

Alternative isoform regulation is a biological phenomenon
in which specific isoforms belonging to a multi-isoform gene
are differentially regulated relative to one another with re-
spect to some biological condition (18). Equivalently, it can
be defined as a difference in the isoform fractions between
different biological conditions (29,30).

Estimating the true isoform abundance of overlapping
multi-kb transcripts using hundred-base-pair reads is an in-
herently difficult and error-prone task, particularly when
some of the isoforms are not known a priori. As a conse-
quence, it is difficult to detect AIR directly. Rather than
attempting to directly detect AIR using estimates of iso-
form abundances, we instead attempt to detect differentials

in quantities that are directly observable: the read counts for
exonic regions and splice junction loci.

‘Differential usage’ (DU) of exons and junctions is an
observed phenomenon in which individual exons or splice
junctions display expression that is inconsistent with that
of the gene as a whole. This can sometimes be counterin-
tuitive: if a gene is differentially expressed, an individual
sub-component that displays constant expression across all
samples might be considered ‘differentially used’, as its ex-
pression is not consistent with that of the gene. Differential
usage of exons and junctions thus serves as a proxy for the
detection of AIR.

Testing for differential usage of splice junctions has a
number of benefits. Firstly: all major aligners designed for
RNA-Seq will align across novel (unannotated) splice junc-
tions (31), and thus we can include novel splicing vari-
ants when they splice to/from known genes. This allows us
to indirectly query for differential regulation in unknown
isoforms, improving performance on sparsely annotated
genomes. Furthermore, some forms of AIR do not nec-
essarily result in observable differences in the exon-level
counts. An intron retention, for example, will alter splice
junction counts but not the counts of the flanking exons.
As a result, our method substantially broadens the variety
of regulatory phenomena that can be effectively detected.
See Supplemental Figures S14 and S15 for two scenarios
in which exon counts alone cannot be used to adequately
characterize cases of alternative isoform regulation.

Statistical methodology

Like the DEXSeq Bioconductor package, we first parti-
tion each gene into a set of mutually non-overlapping ex-
onic regions, and then use the read (or read-pair) counts
for each exonic region to estimate the relative expression of
each exon for each experimental condition (18). Unlike the
DEXSeq package, we also calculate counts for each splice
junction belonging to each gene, including novel splice junc-
tions that are within the gene’s span that surpass a user-
specified normalized mean coverage threshold (we recom-
mend 1–3 reads per sample). We use the DESeq2 package
along with a set of specialized multivariate generalized lin-
ear models (GLM) to individually test for differential us-
age of each exonic region and splice junction (28). It should
be noted that the arbitrary threshold used to ‘detect’ novel
junctions is only used to determine whether such junctions
will be assigned unique identifiers and be included in the
count tables. JunctionSeq then uses the ‘automatic indepen-
dent filtering’ method proposed and implemented by DE-
Seq2 to determine which features should be filtered prior to
hypothesis testing. If desired, the initial filtering threshold
can be set to 0 to include all observed junctions at this initial
step.

Previous studies have done similar analyses simply by
plugging splice junction counts into DEXSeq (32), however,
we found this method to be inadequate as it did not account
for the numerous differences in the distribution and struc-
ture of the splice junction count data. A number of modi-
fications to the basic DEXSeq methodology were found to
be necessary.
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To begin with: for most datasets DEXSeq will double-
or triple-counts reads in each hypothesis test, as it uses the
sum of all exonic regions as a proxy for estimating gene-
level expression. This would be even more pronounced in
JunctionSeq, and while it would not technically invalidate
the hypothesis tests it can bias the fold-change estimates by
over-weighting variant-dense regions, producing confusing
artifacts under certain conditions. Thus, we use gene-level
counts as the basis for our estimates of gene-wide expression
rather than the sum of all exonic regions. This means that in
the JunctionSeq framework no read or read-pair is counted
more than once in any given statistical model. See section
2.1.1 in the supplement for an in-depth, illustrated explana-
tion of the two counting methods. These altered count vec-
tors were applied to both the hypothesis test and the effect
estimation steps. For similar reasons, our size factor estima-
tion is carried out using the gene-level counts rather than
the exon/junction counts.

In addition, we found that splice junctions and exonic
regions generally followed different dispersion trends from
one another (see supplemental methods, Supplemental Ta-
ble S4). This is not surprising, given the various biologi-
cal and technical differences between the two count types.
To account for this difference, JunctionSeq (by default) fits
separate dispersion trends for exonic regions and for splice
junctions. As in DEXSeq, the final dispersion estimates used
for hypothesis testing are calculating by estimating the max-
imum a priori (MAP) dispersions for each exon and junc-
tion, which ‘shrinks’ each feature-specific dispersion esti-
mate towards its respective fitted dispersion estimate (28).

In our RSEM simulations analyses (see Results), we
found that (like almost all differential isoform usage tools)
JunctionSeq appears to suffer from inflated false discovery
rates (29). The precise cause of this issue is unclear, but af-
ter investigating this in detail (see results) we found that the
false discovery rates can be greatly reduced by combining
two options available in JunctionSeq which restrict hypoth-
esis testing to splice junctions only and deactivate the max-
imum a posteriori dispersion estimation. Under this mode,
the dispersions are instead calculated by taking the simple
maximum of the fitted and unshared dispersions. This com-
bination of options is referred to as the ‘SJ+noMAP’ mode
in Figures 1 and 2.

For a complete description of the JunctionSeq methodol-
ogy, see the supplemental methods online.

The interpretation problem

Most existing AIR utilities provide little-to-no function-
ality to assist the end-user in the interpretation of the
results. Some tools provide basic analysis-wide summary
plots (12,18,33) and/or expression profile plots for individ-
ual samples (12,14,34–38), but very few provide methods for
directly comparing gene expression profiles between multi-
sample experimental groups. Many tools provide little in-
formation to the user beyond a text file of raw test statistics
(11,13,15–17).

The DEXSeq visualization toolset, while unparalleled in
its class, was found to be insufficient for our purposes (18).
DEXSeq generates a number of gene profile plots that show
read/read-pair coverage across each exonic region, plotted

above a representation of the isoform annotation (see Fig-
ure 4b). However, genes vary widely in the number of ex-
ons and isoforms they possess, and as a result these plots
vary widely in the complexity of the data they present.
Consequently: regardless of the specific graphical settings,
DEXSeq-generated plots often suffer from ‘over-plotting’,
in which data are concealed by being drawn less than a pixel
apart.

JunctionSeq implements a number of refinements de-
signed to streamline and improve this process. Many pa-
rameters are automatically adjusted for each figure to im-
prove readability, including adjustments to the feature la-
bel size and orientation, figure aspect ratio, relative size of
the left and right panels, y-axis scaling, figure margins, and
label positioning (see Figures 3, 4 and 6). Other improve-
ments were added to make the plots more informative, in-
cluding the nonlinear expansion of small features, highlight-
ing of significant features, nested splice junction diagrams,
and the inclusion of a gene-level expression plot. The vari-
ous plots can either be viewed manually or browsed using a
set of automatically-generated html pages, designed for easy
navigation between genes and between experiments.

While these features might seem cosmetic, they vastly im-
prove the utility and scalability of this tool and allow investi-
gators to quickly examine a large number of potential genes
of interest in order to identify, characterize, and assess in-
teresting biological phenomena.

The JunctionSeq analysis pipeline also generates genome-
wide browser tracks suitable for use with IGV or the UCSC
genome browser (See Figure 5). These tracks allow inves-
tigators to interactively browse expression profiles, splice
junction counts, and statistically significant features across
the entire genome, all alongside the numerous publicly avail-
able annotation tracks (38,39).

RESULTS

To demonstrate the strengths of our new method com-
pared with other similar methods, we applied JunctionSeq,
DEXSeq and CuffDiff to several datasets, including a simu-
lated dataset generated via RSEM (27) as well as two pub-
licly available (real) datasets with known and previously-
validated AIR genes.

The simulated dataset included four separate analyses,
two containing 250 simulated AIR genes and two null com-
parisons with no AIR genes. The first real dataset was in
Toxoplasma gondii and included 3 analyses; the second was
in rat pineal glands and included four analyses. Both real
datasets included known and validated AIR genes, one gene
in the Toxoplasma gondii dataset and four genes in the rat
pineal gland dataset. Thus, there were a total of 19 gene-
level hypothesis tests in which we expected to detect differ-
ential usage, acting as positive controls in our analysis.

JunctionSeq consistently detected differential usage in
AIR genes across all experiments, even when the alterna-
tive isoforms were not included in the transcript annotation.
When the annotation was incomplete, JunctionSeq substan-
tially outperformed both DEXSeq and CuffDiff.
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Figure 1. ROC curves for JunctionSeq, DEXSeq, and CuffDiff for the two simulated datasets. This plot indicates how well each tool discriminates AIR
genes from non-AIR genes. Plots A–C and D–F show the results for simulated datasets 1 and 2, respectively. The y-axis is the true positive rate (TPR, # true
AIR genes detected / total # AIR genes), and the x-axis indicates false positive rate (FPR, # non-AIR genes detected AIR / total # of non-AIR genes).
The ROC curve indicates the TPR/FPR over all possible adjusted P-value thresholds. Plots (A) and (B) show the results using the full annotation. (B)
and (C) show the results using the incomplete annotation, and (E) and (F) show the results for DEXSeq and JunctionSeq using the incomplete annotation
along with CuffLinks-assembled splice junctions and exonic regions. Two lines are drawn for JunctionSeq, displaying the results for a standard JunctionSeq
run with the standard options (red), and for a secondary analysis with more conservative settings (only query splice junctions, do not use the maximum a
posteriori dispersion estimates). Note that when provided with the complete annotation, both JunctionSeq and DEXSeq are able to discriminate AIR genes
with approximately the same efficacy. However, when provided with the reduced annotation, with or without a CuffLinks assembly, DEXSeq has weaker
discrimination than JunctionSeq. CuffDiff demonstrates low discrimination in all tests. The full-range ROC curves are available in the online supplement
(see Supplemental Figure S20).

Test dataset 1: RSEM simulations

Our simulation methodology was loosely based on a recent
review paper of several alternative isoform regulation meth-
ods (29). Briefly: twelve samples were simulated on the hu-
man transcriptome, six cases and six controls. Expression
levels were assigned randomly at the gene level based on the
coverage distribution curve of the rat pineal gland. Then
500 randomly selected genes were assigned gene-level dif-
ferential expression and 250 genes were assigned alternative
isoform regulation across a spectrum of effect sizes. To sim-
ulate the case in which a complete transcript annotation is
not available, we generated a ‘reduced’ annotation in which
the annotation for each of the 250 AIR genes were cut down
to only the most highly expressed respective transcripts. For
more information, see the supplemental methods. It should
be noted that these simulated datasets had fewer and more
modest case/control differences compared with the simula-
tions in (29).

Four analyses were run for each analysis tool. First: two
‘DU’ tests (in which there was known differential usage)
composed of three cases and three controls compared to one
another. Then two 3 vs 3 ‘Null’ analyses were performed,
comparing cases to cases and controls to controls.

We found that JunctionSeq detected far more genes in the
‘DU’ analyses than in the ‘Null’ analyses, both with and
without the complete annotation (see Supplemental Fig-
ures S16 and S17). JunctionSeq also displayed strong dis-
crimination between AIR and non-AIR genes (see Figure
1). Additional plots produced by the simulations analysis
are available in the online supplement (see Supplemental
Figures S16–S24). Interestingly, we found that the majority
of the false discoveries were caused by exonic regions, not
splice junctions (see Supplemental Figures S16 and S17).

Excess false discovery rates. A recent publication (29) re-
ported that practically all AIR/DTU detection tools (in-
cluding DEXSeq) return inflated P-values when run on
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RSEM simulation data. The cause of this phenomenon is
unclear, but we have replicated these findings in our own
simulations using different simulation parameters (see Fig-
ure 2). Although the JunctionSeq false discovery rate (FDR)
was higher than the reported levels, it was as good as or
better than the DEXSeq and CuffLinks results, particularly
when running on the incomplete transcript annotation (see
Figure 2C and D). Note that the false discovery rates in
these simulated datasets are substantially worse than the
real detection rates in the DCN and SCGX rat pineal ex-
periments (see results for test dataset 3), possibly suggesting
that the RSEM simulation methodology exaggerates this is-
sue.

A disproportionate number of the false discoveries were
the result of exonic regions rather than splice junctions (see
Supplemental Figures S16 and S17). As a result, the in-
flated false discovery rates seem to be less pronounced when
JunctionSeq is restricted to testing splice junctions only (see
Supplemental Figures S21–S23). The false discovery rates
were also reduced by deactivating the maximum a posteri-
ori (MAP) estimation of the final dispersion, and instead
using a simple maximum of the unshared and fitted disper-
sion estimates (see Supplemental Figure S24). Combining
both optional alternatives reduces the FDR even further;
this combination of options is referred to as ‘SJ+noMAP’ in
Figures 1 and 2. Using these options, JunctionSeq produces
much more conservative adjusted-P-values which are much
closer to the true FDR (see Figure 2), while still maintaining
high-end discrimination that is comparable to the standard
JunctionSeq method (see Figure 1; Supplementary Figures
S18 and S24). It should be noted that previous versions of
DEXSeq did not use the MAP dispersions, but this is no
longer a supported option in the current version.

JunctionSeq offers these options (and numerous others)
to end-users to apply as they see fit.

Test dataset 2: Toxoplasma gondii and TgSR3

Our first real test dataset originated from a previous study
in which alternative splicing was detected and validated in
Toxoplasma gondii between control samples and samples in
which overexpression of the TgSR3 gene was induced (40).
There were four sample groups of 3 biological replicates
each: untreated; induced, 4 h; induced, 8 h and induced, 24
h. The dataset is available from the NCBI short read archive
(SRA), accession number PRJNA252680.

In the original study, numerous genes were found to dis-
play differential splicing between the induced and untreated
sample groups. One particular gene, TGGT1 207900, was
found to display strong differential splicing across an unan-
notated 5′ variant in all three comparisons. This effect was
detected using DEXSeq via a CuffLinks assembly, and was
subsequently confirmed via qRT-PCR. In order to demon-
strate JunctionSeq’s ability to detect differential usage of
novel variants, we performed the same analysis using Junc-
tionSeq, but without the benefit of the CuffLinks assembly
step.

Summary plots for these analyses are available online (see
Supplemental Figures S3 and S4).

Detection of AIR without CuffLinks assembly. Even with-
out a complete transcript assembly, JunctionSeq detected
differential usage of the previously-validated novel splice
variant in TGGT1 207900 in all three experiments, with ad-
justed P-values of 0.00023, 8.5 × 10−13, and 0.0098 for the
untreated versus 4-h, 8-h and 24-h experiments, respectively.
The gene profile plots clearly displayed the same form of dif-
ferential splicing found in the original experiment (see Fig-
ure 3 and Supplemental Figures S1 and S2) (40).

This demonstrates that JunctionSeq can accurately detect
differential usage in novel splicing variants, and does not re-
quire a complete and comprehensive transcript annotation
in order to detect alternative isoform regulation.

Even when run using the much more conservative
splice-junctions-only/no-MAP-dispersion mode, Junction-
Seq still detects significant differential usage in two of the
three experiments (see Supplemental Figure S27).

Test dataset 3: circadian Rhythms in the rat pineal gland

The rat pineal gland is known to display strong and con-
sistent differential expression resulting from neural stimu-
lation across hundreds or thousands of genes (41,42). Most
if not all of these changes are believed to be controlled via
neural innervation of the pineal gland by the SCG, using
the neurotransmitter norepinephrine (NE) and the second
messenger cyclic AMP (cAMP) (43–50).

Several genes have already been found in the literature
to exhibit neurally-controlled alternative isoform usage in
the rat pineal gland: Crem (51–53), Pde4b (54), Atp7b (55)
and Slc15a1 (formerly known as Pept1) (56,57). It should
be noted that all of these genes were discovered in previous
studies using different datasets, and all are validated and
well-established in the literature.

We performed four comparisons in which we expected to
detect differential splicing in genes that are neurally con-
trolled by norepinephrine and cAMP: two in vivo analyses
comparing night and day conditions in no-surgery (Ctrl)
and sham-surgery (Sham) rats, as well as two in vitro anal-
yses comparing pineal glands in organ culture that had
been treated with norepinephrine (NE) or dibutyryl cyclic
AMP (DBcAMP, an analog of the second messenger, cyclic
AMP), each versus an untreated control set (CN). Given
that the four known-AIR genes are neurally controlled, we
expect to detect differential usage in all four genes across all
four comparisons.

In addition, we performed similar analyses one two
datasets in which neural stimulation of the pineal gland was
eliminated via decentralization (DCN) or removal (SCGX)
of the superior cervical ganglia (SCG). We expected that
most of the night/day differences would be eliminated in
these analyses, providing an upper bound for the false dis-
covery rate.

Summary plots for these analyses are available online (see
Supplementary Figures S5 and S6).

Detection of known AIR genes. For the four known AIR
genes, we found strong genome-wide statistical significance
for all 16 gene-level hypothesis tests (see Table 2). The genes
Crem, Pde4b and Atp7b were detected by JunctionSeq at
an extremely high significance level in all analyses (P-adjust
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Figure 2. True/False detection rates for JunctionSeq, DEXSeq, and CuffDiff for the two simulated datasets, at various adjusted-P-value cutoffs. This plot
is analogous to Figure 2 in a recently published paper that compared various AIR detection tools (29). The y-axis indicates the true positive rate (TPR: #
true AIR genes detected / total # of AIR genes), and the x-axis indicates the false discovery rate (FDR: # genes detected that are NOT truly AIR/total #
of significant genes). Labelled points are placed at four selected adjusted P-value thresholds (P-adjust < 0.05, 0.01, 0.001 and 1e−6). Note that JunctionSeq
is consistently superior to DEXSeq, particularly when the transcript annotation is incomplete. In all cases and cutoffs, CuffDiff performs worse than both
JunctionSeq and DEXSeq.

< 1e−8 for all three genes and all four comparisons), and
the gene Slc15a1 was detected at a moderately high signifi-
cance level in all analyses (P-adjust < 0.01). See Figure 4a
for an example plot displaying the JunctionSeq results for
the Crem gene in the sham-surgery group.

Using the much more conservative splice-junctions-
only/no-MAP-dispersion mode the JunctionSeq results are
more modest, with 13 out of 16 tests showing statistically
significant differential usage (P-adjust < 0.01; see Supple-
mental Table S2).

Differential usage of novel variants. To demonstrate Junc-
tionSeq’s ability to detect differential usage of novel splice
junctions even with an incomplete transcript assembly, we
performed a second set of analyses with a reduced anno-
tation. For each of the three known AIR genes that had
multiple annotated transcripts (Crem, Pde4b and Atp7b),
we manually removed all but one transcript from the en-
sembl annotation GTF and then re-ran the analyses. This
was intended to simulate the scenario in which AIR occurs
in poorly-annotated genes. The gene Slc15a1 only has one
transcript in the current annotation, and thus the annota-
tion was left unchanged.

Even with only one annotated transcript, JunctionSeq
was still able to detect differential usage of ‘novel’ splice sites
for all four genes across all four comparisons (P-adjust <
0.01, see the right half of Table 2). See Figure 6A for an ex-
ample plot displaying the incomplete-annotation Junction-
Seq results for the Crem gene in the sham-surgery group.

Using the much more conservative splice-junctions-
only/no-MAP-dispersion mode, 12 out of 16 tests still show
statistically significant differential usage (P-adjust < 0.01;
see Supplemental Table S2).

Replicability and consistency:. In addition to confirming
known AIR genes and providing a strong positive con-
trol for JunctionSeq, we can further use these analyses to
demonstrate the reliability and replicability of our methods
by examining the overlap between the four comparisons.

While these experiments are not direct replications, iso-
forms whose regulation is controlled specifically by neural
innervation of the pineal gland through the SCG (via nore-
pinephrine and cyclic AMP) should theoretically exhibit
similar expression regulation across all four experiments.

In each comparison hundreds of genes were found to
display statistically significant differential exon or splice-
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Figure 3. Gene profile plots from (A) JunctionSeq and (B) DEXSeq for the
TGGT1 207900 gene, in the 8-hour-induced vs un-induced Toxoplasma
gondii experiment. The large central plotting panel of (A) and (B) displays
the estimates for the mean normalized read counts for each exon or splice
junction for the 8-hour-induced (red) or uninduced (blue) sample groups.
The narrow panel on the right in (A) displays the gene-level mean normal-
ized read counts. In each plot a gene diagram is drawn beneath the main
plotting panels, showing the location and layout of the gene. Statistically
significant (P-adjust < 0.01) exons or junctions are drawn with pink, and
features that had counts that were too low to test are drawn in light gray
(or they would be, if there were any such features). Known splice junctions
are drawn with solid lines and unannotated splice junctions are drawn with
dashed lines. Note in the JunctionSeq plot the first two splice junctions are
strongly and significantly differentially used (in opposing directions). This
effect was confirmed in a previous study via qRT-PCR (40). Also note that
differential usage is not apparent in the DEXSeq plot, as the differentially
used features are unannotated. Similar plots for the other two Toxoplasma
gondii experiments can be found online, and show similar results (see Sup-
plementary Figures S1 and S2).

junction usage (at P-adjust < 0.01), and 42 of these genes
displayed differential usage in all four analyses (see Table
1 and Supplemental Figure S7). The strong concordance
between the four experiments spanning very different (but
biologically related) experimental conditions demonstrates
that JunctionSeq produces consistent and replicable results.

False discovery rate. In the SCGX and DCN experiments,
we found that the night/day differences were greatly re-
duced, particularly in the DCN experiment. In the SCGX
group only 38 genes were found with statistically significant
differential usage at the P-adjust < 0.01 level, and in the
DCN group only nine genes were found (see Table 1). The

majority of these detected genes showed only moderate-to-
weak statistical significance and small fold-changes (see Ta-
ble 1, Supplemental Figure S5).

Not all of these detected genes are necessarily false dis-
coveries: a small number of genes are known to display
night/day differential regulation in the pineal gland in
SCGX rats due to circulating catecholamines (42,58,59).
These circulating catecholamines would theoretically be
blocked from stimulating the pineal gland in the DCN rats
(42).

Although these analyses are not perfect negative controls,
they do provide a rough upper bound to the false discovery
rate. The fact that the DCN analysis found so few statisti-
cally significant effects demonstrates that false discoveries
are relatively rare, and furthermore, the fact that none of
the detected genes replicated in both SCGX and DCN ex-
periments at high significance levels (P-adjust < 0.001) sug-
gests that high significance thresholds and proper replica-
tion should effectively eliminate false discoveries.

Even fewer genes appear statistically significant in the
DCN and SCGX analyses using the splice-junctions-
only/no-MAP-dispersion options, further reinforcing the
evidence that these options make JunctionSeq less prone
to false discovery, albeit at the cost of statistical power (see
Supplementary Table S3).

Comparison with existing tools

Comparisons between differential isoform regulation tools
are difficult, as many are actually designed to detect subtly
distinct phenomena. As a consequence: even if both tools
perform with perfect accuracy they may still return differ-
ent results. CuffDiff, for example, performs several separate
tests of transcript switching and alternative promoter us-
age for each gene. Other transcript-alignment-based tools
like eXpress (26), RSEM (27) or Kallisto/Sleuth (unpub-
lished, preprint available at http://arxiv.org/abs/1505.02710)
only detect overall differential expression of individual tran-
scripts and do not attempt to detect differential usage of
transcripts relative to one another. Thus, results from these
tools would likely consist predominantly of differentially
expressed genes, and would not specifically target differ-
ential splicing. Furthermore, most such tools are strongly
annotation-dependent and do not attempt to assess novel
splice variants.

The obvious comparison, however, is with the DEXSeq
software tool (18). We found that when all affected isoforms
are known, JunctionSeq and DEXSeq seem to perform with
similar efficacy. However, when unannotated isoforms are
involved, JunctionSeq demonstrates clear superiority due to
its ability to query unannotated splice junctions.

With or without the complete annotation, both Junction-
Seq and DEXSeq outperformed CuffDiff, which failed to
detect any differentials in the rat pineal gland and in the
simulations data produced higher false discovery rates and
much lower true positive rates.

Toxoplasma gondii analyses. Without a CuffLinks assem-
bly, DEXSeq was unable to detect any differential usage in
the validated gene (TGGT1 207900) in any of the three Tox-
oplasma gondii analyses (see Figure 3b and Supplemental

http://arxiv.org/abs/1505.02710
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Figure 4. Day/Night gene profile plots for the Crem gene in the rat pineal gland, sham-surgery group. Plots (A), (C) and (D) were produced by JunctionSeq,
and (B) was produced by an equivalent analysis using DEXSeq. The full standard JunctionSeq gene profile plot (A) includes both exon and splice junction
information. The equivalent DEXSeq plot (B) only displays exon information. Optionally, JunctionSeq can produce similar exon profile plots (C), or plots
displaying only splice-junction information (D). Beneath the plotting regions in each figure a gene diagram displays the features’ positions on the genomic
scale (note that small features are expanded for readability in the JunctionSeq versions). Novel junction loci are drawn using dashed lines. In the upper plots
(A and B), all known transcripts are displayed beneath the main plotting area. Similar plots are available online for the control day/night comparison, as
well as the two treated-vs-untreated comparisons (see Supplementary Figures S9–S11)
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Figure 5. Genome-wide Browser tracks produced in the QoRTs/JunctionSeq pipeline. The above screenshot displays much of the same information found
in Figure 4, except using the UCSC genome browser. The top track displays the ensembl gene annotation. The second track displays the statistically
significant features, with the adjusted P-value included in parentheses. The next track is a ‘wiggle’ track that displays coverage over both the forward and
reverse strand (above and below the x-axis, respectively), in red and blue for day and night, respectively (overlap is colored black). The next two tracks
display all exons and splice junctions, respectively, that were tested for DU by JunctionSeq. The day/night normalized mean expression values from Figure
4 are included in parentheses. The final track is from RepeatMasker, and displays regions with repeating or low-complexity elements. Using these tracks
together can be vital for the purposes of interpretation and validation.
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Table 1. JunctionSeq results

Adjusted
P-value
threshold In vivo In vitro No stimulus (in vivo)

Ctrl
day/night

Sham
day/night

Overlap,
in vivo

CN versus
NE

CN versus
DBcAMP

Overlap,
in vitro

Overlap,
All four

SCGX
Day/Night

DCN
day/night

Overlap,
no stimulus

0.01 447 320 168 144 195 90 42 38 9 2
0.001 300 202 116 89 127 61 28 24 5 0
0.0001 227 151 94 67 91 48 18 20 2 0
0.00001 182 119 79 51 74 38 15 14 2 0
0.000001 151 98 61 43 65 34 14 11 2 0

The numbers of genes found to exhibit significant differential exon or splice junction usage for the four rat pineal gland analyses at various P-value
thresholds.

Figure 6. Day/Night gene profile plots for the Crem gene, created by JunctionSeq (A) and DEXSeq (B), both using an incomplete transcript annotation.
These plots are equivalent to Figure 4 (A) and (B), except that all the transcripts except one (transcript ENSRNOT00000074146) were removed from the
annotation prior to analysis. Without the a priori knowledge of the missing transcripts, DEXSeq cannot reliably detect differential usage. Note that the
‘novel’ junction N010 is actually known junction J028 from Figure 4. Similarly, N014 is J032 and N015 is J035. The other novel junctions are not present
even in the full annotation. It should be noted that exon E001 shows borderline statistical significance in the DEXSeq plot (P-adjust = 0.016).

Figures S1b and S2b). JunctionSeq, however, detects the dif-
ferential usage of the alternative start site in all three analy-
ses, even without the CuffLinks assembly (see Figure 3a and
Supplemental Figures S1a and S2a).

Rat pineal gland analyses. In the rat pineal gland data,
JunctionSeq and DEXSeq seemed to perform similarly
when the full transcript annotation was used (see Table
1, Supplemental Table S1, and Supplemental Figures S7–
S11). Across all experiments JunctionSeq detected at least
as many statistically significant genes in each experiment in-
dividually and found more genes that overlapped between
all four analyses.

For the four known-AIR genes, DEXSeq and Junction-
Seq returned very similar results when the full annotation
was used, although JunctionSeq reported slightly weaker
significance for the gene Slc15a1 (see Tables 2 and 3).

When the transcript annotation was incomplete, DEXSeq
fails to detect differQ2QQential usage in 3 of the 16 tests,

one for Crem and two for Pde4b (at P-adjust < 0.01, see
Table 3). JunctionSeq, on the other hand, still reports dif-
ferential usage in all 16 tests (see Table 2). Furthermore, al-
though the other five DEXSeq tests for the genes Crem and
Pde4b are still statistically significant at P-adjust < 0.01,
all of the reported P-values are several orders of magni-
tude weaker than those found in either the corresponding
JunctionSeq analyses or the corresponding full-annotation
DEXSeq analyses.

Even with the complete annotation, CuffDiff failed to de-
tect any isoform switching or differential promoter usage in
any of the four known-AIR genes across any of the four
analyses (see Table 4).

Simulated datasets. We ran JunctionSeq, DEXSeq, and
the full CuffLinks/CuffDiff pipeline using both the full and
incomplete annotations. For JunctionSeq and DEXSeq we
also ran an analysis using the set of exons and splice junc-
tions discovered in the CuffLinks assembly on the incom-
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Table 2. JunctionSeq gene-level adjusted P-values for four known-AIR genes in the rat pineal gland, both with and without a complete isoform annotation

Gene
Symbol Full Annotation Incomplete Annotation (1 ‘known’ isoform)

Ctrl
day/night

Sham
day/night

CN versus
NE

CN versus
DBcAMP

Ctrl
day/night

Sham
day/night

CN versus
NE

CN versus
DBcAMP

Atp7b <1e−8 <1e−8 <1e−8 <1e−8 <1e−8 <1e−8 <1e−8 <1e−8
Crem <1e−8 <1e−8 <1e−8 <1e−8 <1e−8 <1e−8 <1e−8 <1e−8
Pde4b <1e−8 <1e−8 <1e−8 <1e−8 <1e−8 <1e−8 <1e−8 2.8e−7
Slc15a1 <1e−8 <1e−8 0.0034 0.0015 <1e−8* <1e−8* 0.0034* 0.0016*

The left four columns display the results from a normal analysis, the right four columns display the results from an analysis in which all but one isoform
was removed from the annotation for each gene, simulating a scenario in which the gene is poorly studied and the annotation incomplete. *Note: since the
Slc15a1 gene actually only has one known transcript, the ‘full’ and ‘incomplete’ annotation analyses for this gene are equivalent, differing only slightly due
to minor analysis-wide differences in the dispersion estimation and multiplicity correction.

Table 3. DEXSeq gene-level adjusted P-values for four known-AIR genes in the rat pineal gland, both with and without a complete isoform annotation

Gene symbol Full annotation Incomplete annotation (1 ‘known’ isoform)

Ctrl
Day/Night

Sham
Day/Night CN vs NE

CN vs
DBcAMP

Ctrl
Day/Night

Sham
Day/Night CN vs NE CN vs DBcAMP

Atp7b <1e-8 <1e-8 <1e-8 <1e-8 <1e-8 <1e-8 <1e-8 <1e-8
Crem <1e-8 <1e-8 <1e-8 <1e-8 1.2e-5 0.0357 6.5e-6 9.3e-5
Pde4b <1e-8 <1e-8 <1e-8 <1e-8 1.2e-4 0.0041 1.0 1.0
Slc15a1 <1e-8 <1e-8 3.3e-5 2.7e-5 <1e-8* <1e-8* 3.2e-5* 3.0e-5*

See Table 2. Note that without the complete annotation, several tests do not show significant differential usage or have much less significant P-values.

Table 4. CuffDiff results for the four known AIR genes in the rat pineal gland, using the full annotation

Output file Gene symbol
# Tests for

gene Experiments (full annotation)

Ctrl day/night Sham day/night CN versus NE CN versus DBcAMP

Splicing.diff Atp7b 4 1 1 1 1
Crem 9 0.99991 0.99991 0.99991 0.9999
Pde4b 30 0.99991 0.99991 0.99991 0.1444
Slc15a1 3 1 1 1 1

Promoters.diff Atp7b 1 0.13110 1 1 1
Crem 1 0.99991 0.99991 0.99991 0.99991
Pde4b 1 1 0.99991 1 1
Slc15a1 1 1 1 1 1

cds.diff Atp7b 1 1 1 1 1
Crem 1 0.99808 0.99862 0.99988 0.99896
Pde4b 1 0.99808 0.99862 0.99988 0.99896
Slc15a1 1 1 1 1 1

The CuffDiff analysis design differs somewhat from that of DEXSeq or JunctionSeq. CuffDiff peforms separate analyses testing for isoform switching
(splicing.diff), differences in CDS expression (cds.diff), and differential promoter usage (promoters.diff), producing several tests for each gene. The results
for the four known-AIR genes are shown below. When an analysis file contained multiple tests for a given gene, the most significant adjusted P-value is
shown. (Note: CuffDiff was not tested on the incomplete annotation set.)

plete annotation. We found that when the annotation was
complete, JunctionSeq and DEXSeq once again seemed to
perform with approximately equal effectiveness (see Figures
1 and 2, Supplemental Figure S20). However, when the an-
notation was incomplete, JunctionSeq provided clearly su-
perior performance in both AIR-gene discrimination (see
Figure 1) and control of the false discovery rate (Figure
2). Both the AIR-gene discrimination and FDR control of
CuffDiff was substantially worse than either method, with
or without the complete annotation.

Even when CuffLinks is used to recover some of the ab-
sent exonic regions and splice junctions in the incomplete
annotation, JunctionSeq still visibly outperforms DEXSeq
in both simulated datasets.

Additional efficacy metrics and summary plots compar-
ing the three tools under various options and conditions are
available in the online supplement (see Supplemental Fig-
ures S16–S24).

It is important to note that since AIR/DTU is actually a
broad category of related phenomena, the particular results
from any given simulation analysis will not necessarily gen-
eralize to all actual datasets. The relative efficacy of these
methods will depend strongly on numerous factors, includ-
ing the annotation, genome build, tissue type, read length,
and organism. In addition: efficacy may vary depending on
the nature of the actual biological phenomena that are oc-
curring in each particular experiment. For example: in one
previous study (29), CuffDiff displayed a much lower FDR,
most likely due to the presence of a very large number of
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highly expressed genes with extremely strong differential us-
age.

The results of all three test datasets lead us to the same
conclusion: when the transcript annotation is complete and
comprehensive, DEXSeq and JunctionSeq produce similar
results. However, when novel isoforms are involved Junc-
tionSeq provides a clear improvement over other methods.

Other advantages of JunctionSeq. The improved visualiza-
tion tools provided by JunctionSeq further increase its util-
ity. In general, simply detecting the presence of AIR is in-
sufficient; the investigator must also be able to determine
precisely which isoforms or splice variants are responsible
for the apparent differences. In many cases, DEXSeq detects
differential usage in the same genes as JunctionSeq, how-
ever, even when manually examining the DEXSeq plots it is
often impossible to identify the specific splice variants that
are being differentially expressed, particularly when the rel-
evant exons or splice junctions are unannotated.

For example, in the Crem gene there are several clusters of
small exonic regions (E009–E010, E013–E015, E017–E021,
see Figure 4) that are completely indistinguishable in the
DEXSeq gene/transcript diagram due to ‘over-plotting’, in
which such features are plotted less than a pixel apart (see
bottom of Figure 4b). These same features, however, can
be easily identified and matched to their corresponding iso-
forms in the JunctionSeq plot, due to the nonlinear expan-
sion of small features (see bottom of Figure 4A and C).
Other visualization tools, like the IGV browser views and
‘sashimi’ plots, often suffer from similar issues (see Supple-
mental Figures S25 and S26).

Similarly, when novel isoforms are involved, it is often
impossible to identify the relevant splicing variants in the
DEXSeq plots, even when statistical significance is detected
in the gene. This is because DEXSeq will often detect the
indirect effects of alternative isoform usage, but the causal
variants themselves will remain obscured.

For example, in the incomplete-annotation analysis
shown in Figure 6b, the first exon (E001) actually displays
borderline statistical significance in the DEXSeq analysis
(P-adjust = 0.016), due to the fact that this exon is not
present in the (unobserved) alternative isoforms. However,
even if this is considered significant it is impossible to iden-
tify the actual variants responsible for this effect, as they
are not directly observable in the DEXSeq plots. The Junc-
tionSeq plots, on the other hand, clearly show the source of
the differential usage in the various ‘novel’ splice junctions,
most of which lead to the upstream alternative promoter
site.

If desired, JunctionSeq can (optionally) run pure exon-
based analyses, reducing the number of comparisons (see
Supplemental Figures S21–S23). One of the major strengths
of JunctionSeq is that it queries a broader array of regula-
tory phenomena, however, this comes at the cost of addi-
tional comparisons and potentially reducing power. Run-
ning a purely exon-based analysis may provide superior re-
sults when working with a well-characterized tissue on a
comprehensively annotated genome. In fact, with a certain
set of options (documented in the user manual), Junction-
Seq will precisely reproduce a standard DEXSeq analysis
while still providing the user with the enhanced visualiza-

tion tools of JunctionSeq. To demonstrate the advantages of
the JunctionSeq plotting engine we plotted identical analy-
ses run by JunctionSeq and DEXSeq for a large and com-
plex human gene using simulated data (see Supplemental
Figures S12 and S13).

Example interpretation

For the purposes of demonstration we will examine a well-
known AIR gene, Crem, in the rat pineal gland dataset. The
mechanism behind the circadian alternative isoform regula-
tion of the Crem gene is already well understood, and the
patterns of expression of this gene’s various isoforms are
well-characterized (51,52,60). Briefly, an internal promoter
is greatly upregulated at night, resulting in large quanti-
ties of a number of small transcripts collectively known as
ICER. ICER is known to play a major role in the melatonin
synthesis pathway (61).

By default, JunctionSeq automatically generates gene
profile plots for every gene that contains one or more dif-
ferentially used exon or splice junction. Figure 4 (A–D)
displays a few of the available plots in the sham-surgery
night/day experiment.

As seen in the small rightmost panel of each JunctionSeq
plot (i.e. the narrow panels labelled ‘GENE’), the Crem gene
as a whole appears to display strong upregulation at night
(∼15 000 versus ∼650 read-pairs per sample). Looking at
the gene profile plots we can see that this is not uniform
across the gene: some of the exonic regions and splice junc-
tions display strong upregulation at night while others do
not. Exonic regions E009 through E021 all display strong
differentials (>8×, see Figure 4C), but exonic regions E001
through E008 display consistently low counts at both day
and night. The splice junction plot (see Figure 4D) shows
similar results for the splice junction coverage.

It may seem counterintuitive that the constant-expression
exons (E001–E008) are marked as statistically significant.
This is because JunctionSeq (like DEXSeq) tests for differ-
ential usage, not differential expression. The expression of
each sub-feature is compared with the expression of the
gene as a whole (see the rightmost panel of each Junction-
Seq plot in Figure 4). Since the gene as a whole has strong
differential expression, exonic regions and splice junctions
that do not display such differentials are considered ‘differ-
entially used’ relative to the gene.

Using the genome browser tracks produced in the
QoRTs/JunctionSeq pipeline (Figure 5), we can examine the
read coverage across the genome and over all known and
novel splice junctions. These can be examined alongside ex-
ternal annotation tracks such as the RepeatMasker track
or the UCSC-maintained EST and mRNA databases. Vi-
sual examination alongside these tracks can be critical, as it
can determine whether novel splice variants have been pre-
viously detected, or if apparent difference might be the re-
sult of alignment artifacts or flaws in the annotation.

Taken together, these visualizations lead towards a clear
and obvious hypothesis: the full-length isoforms of the
Crem gene display constant low-level expression at day
and night, whereas the isoforms originating in the internal
(‘ICER’) promoter are greatly upregulated at night. This
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‘hypothesis’ matches the known behavior and function of
this gene in the literature (51,52,60,61).

Similar plots are available online for the Crem gene in the
other three rat pineal gland experiments (see Supplemen-
tary Figure S9–S11).

DISCUSSION

JunctionSeq offers a powerful, flexible, statistically robust
and efficient solution for the identification, characteriza-
tion, and interpretation of differential isoform regulation.
The underlying methodology has a strong theoretical ba-
sis and is built upon established statistical methods that are
already widely accepted by the community. It includes a
number of powerful improvements that allow it to query a
broader class of regulatory phenomena, including the dif-
ferential regulation of novel splicing variants in the absence
of an accurate and comprehensive transcript annotation.

This is a notable addition to the community, as DEXSeq
cannot consistently detect differential transcript usage in
novel transcripts, and since many popular tools such as eX-
press (26), RSEM (27) or Kallisto (unpublished, preprint
available at http://arxiv.org/abs/1505.02710) cannot assess
novel variants at all. Furthermore, many transcript quan-
tification tools seem to perform poorly when used with an
incomplete transcript annotation (24). Although Junction-
Seq may not necessarily provide uniform superiority over
existing methods when the annotation is comprehensive, it
provides a valuable tool for researchers studying esoteric tis-
sues and/or less-common species.

Another major advantage of the JunctionSeq software
toolset is its suite of powerful automated visualization and
interpretation tools, which allow investigators to quickly
and intuitively examine hundreds of genes. This assists in-
vestigators in identifying and characterizing genes of inter-
est for further validation and study.

The JunctionSeq R package

We implemented the described method in a new Bioconduc-
tor package, JunctionSeq, written entirely in the R statistical
programming language.

The JunctionSeq analysis pipeline requires the QoRTs
quality-control/data-processing software package (62) in
order to generate the raw gene, exon, and splice junc-
tion counts. QoRTs is also used to create the multi-sample
normalized-mean ‘wiggle’ tracks for use with IGV or the
UCSC genome browser.

The JunctionSeq package is extensively documented
and includes a comprehensive walkthrough and example
dataset, with line-by-line instructions describing the com-
plete analysis pipeline. JunctionSeq will be included in Bio-
conductor release 3.3 (http://bioconductor.org/packages/
JunctionSeq/), and is available now along with additional
online help and documentation at the JunctionSeq GitHub
page: http://hartleys.github.io/JunctionSeq/.

ACCESSION NUMBERS

The datasets used in the application sections are available
from the NCBI short read archive (SRA), with accession

numbers PRJNA267246 and PRJNA252680 for the Rattus
norvegicus (42) and the Toxoplasma gondii (40) datasets, re-
spectively.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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