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In Brief
Tandem mass spectrometry
(MS/MS)-based
phosphoproteomics is a
powerful technology for global
phosphorylation analysis.
However, applying different
computational pipelines to the
same dataset may produce
substantially different
phosphopeptide identification
results, underscoring a critical
need for benchmarking. We
present three deep-learning-
derived benchmark metrics. The
benchmark metrics
demonstrated in this study will
enable users to select
computational pipelines and
parameters for routine analysis
of phosphoproteomics data and
will offer guidance for developers
to improve computational
methods.

Highlights
• Computational method selection substantially affects phosphopeptide identification.• Deep-learning-derived metrics effectively discriminate correct and incorrect PSMs.• Novel metrics enable computational method comparison on real application data.
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RESEARCH
Deep-Learning-Derived Evaluation Metrics
Enable Effective Benchmarking of
Computational Tools for Phosphopeptide
Identification
Wen Jiang1, Bo Wen1, Kai Li1, Wen-Feng Zeng2 , Felipe da Veiga Leprevost3 ,
Jamie Moon4, Vladislav A. Petyuk4, Nathan J. Edwards5, Tao Liu4, Alexey I. Nesvizhskii3 ,
and Bing Zhang1,*
Tandem mass spectrometry (MS/MS)-based phospho-
proteomics is a powerful technology for global phos-
phorylation analysis. However, applying four
computational pipelines to a typical mass spectrometry
(MS)-based phosphoproteomic dataset from a human
cancer study, we observed a large discrepancy among the
reported phosphopeptide identification and phosphosite
localization results, underscoring a critical need for
benchmarking. While efforts have been made to compare
performance of computational pipelines using data from
synthetic phosphopeptides, evaluations involving real
application data have been largely limited to comparing
the numbers of phosphopeptide identifications due to the
lack of appropriate evaluation metrics. We investigated
three deep-learning-derived features as potential evalua-
tion metrics: phosphosite probability, Delta RT, and
spectral similarity. Predicted phosphosite probability is
computed by MusiteDeep, which provides high accuracy
as previously reported; Delta RT is defined as the absolute
retention time (RT) difference between RTs observed and
predicted by AutoRT; and spectral similarity is defined as
the Pearson’s correlation coefficient between spectra
observed and predicted by pDeep2. Using a synthetic
peptide dataset, we found that both Delta RT and spectral
similarity provided excellent discrimination between cor-
rect and incorrect peptide-spectrum matches (PSMs) both
when incorrect PSMs involved wrong peptide sequences
and even when incorrect PSMs were caused by only
incorrect phosphosite localization. Based on these results,
we used all the three deep-learning-derived features as
evaluation metrics to compare different computational
pipelines on diverse set of phosphoproteomic datasets
and showed their utility in benchmarking performance of
the pipelines. The benchmark metrics demonstrated in
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this study will enable users to select computational pipe-
lines and parameters for routine analysis of phosphopro-
teomics data and will offer guidance for developers to
improve computational methods.

Phosphorylation, one of the most common posttranslational
modifications (PTMs), is a reversible mechanism that regulates
cellular processes such as cell growth, development, and
aging through protein kinases and phosphatases (1). Protein
phosphorylation dysregulation has been recognized in several
diseases, especially cancer (2–4). Tandem mass spectrometry
(MS/MS)-based phosphoproteomics provides a high-
throughput method to study protein phosphorylation in com-
plex biological samples (5). For example, the Clinical Proteo-
mic Tumor Analysis Consortium (CPTAC) and the International
Cancer Proteogenome Consortium (ICPC) have applied
phosphoproteomics to the studies of more than ten cancer
types (6–14). These and other studies have demonstrated the
power of phosphoproteomics in revealing novel biological
insights and identifying new effective biomarkers and drug
targets for disease prognosis and treatment.
Translating phosphoproteomic data into novel biological

and clinical insights relies on effective data analysis (15),
and the first step is phosphopeptide identification and
phosphosite localization from MS/MS data. Multiple data-
base search tools, such as MaxQuant, MS-GF+, pFind,
MSFragger, and X!Tandem, can be used to identify peptide-
spectrum matches (PSMs) (16–21). Similarly, multiple tools
such as Ascore, PhosphoRS, Andromeda, Mascot Delta
Score, pSite, PTMProphet, and LuciPHOr allow scoring of
phosphorylation sites to determine phosphosite localizations
(22–28).
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Benchmark Phosphoproteomics Computational Pipelines
Applying different computational pipelines to the same
dataset, however, may produce variable results, with respect
to phosphopeptide identifications and phosphosite localiza-
tions. This discrepancy has direct impact on all downstream
data analyses and interpretation. Therefore, there is a critical
need to compare performance of different computational al-
gorithms. New tools are typically assessed in corresponding
publications by comparing to previously published tools (22–
26). Performed by the tool developers, such evaluation may
be biased, a phenomenon called the self-assessment trap
(29). Efforts have been made to systematically compare
computational pipelines for peptide identification from MS/MS
data in an unbiased manner (30–35). An excellent study has
comprehensively compared six search engines in combination
with several localization scoring algorithms for phosphopep-
tide identification and site localization (30). In that study, a
phosphoproteomic dataset from HeLa cells was used to
compare the total number of identifications, and a dataset of
synthetic peptides with known sequences and phosphoryla-
tion positions was used to compare the quality of identifica-
tions. It is desirable to directly compare both number and
quality of identifications reported by different computational
pipelines in individual application datasets, but quality com-
parison in real application datasets is difficult due to the lack
of ground truth or appropriate evaluation metrics.
Deep learning is a subdiscipline of machine learning based

on artificial neural networks. Deep learning can automatically
learn patterns from large datasets without handcrafted fea-
tures. With the exponential growth of MS/MS proteomic data,
deep learning has been applied to various areas of proteomics
research (36). In particular, deep learning has been highly
successful in predicting many peptide properties, including
retention time (RT) of a peptide defined as the time point when
the peptide elutes from the liquid chromatography (LC) col-
umn in an LC-MS/MS system (37–42), fragment intensities of
a peptide (38, 41, 43), and phosphorylation sites (44, 45).
In this study, we introduce three deep-learning-derived fea-

tures as potential metrics for benchmarking computational
pipelines for phosphopeptide identification. The first feature is
predicted phosphosite probability, which is computed by Musi-
teDeep with high accuracy as previously reported (44, 46). The
second feature is Delta RT, which is defined as the absolute RT
difference between RTs observed and predicted by AutoRT (37).
The third feature is spectral similarity, which is defined as the
Pearson’s correlation coefficient (PCC) between spectra
observed andpredicted bypDeep2 (43). Phosphosite probability
predicted by MusiteDeep is independent of experimental con-
ditions and thus can be directly used in our benchmarking study.
In contrast, customization of the published AutoRT and pDeep2
models through modified encoding schemes and transfer
learning is required for application to individual experiments. We
use a synthetic peptide dataset (33) to customize AutoRT and
pDeep2 models and to evaluate performance of Delta RT and
spectral similarity in discriminating correct and incorrect PSMs.
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Based on the evaluation results, we use all the three deep-
learning-derived features as evaluation metrics to benchmark
four computational pipelines on a tandem mass tag (TMT)
dataset from the CPTAC human Uterine Corpus Endometrial
Carcinomas (UCEC) study (10). The four pipelines include the
MS-GF+/Ascore pipeline used in the UCEC publication (19, 22),
the CPTAC common data analysis pipeline (CDAP) (MS-GF+/
PhosphoRS) (21), the widely used MaxQuant (17), and the more
recently published FragPipe pipeline (MSFragger/Philosopher)
(20, 47). To demonstrate the general applicability of our bench-
marking approach, we further analyzed a TMT dataset from a
mouse cell line (mouse_TMT) and a label-free dataset
from human cell culture (human_LFQ) using MaxQuant and
FragPipe and compared the results using the three evaluation
metrics.
EXPERIMENTAL PROCEDURES

Data Sources

Preprepared data for AutoRT base model training and testing were
downloaded from the GitHub website (https://github.com/bzhanglab/
AutoRT/tree/master/example/data). The MaxQuant search results of
the phosphoproteomic data from HeLa cell protein extract used to
train and test AutoRT base_phospho model were downloaded from
PRIDE (https://www.ebi.ac.uk/pride/) with accession number
PXD015087. In our study, we used only a subset of data including 11
raw files (03275_A4_P038189_U09 - 03275_H3_P038189_U08), which
were the phosphopeptides analyzed by a nano-flow LC-MS/MS
system.

The MaxQuant search results of the synthetic dataset used to
evaluate Delta RT and spectral similarity were downloaded from
PRIDE (https://www.ebi.ac.uk/pride/) with accession number
PXD000138, which included 96 peptide libraries generated from 96
seed peptides. In each library, the two amino acids directly before and
after a phosphorylated amino acid in the seed peptide were permu-
tated, leading to libraries of size 2400 peptides or 120 peptides
depending on the location of the phosphorylated amino acid. We used
the first ten raw files (1.raw–10.raw), which theoretically have 21,720
different peptides (supplemental Table S1).

The raw files of a large-scale TMT10-labeled phosphoproteomic
dataset (16 TMT10-plexes, 12 fractions in each plex) from the CPTAC
UCEC study were downloaded from the CPTAC data portal (https://
cptac-data-portal.georgetown.edu/study-summary/S043). The raw
files of an MS3-based TMT10-labeled phosphoproteomic dataset
from murine cell lines (mouse_TMT) were downloaded from PRIDE
(https://www.ebi.ac.uk/pride/) with accession number PXD015284.
One experiment with six fractions was downloaded
(02277_A01_P024190_S00_U01_R1 - 02277_F01_P024190_S00_
U06_R1). The raw files of a label-free quantification phospho-
proteomic dataset from human cell cultures (human_LFQ) were
downloaded from PRIDE (https://www.ebi.ac.uk/pride/) with acces-
sion number PXD007145. One experiment with three fractions was
downloaded (20160408_QE5_nLC5_AH_Bench_2mg_phos_LFQ_
oneshot_1C/X/N).

All datasets and their usage in this study are summarized in
supplemental Table S1.

Pipelines for the Analysis of Phosphoproteomic Data

For benchmarking, the raw files were searched using four compu-
tational pipelines, which are described in Table 1. The first one is MS-
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TABLE 1
UCEC search results from four pipelines

Experiment Pipeline
Search
engine

Localization
tool

Localization
probability/score

threshold

Identified
localized

phosphopeptides

All identified
phosphopeptides

Identified
localized
PSMs

All
identified
PSMs

16 TMT
experiments

MS-GF+/Ascore MS-GF+ Ascore 13 80,521 103,775 733,325 935,065
CDAP MS-GF+ PhosphoRS 0.99 69,400 157,565 423,117 954,927
MaxQuant Andromeda PTM Score 0.75 82,911 120,126 784,940 1,028,857
FragPipe MSFragger PTMProphet 0.75 110,739 142,992 1,175,527 1,393,090

1 TMT
Experiment

MS-GF+/Ascore MS-GF+ Ascore 13 20,200 24,856 29,035 36,440
CDAP MS-GF+ PhosphoRS 0.99 14,326 32,382 18,629 42,424
MaxQuant Andromeda PTM Score 0.75 24,412 31,818 35,052 45,908
FragPipe MSFragger PTMProphet 0.75 31,462 37,542 46,949 56,431

Benchmark Phosphoproteomics Computational Pipelines
GF+ v9881 combined with a localization tool Ascore v1.0.6858, which
we referred to as MS-GF+/Ascore pipeline. The second one is MS-
GF+ v2017.01.27 combined with a localization tool PhosphoRS,
which we referred to as CDAP. The third one was MaxQuant-
Andromeda v1.6.5.0, which we referred to as MaxQuant. The fourth
one is Philosopher, v3.3.12 (database search with MSFragger, Pep-
tideProphet/ProteinProphet) with a localization tool PTM-Prophet,
which we referred to as FragPipe.

Peptide Identification and Phosphosite Localization

For phosphoproteomic data used to train and test AutoRT
base_phospho model, search results were downloaded from PRIDE
(https://www.ebi.ac.uk/pride/) with accession number PXD015087
(MaxQuant v1.6.2.352, UniProtKB Human Reference Proteome
database v22.07.13).

For the synthetic dataset used to evaluate Delta RT and spectral
similarity, search results were downloaded from PRIDE (https://
www.ebi.ac.uk/pride/) with accession number PXD000138 (Max-
Quant version 1.3.0.3, human IPI v3.72 supplemented with syn-
thesized libraries).

All three benchmarking datasets were processed using MaxQuant-
Andromeda v1.6.5.0 with default MaxQuant parameters. For the
UCEC dataset and human_LFQ dataset, the raw files were searched
against RefSeq human protein sequence database downloaded on
June 29, 2018 (hg38; 41,734 entries) (48). For the mouse_TMT data-
set, the raw files were searched against UniprotKB mouse reference
database, downloaded on June 27, 2017 (16,889 entries). For data-
base searching, the following parameters were applied: 20 ppm and
4.5 ppm as first search peptide tolerance and main search peptide
tolerance; Trypsin/P as enzyme with two missed cleavage sites;
Carbamidomethylation of cysteine as a fixed modification; protein N-
terminal acetylation, oxidation of methionine, phosphorylation of
serine, threonine, and tyrosine as variable modifications; peptide
length with at least seven amino acids. For TMT datasets, fixed TMT
modification on the peptide N terminus and Lys residues was
considered. The FDR was set to 1% on the site, PSM, and protein
levels. A minimum score for modified peptides was set to 40. The
cutoff of phosphosite probability estimated by MaxQuant was
required to be 0.75 or higher. The MaxQuant output file (msms.txt) was
utilized for further analyses.

Besides, all the three benchmarking datasets were processed by
FragPipe pipeline. The UCEC dataset was also processed by MS-
GF+/Ascore and CDAP. If not specified, the parameters were same
as MaxQuant. For FragPipe, the partially tryptic search used a ±20
ppm precursor. For MS-GF+/Ascore, the partially tryptic search used
a ±10 ppm parent ion tolerance. A minimum of six unique peptides per
1000 amino acids of protein length were required for achieving 1% at
the protein level within the full dataset. Oxidation of methionine was
not considered. For CDAP, the semi-tryptic search used a ±20 ppm
parent ion tolerance.

RT Data Preparation and AutoRT

AutoRT base model was trained on unmodified peptides from the
PXD006109 dataset (37, 49). They were preprepared as training and
test data, which contained 123,111 and 13,680 unique unmodified
peptide sequences with RTs in the format of AutoRT input files
(supplemental Table S1). In order to apply AutoRT to phosphopep-
tides, we retrained the AutoRT base model using the preprepared
training data and encoded oxidation and phosphorylation into the
base model. We used “1,” “2,” “3,” “4” to represent oxidation (M),
phosphorylation (S), phosphorylation (T), and phosphorylation (Y). The
training data were split into 90% and 10% for training and validation
automatically by the model. Based on test mean square error (MSE),
the top ten best neural architectures were selected and saved. The
test MAE of AutoRT base model with 13,680 independent unmodified
test peptides from the PXD006109 dataset was 0.5 min. When
applying the base model directly to phosphopeptides, the test MAE
was 6.1 min.

To enhance the performance of AutoRT on phosphopeptides, we
used a two-step transfer learning strategy (manuscript in preparation).
Specifically, we prepared transfer learning training and test data using
MaxQuant search results of a phosphoproteomic dataset we referred
to as the Nano_flow dataset (50). We followed the data preparation
rules of AutoRT: when a peptide has multiple PSMs, which means this
peptide has multiple RTs, only the peptide with the RT range smaller
than 3 min would be kept, and there should be no peptide sequence
overlaps between training and test data to avoid overfitting problem.
Peptide sequence length limitation is 48 amino acids. The transfer
learning training and test data contained 30,360 phosphopeptides and
1000 phosphopeptides separately (supplemental Table S1). We
trained the ten models as the basis for transfer learning using the
phosphopeptides to improve the base model to base_phospho model
(50). The test MAE of the AutoRT base_phospho model with 1000
independent test phosphopeptides from the Nano_flow dataset was
0.6 min. Of note, this AutoRT base_phospho model can be applied to
both phosphopeptides and nonmodified peptides.

Delta RT

Before predicting phosphopeptide RTs of a specific dataset,
AutoRT base_phospho model was fine-tuned by some highly
Mol Cell Proteomics (2021) 20 100171 3
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confident phosphopeptide identifications from the dataset through
transfer learning. In order to get highly confident identifications, we
performed database search using multiple computational pipelines
and selected the PSMs reported by all pipelines. All PSMs were
processed according to the data preparation rules of AutoRT as
mentioned above. In total, 90% of highly confident identifications were
used to fine-tune AutoRT base_phospho model to create experiment-
specific model. Then we predicted RTs of the 10% of the highly
confident PSMs (test PSMs, positive controls) and PSMs uniquely
identified by individual pipelines (unique PSMs) using the experiment-
specific model. Delta RT was the absolute RT difference between RTs
observed and predicted by experiment-specific AutoRT model.
Smaller Delta RTs indicated better identification and localization
performance.

Spectrum Data Preparation and pDeep2

Data used to train and test the pDeep2 base model (pretrain-
180921-modloss.ckpt) and pDeep2 base_phospho model (pretrain-
180921-modloss-transfer-Phos.ckpt) were described in (43). The
original pDeep2 base model and base_phospho model were trained
and tested using data from various laboratories. The authors consid-
ered instrument types and normalized collision energy (NCE) in the
model, making pDeep2 adaptive for different instruments (43). We
used original pDeep2 base model and base_phospho model, which
can predict the intensities of four types of ions (b, y, b-Modloss,
y-Modloss).

Spectral Similarity

Before MS/MS spectrum prediction of a specific phosphoproteomic
dataset, pDeep2 base_phospho model was fine-tuned by some highly
confident phosphopeptide identifications from the dataset through
transfer learning, as described in the Delta RT section. After transfer
learning, we used the experiment-specific models to predict MS/MS
spectra and calculated the spectral similarities of the predicted
spectra and the experimental spectra. We considered PCC, Spear-
man’s Correlation Coefficients (SPC), cosine similarity (cos), Kendal
rank correlation coefficient (kdt), and spectral angle (SA) as possible
measurements of spectral similarity, and they led to similar conclu-
sions. PCC was selected in this study to represent spectral similarity.
The closer the spectral similarity is to 1, the more similar the input
peptide sequence and modification information are to the real ones.

General Phosphorylation Probability

We provided RefSeq human and UniProtKB mouse reference
peptide libraries described above as input for the MusiteDeep server
(https://www.musite.net), which returned the general phosphosite
probabilities of serine, threonine, and tyrosine in the peptide se-
quences (44). The MusiteDeep prediction results of human and mouse
libraries are listed in supplemental Table S2.

Benchmark Metrics Evaluation Data

One large-scale synthetic proteomics reference library was used to
evaluate two deep-learning-derived metrics, Delta RT and spectral
similarity (33). We prepared the training and test data for fine tuning
AutoRT base_phospho model, pDeep2 base model, and pDeep2
base_phospho model. Only high scoring PSMs (MaxQuant Delta
Score ≥ 6 and Score ≥ 40 for both unmodified peptides and phos-
phopeptides and phosphosite localization probability >0.75 for
phosphopeptides) were included in this analysis. For AutoRT, we split
these PSMs into 6854 unique peptides with RTs for training and 783
unique peptides with RTs for testing. For pDeep2 base_phospho
model, there were 7205 PSMs for training and 2506 PSMs for testing.
For pDeep2 base model, there were 8484 PSMs for training and 2233
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PSMs for testing. There were no overlapping peptide sequences in
training and test data to avoid overfitting. The group alias of the
positive test phosphopeptides is M_SeqT_LocT (phosphopeptides
with true sequences and true phosphorylation localization). The group
alias of the positive test unmodified peptides is UM_SeqT (unmodified
peptides with true sequences).

In order to evaluate the ability of Delta RT and spectral similarity to
distinguish different types of negative controls, we split the negative
PSMs into three groups including wrongly identified phosphopeptides
(M_SeqF), correctly identified wrongly localized phosphopeptides
(M_SeqT_LocF), and wrongly identified unmodified (UM_SeqF). Since
the PSM numbers in the M_SeqT_LocF group were small (671 PSMs
for Delta RT; 130 PSMs for spectral similarity), we further simulated
two additional negative phosphopeptide groups with correctly iden-
tified wrongly localized phosphopeptides. We simulated the negative
PSMs from the positives. For each positive PSM in which the peptide
included two or more Ser/Thr/Tyrs, we kept the retention time and the
ion intensity unchanged and moved the correctly localized phosphate
group to a randomly chosen wrong localization to create the
M_Sim1_LocF group. For M_Sim2_LocF, we limited the move of the
phosphate group to the wrong localization closest to the correct one
to create the most challenging negative group for discrimination.

Phosphoproteomic Data for Benchmarking

One large-scalephosphoproteomicdataset fromCPTAC (TMT-10plex
labeled data from >100 uterine cancer samples, UCEC) was used for
benchmarking (10). The raw data including 16 experiments which were
processedusing four computational pipelines includingMS-GF+/Ascore,
CDAP, MaxQuant, and FragPipe (10, 17, 19, 22, 23, 47).

Search results were filtered based on the recommended cutoffs of
each pipeline. One experiment was used for benchmarking
(01CPTAC_UCEC_P_PNNL_20170922_B1S1). Since MS-GF+/Ascore
pipeline did not consider oxidation on methionine, we considered the
overlap PSMs among three pipelines (MaxQuant, FragPipe, CDAP) as
highly confident PSMs, which was used to prepare for the training and
test data for AutoRT base_phospho model and pDeep2 base_-
phospho model fine-tuning. For AutoRT and pDeep2, the highly
confident data from the experiment were split into 7864 phospho-
peptides for training, 851 phosphopeptides for testing, which also
served as positive controls. The PSMs identified by only one tool were
unique PSMs used for benchmarking the four tools. For AutoRT, the
peptide length limitation of training PSMs, test PSMs, and unique
PSM was 48 amino acids. Moreover, unique PSMs were filtered out
when the same sequences appeared in the training or test PSMs to
avoid overfitting.

In order to demonstrate the general applicability of our approach, a
TMT dataset from a mouse cell line (mouse_TMT) and a label-free
dataset from human cell culture (human_LFQ) were reanalyzed (51,
52). One experiment from each dataset was used for benchmarking.
Search results were filtered based on the recommended cutoffs of
each pipeline and were shown in supplemental Table S3. The overlap
PSMs between the two pipelines were treated as highly confident
PSMs and prepared for the training and test data for AutoRT base_-
phospho model and pDeep2 base_phospho model transfer learning.
The mouse_TMT ground truth from the experiment was split into 6851
unique phosphopeptides for training, 738 unique phosphopeptides for
testing. The human_LFQ ground truth from the experiment was split
into 12,484 unique phosphopeptides for training, 1950 unique
phospho-peptides for testing. The PSMs identified by only one tool
were unique PSMs, which were used for comparison between Max-
Quant and FragPipe. For AutoRT, the peptide length limitation of
training PSMs, test PSMs, and unique PSM was 48 amino acids.
Moreover, unique PSMs were filtered out when the same sequences
were in the training or test PSMs to avoid overfitting.

https://www.musite.net/
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Experimental Design and Statistical Rationale

For UCEC, global phosphoproteomics data including 16 experi-
ments were processed by MaxQuant as one batch. For mouse_TMT
and human_LFQ, phospho-proteomics data from one experiment
were processed by MaxQuant as one batch. AutoRT base_phospho
model and pDeep2 base_phospho model (or base model for un-
modified peptides) required transfer learning using highly confident
data from the specific experiment in which RTs need to be predicted.
In the evaluation part of Delta RT and spectral similarity, the positive
and negative test PSMs from synthetic peptides were used to evaluate
the ability of the deep-learning-derived metrics to distinguish wrongly
identified or localized peptides. In the application part, Delta RT,
spectral similarity and phosphosite probability were used to evaluate
the performance of phosphoproteomics pipelines. Data analysis was
performed using Python language (Jupyter Notebook v 5.6.0, Python
3). Two-sided Wilcoxon rank sum test was performed, and p-values
were corrected with Bonferroni correction.
RESULTS

An Overview of the Study

Figure 1 provides a general overview of our study design.
Phosphosite probability prediction is independent of experi-
mental conditions, and it has been shown that MusiteDeep can
predict general phosphosites with high accuracy, with area
under the receiver operating characteristic curve (AUROC)
scores of 0.896 for phospho-serine andphospho-threonine and
0.958 for phospho-tyrosine (44). Therefore, phosphosite prob-
ability predicted by MusiteDeep (supplemental Table S2) was
used directly as a benchmark metric. In contrast, it was unclear
whether Delta RT and spectral similarity could accurately
distinguish correct and incorrect phosphopeptide identifica-
tions and phosphosite localizations. Figure 1A illustrates our
approach to evaluate these two potential benchmark metrics.
One large-scale synthetic proteomics reference library (33) was
used to fine-tune AutoRT (37) base_phospho model, pDeep2
(43) base_phospho model, and pDeep2 base model, and to
evaluate Delta RT and spectral similarity for discriminating
correct and incorrect PSMs (Experimental Procedures). Figure
1B shows the application of Delta RT, spectral similarity, and
MusiteDeep-predictedphosphosite probability to compare four
computational phosphoproteomics pipelines. We randomly
selected one TMT experiment from the CPTAC UCEC phos-
phoproteomic dataset to fine-tune the AutoRT base_phospho
model andpDeep2base_phosphomodel and tobenchmark the
four pipelines. The common PSMs reported by multiple pipe-
lines are likely to be high-quality identifications. For Delta RT-
based and pDeep2-based evaluation, the common PSMs
were split into two sets, one for fine-tuning experiment-specific
models and the other served as positive controls in bench-
marking. For predicted phosphosite probability-based evalua-
tion, all common PSMs were used as positive controls in
benchmarking. To assess the quality of the pipelines, the
experiment-specific AutoRT model, the experiment-specific
pDeep2 model, and MusiteDeep were applied to PSMs
uniquely identified by each pipeline. Delta RTs, spectral simi-
larities, and predicted phosphosite probabilities for the five
groups of PSMs were compared against each other.

UCEC Search Results From Four Pipelines

The CPTAC UCEC phosphoproteomic data including 16
TMT10-labeled experiments was searched against the RefSeq
human protein database using four computational pipelines
including MS-GF+/Ascore, CDAP, MaxQuant, and FragPipe
(10, 17, 19, 22, 23, 47). Search engines, localization tools, and
localization probability filtering thresholds used in these
pipelines, together with search results with and without
localization probability filtering, are shown in Table 1. The four
pipelines identified a total of 248,868 phosphopeptides and
2,246,161 PSMs without phosphosite localization probability
filtering, and 157,275 phosphopeptides and 1,595,981 PSMs
with phosphosite localization probability filtering (Fig. 2, A and
B). Among the localized phosphopeptides and PSMs, only
22.3% and 11.4%, respectively, were commonly reported by
all four pipelines. MaxQuant and FragPipe had more overlap at
the phosphopeptide- and PSM-levels than other overlaps of
two other pipelines. In the pairwise Jaccard similarity index
analysis, MaxQuant and FragPipe showed the highest simi-
larity, with Jaccard indexes of 0.59 and 0.47 at the phos-
phopeptide- and PSM-levels respectively (0.54 and 0.44
without phosphosite localization probability filtering)
(supplemental Fig. S1, A and B). While MS-GF+/Ascore and
CDAP used the same identification algorithm MS-GF+, Jac-
card indexes of the identifications reported by the two pipe-
lines were just 0.36 and 0.25 at the phosphopeptide- and
PSM-levels, respectively (0.38 and 0.28 without phosphosite
localization probability filtering). This may be explained by
either different parameters used in database searching or
difference introduced by different localization tools. Overall,
FragPipe identified the most localized phosphopeptides and
PSMs. CDAP identified the most phosphopeptides but after
extremely conservative localization probability filtering, it re-
ported the fewest localized phosphopeptides. The proportion
of unlocalized phosphopeptides from CDAP was 56%, which
was much higher than the proportions from the other three
pipelines, ranging from 22% to 31% (Fig. 2C).

Benchmark Metric Evaluation

In order to evaluate performance of Delta RT and spectral
similarity in discriminating correct and incorrect PSMs, the
modified and unmodified peptides previously reported in a
synthetic dataset (33) were analyzed separately. PSMs from the
search results were divided into correct ones, i.e., M_SeqT_-
LocT, UM_SeqT, and incorrect ones, i.e., M_SeqT_LocF,
M_SeqF, UM_SeqF. Group names with prefix “UM_” mean
unmodified peptides; “M_” means modified peptides. Group
names with “_SeqT” or “_SeqF”mean peptides with correct or
Mol Cell Proteomics (2021) 20 100171 5



FIG. 1. Overview of the study design. A, workflow for evaluating two deep-learning-derived metrics. The workflow includes data preparation,
model training, computation of Delta RT and spectral similarity, and evaluation using area under the receiver operating characteristic curves
(AUROCs). B, benchmarking workflow, which includes data preparation, model training, computation of Delta RT, spectral similarity, and
phosphosite probability, and comparison of PSMs identified by all computational pipelines (common PSMs) and those uniquely identified by
each pipeline (unique PSMs) using the three benchmark metrics.
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incorrect sequences; “_LocT” or “_LocF”means peptides with
correct or incorrect phosphorylation localization (Table 2).
Correct PSMs were further split into training and positive

testing PSMs. For negative testing PSMs, we supplemented
incorrect PSMs from the search results with simulated nega-
tive PSMs. As described in the Experimental Procedures
section, the negative test PSMs were classified into a few
different groups in order to evaluate the performance of the
metrics in distinguishing different types of negative PSMs
from positive PSMs. Detailed information of training and
testing PSMs is described in Table 2 and Figure 3A.
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In order to enhance and evaluate the performance of
AutoRT on phosphopeptides, we performed a two-step
transfer learning on AutoRT base model, which was trained
and tested on 123,111 and 13,680 unique unmodified pep-
tides from the PXD006109 dataset, respectively (37, 49)
(supplemental Table S1, Experimental Procedures section). In
the first-round transfer learning, we improved AutoRT base
model to AutoRT base_phospho model using a Nano_flow
dataset (PXD015087) (50), in which 30,360 and 1000 unique
phosphopeptides were used for training and testing, respec-
tively. Then, we fine-tuned AutoRT base_phospho model to



FIG. 2. UCEC search results from MS-GF+/Ascore, CDAP, MaxQuant, and FragPipe. A and B, Venn diagrams of search results of 16
experiments in UCEC from MS-GF+/Ascore, CDAP, MaxQuant, and FragPipe without (A) and with (B) localization probability filtering. C, pro-
portions of localized and unlocalized phosphopeptides from the four pipelines.
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AutoRT experiment-specific model using 6887 unique syn-
thetic peptides from PXD000138 (3549 modified peptides and
3338 unmodified peptides) using a second round of transfer
learning. Evaluation using M_SeqT_LocT showed that the test
Median Absolute Error (MAE) of the experiment-specific model
for phosphopeptides was 0.44 min and the correlation of
predicted RT and observed RT was 0.97 (Fig. 3B), and these
numbers were comparable to those from the experiment-
specific model for unmodified peptides evaluated using
UM_SeqT. These results demonstrated high accuracy of the
experiment-specific AutoRT model in RT prediction for both
unmodified peptides and phosphopeptides.
Using the experiment-specific AutoRT model, we predicted

RTs of the peptides involved in test PSMs and calculated
Delta RTs. The positive test PSMs had significantly smaller
Delta RTs than all groups of negative test PSMs (Wilcoxon
rank sum test, Bonferroni correction, p-value ≤ 1e-4) for both
modified (Fig. 3C) and unmodified peptides (Fig. 3D). Then, we
further quantified the ability of Delta RT to discriminate be-
tween positive test PSMs and different types of negative test
PSMs by calculating AUROC. For negative unmodified pep-
tides and phosphopeptides with wrong sequences, the
AUROCs were 0.95 and 0.96, respectively. Importantly, for
negative phosphopeptides with wrong localizations of phos-
phorylation sites, the AUROCs were 0.84 to 0.88 (Fig. 3E).
These data suggested that Delta RT provided excellent
discrimination between the positives and different types of the
negatives, even for the most difficult scenario in which
phosphopeptides had correct sequences but wrong
localizations.
For pDeep2, we employed transfer learning to fine-tune the

pDeep2 base_phospho model/base model to generate
experiment-specific models using ~15,700 PSMs from the
synthetic dataset and evaluated the experiment-specific
pDeep2 models using ~4700 positive test PSMs. The me-
dian PCCs for phosphopeptides and unmodified peptides
were 0.97 and 0.98, respectively (Fig. 3, F and G). These re-
sults demonstrated outstanding performance of pDeep2 on
both unmodified peptides and phosphopeptides. Next, we
predicted the MS/MS spectra of peptides involved in all test
PSMs. For both modified (Fig. 3F) and unmodified (Fig. 3G)
peptides, the PCCs from the positive test PSMs were signifi-
cantly higher than those from the negative test PSMs (Wil-
coxon rank sum test, Bonferroni correction, p-value ≤ 1e-4).
We further quantified the ability of PCC to discriminate be-
tween positive test PSMs and different types of negative test
Mol Cell Proteomics (2021) 20 100171 7



TABLE 2
Training and test PSMs from the synthetic peptide dataset (PXD000138)

Phosphopeptides

Seq Phosphorylation number Site Group alias Test PSMs classification Peptide number Usage

T T T M_SeqT _LocT 3549 Train
T T T M_SeqT _LocT Positive 390 Test
T T F M_SeqT _LocF Negative 488 Test
T T F M_Sim1_LocF Negative 4499 Test
T T F M_Sim2_LocF

(closest site)
Negative 3252 Test

F M_SeqF Negative 7572 Test

Unmodified peptides

Seq Group Alias Classification PSM Number Usage

T UM_SeqT 3338 Train
T UM_SeqT Positive 358 Test
F UM_SeqF Negative 567 Test
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PSMs using AUROC. For negative unmodified peptides and
phosphopeptides with wrong sequences, the AUROCs were
0.89 and 0.98, respectively (Fig. 3H). For correctly identified
phosphopeptides with wrong phosphorylation localization, the
AUROCs were also very high (0.93–0.96).
Together, our evaluation results suggest that both Delta RT

and spectral similarity are qualified metrics for benchmarking
phosphopeptide identification.

Benchmarking of Computational Pipelines

We compared four computational phosphoproteomics
pipelines using three independent metrics, Delta RT, spectral
similarity, and MusiteDeep-predicted phosphosite probability.
One TMT experiment from the CPTAC UCEC phosphopro-
teomic dataset was selected to fine-tune AutoRT and pDeep2
and to benchmark the four pipelines. In this TMT experiment,
FragPipe reported the largest number of localized phospho-
peptides, followed by MaxQuant, MS-GF+/Ascore, and CDAP
(Fig. 4A).
RTs reported by MaxQuant were the same as those re-

ported by the other pipelines for the same PSMs
(supplemental Fig. S2A), indicating that RTs reported by
different pipelines for the same PSMs were consistent.
Common PSMs reported by multiple pipelines were used for
both model training and positive control in benchmarking.
Specifically, among the ~10,000 common PSMs, 90% were
used for training of an experiment-specific RT prediction
model through transfer learning based on the AutoRT base_-
phospho models (7864 peptides for training), and the
remaining 10% (815 peptides) were saved as positive control
PSMs in benchmarking. For the positive control PSMs, the
correlation of predicted RTs and observed RTs of the positive
control PSMs was 0.998 (Fig. 4B). These results suggested
high accuracy of the predictions. We also classified the union
of peptides identified by any of the four search engines,
except for those involved in the training PSMs, into different
8 Mol Cell Proteomics (2021) 20 100171
groups based on the number of search engines identifying
each peptide. Peptides identified by more search engines
had significantly lower Delta RTs (supplemental Fig. S3A),
further supporting the validity of Delta RT as a benchmark
metric.
To assess the quality of the pipelines, we focused on the

PSMs uniquely identified by each pipeline (Fig. 4A). In this
analysis, unique PSMs were further filtered by removing those
involving a sequence overlapping with the training sequences
and those involving a sequence longer than 48 amino acids
due to the peptide length limitation of AutoRT. Unique PSMs
from FragPipe showed the highest correlation of predicted
RTs and observed RTs (SPC = 0.975, Fig. 4C), followed by
those from MS-GF+/Ascore (SPC = 0.970), MaxQuant (SPC =
0.956), and CDAP (SPC = 0.905) (supplemental Fig. S2B). As
expected, the common PSMs showed the lowest Delta RTs
(median Delta RT: 0.74) compared with the unique PSMs.
Among different groups of pipeline-specific PSMs, those from
FragPipe showed significantly lower Delta RTs than the ones
from the other three pipelines (Fig. 4D, Wilcoxon rank sum
test, Bonferroni correction, p-value ≤ 1e-4). For unique PSMs
from MS-GF+/Ascore, CDAP, MaxQuant, and FragPipe, their
median Delta RTs were 1.33 min, 1.16 min, 1.20 min, and 1.06
min. In total, 90% of common PSMs had Delta RTs lower than
2.21 min. For unique PSMs from MS-GF+/Ascore, CDAP,
MaxQuant, and FragPipe, there were 69.3%, 70.8%, 69.8%,
and 76.2% Delta RTs lower than 2.21 min.
For spectral similarity, an experiment-specific ion intensity

prediction model was trained through transfer learning based
on the pDeep2 base_phospho model and then tested using
the same split of training and test data as AutoRT. High
similarities (median PCC: 0.97) between predicted and
observed spectra for the test positive control PSMs (i.e.,
common PSMs in Fig. 4E) demonstrated the high accuracy of
ion intensity prediction using this model. PSMs supported by
more search engines were associated with significantly higher



FIG. 3. Evaluation of Delta RT and spectral similarity as potential benchmark metrics. A, the numbers of positive and negative test PSMs
used to evaluate Delta RT and spectral similarity. B, scatter plot comparing predicted RTs and observed RTs from positive test PSMs (modified
and unmodified peptides). C and D, Delta RT distributions for positive and negative test modified (C) and unmodified (D) peptides. E, test results
of Delta RT on negative test PSMs with unmodified and modified peptides. Group names with prefix “UM_” mean unmodified peptides. Group
names with prefix “M_” mean modified peptides. Group names with “_SeqT” or “_SeqF” mean peptides with correct or incorrect sequences.
Group names with “_LocT” or “_LocF” mean peptides with correct or incorrect phosphorylation localization. F and G, spectral similarity dis-
tributions for positive and negative test modified peptides and unmodified peptides. H, test results of spectral similarity on negative test PSMs
with unmodified and modified peptides. For C, D, F and G, ns: p > ns: 5.00e-02 < p ≤ 1.00e+00; *: 1.00e-02 < p ≤ 5.00e-02; **: 1.00e-03 < p ≤
1.00e-02; ***: 1.00e-04 < p ≤ 1.00e-03; ****: p ≤ 1.00e-04 (Wilcoxon rank sum test, Bonferroni correction). Centerlines in the boxplots indicate
medians, box limits indicate upper and lower quartiles.
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PCCs (supplemental Fig. S3B). The common PSMs showed
the highest spectral similarities compared with the unique
PSMs. Among different groups of pipeline-specific PSMs,
those from FragPipe showed significantly higher PCCs than
the ones from the other three pipelines (Fig. 4E, Wilcoxon rank
sum test, Bonferroni correction, p-value ≤ 1e-4). For unique
PSMs from MS-GF+/Ascore, CDAP, MaxQuant, and Frag-
Pipe, their median PCCs were 0.91, 0.92, 0.93, and 0.94. In
total, 90% of common PSMs had PCCs higher than 0.92. For
unique PSMs from MS-GF+/Ascore, CDAP, MaxQuant, and
FragPipe, there were 48%, 50%, 50%, and 60% PCCs higher
than 0.92.
In predicted phosphosite probability-based benchmarking,

the median probability of the peptides corresponding to
common PSMs was 0.877, which was clearly higher than
those corresponding to the unique PSMs. Among the four
groups of pipeline-specific peptides, those uniquely reported
by FragPipe and MaxQuant had similar probability distribu-
tions, and both sets had significantly higher probability dis-
tributions than those uniquely reported by MS-GF+/Ascore or
CDAP (Fig. 4E, Wilcoxon rank sum test, Bonferroni correction,
p-value ≤ 1e-4). For unique PSMs from MS-GF+/Ascore,
CDAP, MaxQuant, and FragPipe, their median phosphosite
probabilities were 0.833, 0.805, 0.853, and 0.853, respec-
tively. In total, 90% of common PSMs had phosphosite
probabilities higher than 0.721. For unique PSMs from MS-
GF+/Ascore, CDAP, MaxQuant, and FragPipe, there were
69.0%, 62.0%, 80.0%, and 78.4% higher than 0.721.
To study the impact of peptide length on PSM quality as

indicated by Delta RT, we grouped the PSMs on the basis of
peptide length (supplemental Fig. S3C). Although all the four
pipelines had the same maximum peptide length setting of 50
amino acids, it was noticeable that FragPipe reported more
confident longer peptides than the other tools. For the com-
mon PSMs, average Delta RTs were low and stable for
phosphopeptides shorter than 25 amino acids and tended to
be more variable and larger for longer phosphopeptides. The
similar pattern was observed for PSMs uniquely reported by
FragPipe, although the Delta RT stability was extended to
peptides with length longer than 25 amino acids. For PSMs
uniquely reported by the other three pipelines, average Delta
RT was not only higher but also more variable even for pep-
tides shorter than 25 amino acids. These results suggested
that the quality of unique PSMs reported by FragPipe was
Mol Cell Proteomics (2021) 20 100171 9



FIG. 4. Benchmarking of MS-GF+/Ascore, CDAP, MaxQuant, and FragPipe using a TMT human dataset. A, the numbers of all common
PSMs, test common PSMs used as positive controls in Delta RT-based benchmarking, and all PSMs and filtered unique PSMs identified by MS-
GF+/Ascore, CDAP, MaxQuant, and FragPipe in one UCEC experiment (filtering method: peptide length ≤ 48 aa, no sequence overlaps in
ground truth). B, scatter plot comparing predicted RTs and observed RTs from positive control PSMs. C, scatter plots comparing predicted RTs
and observed RTs in the unique PSMs from FragPipe. D–F, Delta RT (D), spectral similarity (E) and phosphosite probability (F) distributions for
common PSMs and unique PSMs from MS-GF+/Ascore, CDAP, MaxQuant, and FragPipe. A horizontal baseline showing the lower 90% of Delta
RTs (D), and the higher 90% of spectral similarity (E) and phosphosite probability (F) of common PSMs. The ratios of PSMs with Delta RTs lower
than the baseline (D) and those with spectral similarity (E) phosphosite probabilities (F) higher than the baseline in the pipeline-unique PSMs were
labeled. ns: p > ns: 5.00e-02 < p ≤ 1.00e+00; *: 1.00e-02 < p ≤ 5.00e-02; **: 1.00e-03 < p ≤ 1.00e-02; ***: 1.00e-04 < p ≤ 1.00e-03; ****: p ≤
1.00e-04 (Wilcoxon rank sum test, Bonferroni correction). For boxplots, centerline indicates the median, box limits indicate upper and lower
quartiles.
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similar to the common PSMs. Notably, although modification
localization might be more difficult for longer peptides due to
more location options, FragPipe was able to maintain rela-
tively low average Delta RTs in this difficult part.
Together, these results indicated that the FragPipe statis-

tically significantly outperformed the other three in both
sensitivity and quality.
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General Applicability of the Benchmarking Approach
Since FragPipe outperformed the other three pipelines, and

MaxQuant is the most widely used tool, we reanalyzed two addi-
tional large-scale phosphoproteomic datasets, a TMT-based
mouse (mouse_TMT) and a label-free human (human_LFQ) data-
sets using these two pipelines and compared their performance
using the three benchmark metrics (supplemental Table S3).
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FragPipe identified more localized phosphopeptides and
PSMs than MaxQuant in both datasets (Fig. 5, A and B). The
proportions of localized and unlocalized phosphopeptides
from MaxQuant and FragPipe were similar (Fig. 5C). For
AutoRT, the common PSMs reported by MaxQuant and
FragPipe were treated as highly confident identifications and
90% of them were used for training of the experiment-specific
RT prediction models (mouse_TMT: 6851 peptides for
training; human_LFQ: 12,484 peptides for training), and the
remaining 10% (mouse_TMT: 738 peptides; human_LFQ:
1950 peptides) were saved as positive controls in bench-
marking (Fig. 5D). PSMs uniquely identified by each pipeline
were filtered in the similar way as described above. For each
dataset, the training data were used to fine-tune the AutoRT
base_phospho model and pDeep2 base_phospho models,
and the experiment-specific models were used to predict RTs
and ion intensities for the positive control PSMs and the
pipeline-specific PSMs. For the positive control PSMs, the
correlations of predicted RTs and observed RTs of the positive
control PSMs were 0.97 and 0.96 for the mouse_TMT and
human_LFQ datasets, respectively (Fig. 5, E and F).
The positive control PSMs showed the lowest Delta RTs

(median RT: 0.63 min for mouse_TMT, 1.45 min for
human_LFQ) compared with the two groups of unique PSMs
(Fig. 5G). For unique PSMs from MaxQuant and FragPipe,
their median Delta RTs were 0.79 min and 0.74 min in
mouse_TMT dataset, and 2.99 min and 2.78 min in
human_LFQ dataset. In total, 90% of common PSMs had
Delta RTs lower than 1.84 min and 5.31 min for the
mouse_TMT and human_LFQ datasets, respectively. For
unique PSMs from MaxQuant and FragPipe, there were
80.7% and 85.9% Delta RTs lower than 1. 84 min in the
mouse_TMT, and there were 68.5% and 74.5% Delta RTs
lower than 5.31 min in the human_LFQ. The FragPipe-specific
PSMs showed significantly lower Delta RTs than the
MaxQuant-specific PSMs in both the mouse_TMT dataset
(Wilcoxon rank sum test, Bonferroni correction, p-value =
3.3e-3) and the human_LFQ dataset (Wilcoxon rank sum test,
Bonferroni correction, p ≤ 1e-4).
For pDeep2, the same split of training and test data from

mouse_TMT and human_LFQ were used to train and test the
experiment-specific ion intensity prediction models (Fig. 5D).
The positive control PSMs showed the highest spectral simi-
larities (median PCC: 0.94 for mouse_TMT, 0.96 for human
LFQ) compared with the two groups of unique PSMs (Fig. 5H).
For unique PSMs from MaxQuant and FragPipe, their median
PCCs were in 0.92 and 0.90 in mouse_TMT dataset, and 0.95
and 0.94 in human_LFQ dataset. In total, 90% of common
PSMs had spectral similarities higher than 0.70 and 0.89 for
the mouse_TMT and human_LFQ datasets, respectively. For
unique PSMs from MaxQuant and FragPipe, there were 82%
and 85% spectral similarities higher than 0.7 in the
mouse_TMT, and there were 74% and 71% spectral similar-
ities higher than 0.89 in the human_LFQ. For spectral
similarities, there was no significant difference for mouse_TMT
dataset, and MaxQuant-specific PSMs had higher spectral
similarities for human_LFQ dataset.
For predicted phosphosite probability, peptides reported by

both pipelines showed the highest probabilities, and peptides
uniquely reported by FragPipe had significantly higher prob-
abilities than those uniquely reported by MaxQuant in both
datasets (Wilcoxon rank sum test, Bonferroni correction, p ≤
1e-4) (Fig. 5H). In total, 90% of common PSMs had phos-
phosite probabilities higher than 0.782 and 0.788 for the
mouse_TMT and human_LFQ datasets, respectively. For
unique PSMs from MaxQuant and FragPipe, there were
80.5% and 87.9% higher than 0.782 in the mouse_TMT, and
there were 79.5% and 83.0% higher than 0.788 in the
human_LFQ.
In summary, FragPipe identified more phosphopeptides

and PSMs than MaxQuant in both datasets. Quality evalu-
ation based on both Delta RT and phosphosite probability
showed that FragPipe outperformed MaxQuant in both the
mouse_TMT and human_LFQ datasets. Although MaxQuant
outperformed FragPipe in the human_LFQ dataset according
to the evaluation based on spectral similarity, a simple
voting strategy would give preference to FragPipe for both
datasets.
DISCUSSION

Application of four computational pipelines to the CPTAC
UCEC phosphoproteomic data revealed a high-level of
discrepancy among these pipelines. Although several studies
have compared and evaluated different computational algo-
rithms for phosphoproteomic data analysis using synthetic
datasets (30, 53–55), it remains difficult to compare perfor-
mance of different tools in actual application projects such as
the CPTAC UCEC study. The key contribution of our work is
the design and demonstration of deep-learning-derived met-
rics that can be used in actual application phosphoproteomic
projects to directly evaluate performance of different compu-
tational pipelines.
Deep learning enables highly accurate prediction of many

peptide properties (36). Because these properties are typi-
cally not used in the traditional computational algorithms for
proteomic data analysis, they provide systematic and unbi-
ased metrics for algorithm performance evaluation (37).
Among the three metrics considered in this study, phos-
phosite probability prediction is independent of experimental
condition. Predictions of RTs and MS/MS spectra depend on
experimental condition, and such dependency was
addressed by using experiment-specific data to fine-tune the
universal base models for individual experiments through
transfer learning. Previous studies used synthetic data to
draw conclusions on the performance of computational al-
gorithms. In contrast, we used synthetic data to draw con-
clusions on the performance of the benchmarking metrics,
Mol Cell Proteomics (2021) 20 100171 11



FIG. 5. Benchmarking of MaxQuant and FragPipe using a TMT mouse dataset and a label free human dataset. A and B, Venn diagrams
of MaxQuant and FragPipe search results from one experiment in the mouse_TMT dataset (A) and one experiment in the human_LFQ dataset
(B). C, proportions of localized and unlocalized phosphopeptides reported by the MaxQuant and FragPipe for the mouse_TMT and human_LFQ
datasets, respectively. D, the numbers of all common PSMs, test PSMs used as positive controls in Delta RT-based benchmarking, and all
PSMs and filtered unique PSMs identified by MaxQuant and FragPipe in the mouse_TMT and human_LFQ datasets, respectively (filtering
method: peptide length ≤ 48 aa, no sequence overlaps in ground truth). E and F, scatter plots comparing predicted RTs and observed RTs from
common PSMs in mouse_TMT and human_LFQ datasets, respectively. G–I, Delta RT (G), spectral similarity (H), and phosphosite probability (I),
distributions for common PSMs and unique PSMs in mouse_TMT and human_LFQ datasets from MaxQuant and FragPipe. A horizontal baseline
showing the lower 90% of Delta RTs (G) and the higher 90% of spectral similarity (H), phosphosite probability (I) of common PSMs. The ratios of
PSMs with Delta RTs lower than the baseline (G) and those with spectral similarity (H) phosphosite probabilities (I), higher than the baseline in the
pipeline-unique PSMs were labeled. ns: p > ns: 5.00e-02 < p ≤ 1.00e+00; *: 1.00e-02 < p ≤ 5.00e-02; **: 1.00e-03 < p ≤ 1.00e-02; ***: 1.00e-04 <
p ≤ 1.00e-03; ****: p ≤ 1.00e-04 (Wilcoxon rank sum test, Bonferroni correction). For boxplots, centerline indicates the median, box limits indicate
upper and lower quartiles.
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which enabled direct comparison of computational tools in
actual application datasets. In our evaluation using synthetic
data, both delta RT and spectra similarity showed excellent
performance for discriminating correct PSMs from incorrect
PSMs.
In three independent datasets including both TMT and

label-free data from mouse and human studies, we found that
FragPipe achieved higher sensitivity and quality compared
with the other pipelines. These results encourage broader
adoption of the relatively new FragPipe in future phospho-
proteomic studies. MaxQuant identified fewer PSMs than
FragPipe, but it outperformed MS-GF+/Ascore and CDAP and
features a user-friendly interface. Both MS-GF+/Ascore and
CDAP use MS-GF+ for phosphopeptide identification, and
MS-GF+ has not been updated for 5 years, which may
contribute to the relatively poor performance. Interestingly,
although CDAP used the most conservative phosphorylation
probability cutoff in site localization, which filtered out 56%
phosphopeptides, the overall PSM quality of CDAP was the
lowest among the four pipelines, likely due to the less strin-
gently filtered phosphopeptide identifications.
An obvious limitation of the study is that our benchmarking

only included four pipelines among the many possible pipe-
lines, and only one set of parameters was used for each
pipeline. We note that the primary goal of the study is not to
identify the best pipeline or the best parameter setting.
Instead, we expect that the benchmarking method demon-
strated in this study could enable researchers to perform
similar comparisons of different pipelines of interest or to
compare parameter settings of the same pipeline by them-
selves on their own studies. Although FragPipe showed the
best performance is our analyses, we encourage readers to
use our benchmarking method to choose the most appro-
priate pipelines for their datasets. Moreover, although the
study focused on comparing different pipelines, our bench-
marking strategy can also be used to evaluate different
parameter settings of the same pipeline in order to optimize
performance. For example, our results suggest that the per-
formance of CDAP may be significantly improved by
increasing the filtering stringency in phosphopeptide identifi-
cation and reducing the filtering stringency in phosphosite
localization. Hence, our benchmarking method may also help
developers to improve computational pipelines.
This study demonstrated the utility of Delta RT and spectral

similarity as effective metrics for systematic benchmarking of
computational pipelines for phosphoproteomic data analysis.
We recently showed that incorporating Delta RT and spectral
similarity into the PSM rescoring algorithm Percolator can
improve peptide identification for immunopeptidomic data
(56). Therefore, in addition to serving as benchmarking met-
rics, we expect that these deep-learning-derived features may
also be used directly to improve phosphopeptide identification
and site localization algorithms in the future.
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