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Abstract. Many real classification problems are characterized by a
strong disturbance in a prior probability, which for the most of clas-
sification algorithms leads to favoring majority classes. The action most
often used to deal with this problem is oversampling of the minority class
by the smote algorithm. Following work proposes to employ a modifica-
tion of an individual binary classifier support-domain decision boundary,
similar to the fusion of classifier ensembles done by the Fuzzy Templates
method to deal with imbalanced data classification without introducing
any repeated or artificial patterns into the training set. The proposed
solution has been tested in computer experiments, which results shows
its potential in the imbalanced data classification.
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1 Introduction

The base and the most important element of any artificial intelligence applica-
tion is the decision module, most often being a trained pattern recognition model
[4]. The development of such a solution requires the use of an algorithm capable
of building knowledge around the specific type of training data.

In the case where training samples are only a set of non-described patterns,
for example, to gather groups of objects based on cluster analysis, we are dealing
with the problem of unsupervised learning. In most situations, however, we are
not interested in identifying groups in the data set. The goal is preferably in
assigning new objects, seen for the first time, to classes that we already have
known there is a possibility to learn about their properties on the example of
existing patterns. This type of learning is called supervised learning, and this
specific task is classification [17].

In real classification problems, it is relatively rare for each class of a training
set to be represented evenly. A significant disturbance in the proportions between
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classes is widely studied in the literature under the name of imbalanced data
classification [5,7].

Solutions for such problems are usually divided into three groups [9]. The first
are built-in methods that try to modify the algorithm’s principles or its decision
process to take into consideration the disturbed prior probability of the problem
[19,24]. The second group, which is also the most popular in literature and
applications, is based on data preprocessing aiming to balance the class counts
in the training set. The most common solutions of this type are under- [20]
and oversampling [18] together with methods for generating synthetic patterns
such as smote [6,21,22] or adasyn [1,8,25]. The third group consists of hybrid
methods [23], mainly feasting on achievements of ensemble learning, using a
pool of diversified base classifiers [12,13] and a properly constructed, imbalanced
decision principle [10,11].

Following work tries to propose a practical method from the built-in meth-
ods group of solutions, modifying the support-domain decision boundary of the
fuzzy classifier. It is done using the knowledge acquired on the basis of support
vectors obtained on the training set by the already built model, similarly to the
propositions of Fuzzy templates [15,16]. The second section describes how to
adapt them to work with a single classification model and how to modify this
approach to the proposed Standard Decision Boundary algorithm. The third
chapter contains the design of computer experiments carried out and summa-
rized in the fourth chapter, and the fifth one focuses on the overall conclusions
drawn from the research.

2 Methods

The feature space of a problem in which the decision boundary of the classifier
is drawn is the most often undertaken area of considering the construction of a
classification method. However, its modification may also take place in the space
of supports obtained by the model, which is the subject of the method proposed
in this article.

Regular Decision Boundary (rdb). A fitting algorithm of every fuzzy classifier
does not only provide bare prediction but also calculates the complementary
(adding up to one) probability of belonging to each of the problem classes, which
constructs the support vector of a predicted sample [3]. The classifier’s decision,
in the most popular approach, is taken in a favor of the class for which the
highest support was obtained [14].

By simplifying the classification problem only for binary tasks, one may deter-
mine such a decision rule by the most straightforward equation of a straight line:

y = x, (1)

where the x-axis represents support for the negative class and the y-axis is pos-
itive support. For the following paper, this rule will state as Regular Decision
Boundary (rdb), and it is illustrated in Fig. 1.
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Fig. 1. Illustration of a Regular Decision Boundary (rdb).

Fuzzy Templates Decision Boundary (ftdb). A commonly perceived phe-
nomenon that occurs in classification models build on an imbalanced training set
is the general tendency to favor the majority class [5]. The support obtained for
it receives a particular bonus, caused directly by the increased prior probability.

One of the possible counteractions to this phenomenon may be the modifi-
cation of a decision rule in the support domain. Solutions of this type are quite
common in the construction of fusers for the needs of classifier ensembles [15].
One of such approaches is the proposition of Fuzzy Templates, introducing the
Decision Profile, being the matrix of support vectors obtained for all patterns
from the training set by each classifier from the available pool [16]. To produce
a prediction, algorithm determines class centroids of obtained supports, and the
final decision is based on the Nearest Mean principle.

In the case of a single fuzzy classifier, in contrast to the ensemble products of
Decision Profiles, each of the complementary support vectors obtained for the
training set, by definition, must be on a diagonal of a support space perpendic-
ular to the Regular Decision Rule. An attempt to employ the Fuzzy Templates
approach in a single classification model may be described by the equation of
a straight line parallel to the Regular Decision Boundary, but passing through
a point determined by the mean support values calculated separately for the
patterns of both the training set classes:

y = x + μ2 − μ1, (2)

where μ1 and μ2 are mean supports of each class. For the purpose of the following
paper this rule will state as Fuzzy Templates Decision Boundary (ftdb), and
its example is illustrated in Fig. 2a.

Standard Decision Boundary ( sdb). The Fuzzy Templates method, is an addi-
tional, simple classifier, supplementing any fuzzy classification algorithm with
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Fig. 2. Illustration of trainable decision boundaries.

the model learned from its answers. It is based on the calculation of the basic
statistical measure (mean value) and its inclusion in the final prediction of the
hierarchical ensemble. The following work proposes an enhancement of this app-
roach by including into the decision process also the basic knowledge about the
distribution of supports obtained by the base classifier, using a standard devia-
tion measure.

This approach still assumes that the decision boundary goes through the
intersection of mean supports, but its gradient is further modified. It depends
directly on the ratio between standard deviations, so it also goes through the
point designated as the difference between the expected values of the distribution
and the standard deviations vector. The formula may represent the equation of
the proposed decision boundary:

y =
σ2(x − μ1)

σ1
+ μ2, (3)

where σ1 and σ2 are standard deviations of both classes. Due to the employment
of both statistical measures calculated for the needs of a standard normalization,
this rule will state as Standard Decision Boundary (sdb), and its example is
illustrated in Fig. 2b.

Supposition. Intuition suggests that changes in the prediction method imple-
mented both by the ftdb and sdb models should increase the precision of the
obtained decisions, although the linear nature of the used decision boundary in
a presence of a such tendency must simultaneously lead to a worsening of the
results of the recall metric. Using aggregate information about class distribu-
tions in a decision rule, ignoring the prior probabilities of the training set, may
result in an increase in the overall quality of predictions in imbalanced data.
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So if the proposed method will obtain significantly better results in aggregate
metrics, such as F1-score, balanced accuracy score or geometric mean score, it
will be considered as promising.

3 Design of Experiments

Datasets. The problems considered in research during experiments are directly
expressed by the selection of datasets that meets specific conditions. For the
purposes of conducted experimental evaluation, it was decided to use data with
a high degree of imbalance, exceeding the 1:9 ratio, with relatively low dimen-
sionality (up to 20 features). The appropriate collection is contained in the keel
data repository [2]. A summary of the datasets selected for testing, supplemented
with information on the imbalance ratio, the count of features and patterns is
presented in Table 1.

Compared Approaches. The basis of considerations taken in this work are the
differences between approaches to draw a decision boundary in the support space
and the effectiveness of this type of solutions in imbalanced data classification
problems. For the purposes of evaluation, the three methods presented in Sect. 2
have been supplemented with the preprocessing method, being a state-of-art
solution for this type of problems. Due to the very large imbalance ratio, it is
often impossible to apply the smote algorithm (with default parameterization
it requires at least 5 minority class examples in the learning set), therefore ran-
dom oversampling was chosen. The full list of compared algorithms presents as
follows:

1. RDB—Regular Decision Boundary used in Gaussian Naive Bayes classifier,
2. ROS-RDB—Regular Decision Boundary used in Gaussian Naive Bayes clas-

sifier trained on datasets with randomly oversampled minority class,
3. FTDB—Fuzzy Templates Decision boundary used in Gaussian Naive Bayes

classifier,
4. SDB—Standard Decision boundary used in Gaussian Naive Bayes classifier.

Evaluation Methodology and Metrics Used. During the experimental evaluation,
a stratified 5-fold cross validation was used, for the non-deterministic ros-rdb
algorithm by performing an additional ten-time replication of the results. Both
pair tests between the quality of classifiers for individual data sets and ranking
tests, used for general assessment of the relations between them, were carried
out using the Wilcoxon test using 5% significance level. Due to the imbalanced
nature of the considered problems, in assessing the quality of solutions it was
decided to use precision and recall metrics, supplemented with aggregated F1-
score, balanced accuracy score and geometric-mean-score metrics. Full source
code of the performed tests, along with the method implementations and a full
report of results, are located on the publicly available Git repository1.
1 http://github.com/w4k2/sdb.

http://github.com/w4k2/sdb
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Table 1. Overview of imbalanced classification datasets selected for experimental
evaluation.

Dataset Samples Features IR

ecoli-0-3-4-vs-5 200 7 1:9

yeast-2-vs-4 514 8 1:9

ecoli-0-6-7-vs-3-5 222 7 1:9

ecoli-0-2-3-4-vs-5 202 7 1:9

glass-0-1-5-vs-2 172 9 1:9

yeast-0-3-5-9-vs-7-8 506 8 1:9

yeast-0-2-5-6-vs-3-7-8-9 1004 8 1:9

yeast-0-2-5-7-9-vs-3-6-8 1004 8 1:9

ecoli-0-4-6-vs-5 203 6 1:9

ecoli-0-1-vs-2-3-5 244 7 1:9

ecoli-0-2-6-7-vs-3-5 224 7 1:9

glass-0-4-vs-5 92 9 1:9

ecoli-0-3-4-6-vs-5 205 7 1:9

ecoli-0-3-4-7-vs-5-6 257 7 1:9

yeast-0-5-6-7-9-vs-4 528 8 1:9

vowel0 988 13 1:10

ecoli-0-6-7-vs-5 220 6 1:10

glass-0-1-6-vs-2 192 9 1:10

ecoli-0-1-4-7-vs-2-3-5-6 336 7 1:11

led7digit-0-2-4-5-6-7-8-9-vs-1 443 7 1:11

glass-0-6-vs-5 108 9 1:11

ecoli-0-1-vs-5 240 6 1:11

glass-0-1-4-6-vs-2 205 9 1:11

glass2 214 9 1:12

ecoli-0-1-4-7-vs-5-6 332 6 1:12

ecoli-0-1-4-6-vs-5 280 6 1:13

shuttle-c0-vs-c4 1829 9 1:14

yeast-1-vs-7 459 7 1:14

glass4 214 9 1:15

ecoli4 336 7 1:16

page-blocks-1-3-vs-4 472 10 1:16

glass-0-1-6-vs-5 184 9 1:19

shuttle-c2-vs-c4 129 9 1:20

yeast-1-4-5-8-vs-7 693 8 1:22

glass5 214 9 1:23

yeast-2-vs-8 482 8 1:23

yeast4 1484 8 1:28

yeast-1-2-8-9-vs-7 947 8 1:31

yeast5 1484 8 1:33

ecoli-0-1-3-7-vs-2-6 281 7 1:39

yeast6 1484 8 1:41
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4 Experimental Evaluation

4.1 Results

Scores and Paired Tests. Table 2 contains the results achieved by each of the
considered algorithms for the aggregate, F1-score metric. The ros-rdb method,
being a typical approach to deal with imbalanced data using single model, looks
the worst in the pool, which not only does not improve rdb results, but also
often leads to statistically significant worse results. The ftdb method, although
sporadically, leads to a significant improvement over rdb, never achieving results
significantly inferior to it. Definitely the best in this competition is the sdb
method proposed in this paper, which in eleven cases is statistically significantly
better than each of the other methods, and in fourteen cases better than rdb.

For both the precision metric and the other aggregate measures (balanced
accuracy score and geometric mean score), the observations are identical to those
drawn from the F1-score, so the relevant result tables are not attached directly
to the article, while still being public in the repository indicated in the previous
section.

The aggregate metrics, such as F1-score, allows to draw some binding con-
clusions, but does not give a full picture of interpretation. As expected, with
the recall metric (Table 3), the ftdb and rdb algorithms give some deteriora-
tion relative to both the base method and the ros-rdb approach. Statistical
significance occurs in this difference, however, only once for dtdb and twice for
rdb.

Rank Tests. The final comparison of the considered solutions was carried out
by ranking tests, included in Table 4. The ros-rdb method obtains a small,
but statistically significant advantage in the ranking over all other methods
for the recall metric, but in all other measures it stands out very negatively,
which leads to suggestions about its overall uselessness in the considered task of
highly imbalanced data classification. If the goal of counteracting the tendency
of favoring in the prediction of the majority class (which was stated as the basic
problem in the classification of imbalanced data) is to equalize the impact of
both classes, on the example of the considered data sets, the ros method must
be rejected because it leads to the reverse tendency. In the case of precision
and each of the aggregate metrics the same statistically significant relation is
observed. The rdb method is better than ros-rdb, the ftdb method is better
than both rdb methods, and the sdb proposed in this paper is significantly
better than all the competitors in the considered pool of solutions.
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Table 2. Results achieved by analyzed methods for all considered datasets with F1-
score metric. Bold values shows dependency to the best classifier in a competition and
the numbers below scores show classifier significantly worse than the one in the column.

Dataset 1 2 3 4

rdb ros-rdb ftdb sdb

ecoli-0-3-4-vs-5 0.340 0.268 0.396 0.670

2 — 2 all

yeast-2-vs-4 0.295 0.269 0.334 0.454

— — 2 2

ecoli-0-6-7-vs-3-5 0.190 0.298 0.218 0.338

— — — —

ecoli-0-2-3-4-vs-5 0.332 0.260 0.383 0.659

— — — all

glass-0-1-5-vs-2 0.218 0.183 0.232 0.239

— — — —

yeast-0-3-5-9-vs-7-8 0.269 0.212 0.252 0.229

— — — —

yeast-0-2-5-6-vs-3-7-8-9 0.262 0.478 0.401 0.469

— 3 — —

yeast-0-2-5-7-9-vs-3-6-8 0.201 0.165 0.272 0.381

2 — 1, 2 all

ecoli-0-4-6-vs-5 0.629 0.584 0.629 0.736

— — — —

ecoli-0-1-vs-2-3-5 0.217 0.244 0.217 0.387

— — — —

ecoli-0-2-6-7-vs-3-5 0.208 0.186 0.208 0.256

— — — —

glass-0-4-vs-5 0.960 0.960 0.960 0.760

— — — —

ecoli-0-3-4-6-vs-5 0.312 0.247 0.350 0.669

2 — 2 all

ecoli-0-3-4-7-vs-5-6 0.356 0.251 0.489 0.665

— — — all

yeast-0-5-6-7-9-vs-4 0.174 0.173 0.195 0.362

— — — all

vowel0 0.709 0.562 0.697 0.676

2 — 2 2

ecoli-0-6-7-vs-5 0.633 0.663 0.660 0.688

— — — —

glass-0-1-6-vs-2 0.199 0.231 0.218 0.236

— — — 1

ecoli-0-1-4-7-vs-2-3-5-6 0.324 0.384 0.357 0.384

— — — —

led7digit-0-2-4-5-6-7-8-9-vs-1 0.640 0.622 0.640 0.646

— — — —

(continued)
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Table 2. (continued)

Dataset 1 2 3 4

rdb ros-rdb ftdb sdb

glass-0-6-vs-5 0.867 0.867 0.867 0.733

— — — —

ecoli-0-1-vs-5 0.632 0.582 0.638 0.823

— — — —

glass-0-1-4-6-vs-2 0.229 0.260 0.230 0.240

— — — —

glass2 0.169 0.195 0.179 0.187

— — — 1

ecoli-0-1-4-7-vs-5-6 0.538 0.662 0.570 0.688

— — — —

ecoli-0-1-4-6-vs-5 0.709 0.664 0.723 0.764

— — — —

shuttle-c0-vs-c4 0.980 0.980 0.980 0.980

— — — —

yeast-1-vs-7 0.141 0.136 0.153 0.223

— — 1, 2 all

glass4 0.190 0.481 0.233 0.233

— — — —

ecoli4 0.696 0.602 0.696 0.787

— — — 2

page-blocks-1-3-vs-4 0.511 0.521 0.524 0.540

— — — —

glass-0-1-6-vs-5 0.760 0.760 0.760 0.667

— — — —

shuttle-c2-vs-c4 0.813 0.800 0.813 1.000

— — — —

yeast-1-4-5-8-vs-7 0.086 0.088 0.085 0.103

— — — 1

glass5 0.768 0.768 0.768 0.693

— — — —

yeast-2-vs-8 0.254 0.190 0.262 0.202

— — 2 —

yeast4 0.073 0.071 0.086 0.117

— — 1, 2 all

yeast-1-2-8-9-vs-7 0.067 0.066 0.068 0.098

— — — all

yeast5 0.154 0.120 0.165 0.642

2 — 1, 2 all

ecoli-0-1-3-7-vs-2-6 0.434 0.388 0.434 0.490

— — — —

yeast6 0.066 0.060 0.066 0.169

2 — 2 all
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Table 3. Results achieved by analyzed methods for all considered datasets with recall
metric. Bold values shows dependency to the best classifier in a competition and the
numbers below scores show classifier significantly worse than the one in the column.

Dataset 1 2 3 4

rdb ros-rdb ftdb sdb

ecoli-0-3-4-vs-5 0.850 0.850 0.850 0.850

— — — —

yeast-2-vs-4 0.902 0.922 0.902 0.825

— — — —

ecoli-0-6-7-vs-3-5 0.170 0.260 0.210 0.360

— — — —

ecoli-0-2-3-4-vs-5 0.850 0.850 0.850 0.850

— — — —

glass-0-1-5-vs-2 0.633 0.733 0.633 0.633

— — — —

yeast-0-3-5-9-vs-7-8 0.880 0.880 0.800 0.760

— — — —

yeast-0-2-5-6-vs-3-7-8-9 0.307 0.557 0.436 0.505

— 3 — —

yeast-0-2-5-7-9-vs-3-6-8 0.917 0.854 0.897 0.897

— — — —

ecoli-0-4-6-vs-5 0.650 0.650 0.650 0.850

— — — —

ecoli-0-1-vs-2-3-5 0.160 0.200 0.160 0.440

— — — —

ecoli-0-2-6-7-vs-3-5 0.190 0.190 0.190 0.310

— — — —

glass-0-4-vs-5 1.000 1.000 1.000 0.800

— — — —

ecoli-0-3-4-6-vs-5 0.850 0.850 0.850 0.850

— — — —

ecoli-0-3-4-7-vs-5-6 0.760 0.760 0.760 0.920

— — — —

yeast-0-5-6-7-9-vs-4 0.960 0.960 0.920 0.864

— — — —

vowel0 0.811 0.844 0.811 0.811

— — — —

ecoli-0-6-7-vs-5 0.700 0.850 0.750 0.800

— — — —

glass-0-1-6-vs-2 0.683 0.800 0.683 0.683

— — — —

ecoli-0-1-4-7-vs-2-3-5-6 0.267 0.333 0.300 0.333

— — — —

led7digit-0-2-4-5-6-7-8-9-vs-1 0.757 0.832 0.757 0.786

— — — —

(continued)
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Table 3. (continued)

Dataset 1 2 3 4

rdb ros-rdb ftdb sdb

glass-0-6-vs-5 0.900 0.900 0.900 0.800

— — — —

ecoli-0-1-vs-5 0.600 0.650 0.650 0.850

— — — —

glass-0-1-4-6-vs-2 0.650 0.700 0.650 0.650

— — — —

glass2 0.733 0.833 0.733 0.733

— — — —

ecoli-0-1-4-7-vs-5-6 0.560 0.760 0.600 0.760

— — — —

ecoli-0-1-4-6-vs-5 0.800 0.850 0.850 0.850

— — — —

shuttle-c0-vs-c4 0.984 0.984 0.984 0.984

— — — —

yeast-1-vs-7 0.933 0.933 0.933 0.833

— — — —

glass4 0.200 0.567 0.267 0.267

— — — —

ecoli4 0.950 0.950 0.950 0.900

— — — —

page-blocks-1-3-vs-4 0.593 0.667 0.627 0.667

— — — —

glass-0-1-6-vs-5 0.900 0.900 0.900 0.800

— — — —

shuttle-c2-vs-c4 1.000 1.000 1.000 1.000

— — — —

yeast-1-4-5-8-vs-7 0.967 1.000 0.933 0.800

4 4 4 —

glass5 0.900 0.900 0.900 0.800

— — — —

yeast-2-vs-8 0.950 1.000 0.900 0.650

— — — —

yeast4 0.962 0.982 0.962 0.904

— — — —

yeast-1-2-8-9-vs-7 1.000 1.000 1.000 0.733

4 4 4 —

yeast5 1.000 1.000 1.000 0.886

— — — —

ecoli-0-1-3-7-vs-2-6 0.800 0.800 0.800 0.800

— — — —

yeast6 1.000 0.971 0.971 0.914

— — — —
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Table 4. Results for mean ranks according to all considered metrics.

Metric 1 2 3 4

rdb ros-rdb ftdb sdb

F1-score 2.215 1.927 2.607 3.251

2 − 1,2 all

Precision 2.271 1.837 2.646 3.246

2 − 1,2 all

Recall 2.463 2.800 2.446 2.290

− all − −
Balanced accuracy 2.224 1.963 2.595 3.217

2 − 1,2 all

Geometric mean score 2.205 1.868 2.641 3.285

2 − 1,2 all

5 Conclusions

Following paper, considering the binary classification of imbalanced data, pro-
posed the application of the Fuzzy Templates method in the construction of
the support-domain decision boundary for a single model in order to balance
the impact of classes of different counts on the prediction of the decision sys-
tem. The proposal was further developed to use both standard normalization
metrics, introducing the Standard Decision Boundary method. Both solutions
were tested in computer experiments on the example of a highly imbalanced
dataset collection and compared to both the base method and the state-of-art
preprocessing method.

Both proposed solutions seem to improve the quality of imbalanced data
classification in relation to the regular support-domain decision boundary, in
contrast to oversampling, without leading to overweight of the predictive towards
the minority class. Modification of the use of Fuzzy Templates in the form of
Standard Decision Boundary is also more effective than the simple use of a
class support prototype and may be considered a recommendable solution to
the problem of binary classification of imbalanced data. Due to the promising
results achieved for individual models, the next works will attempt to generalize
the sdb method for classifier ensembles.

Acknowledgements. This work was supported by the Polish National Science Cen-
tre under the grant No. 2017/27/B/ST6/01325 as well as by the statutory funds of
the Department of Systems and Computer Networks, Faculty of Electronics, Wroclaw
University of Science and Technology.



Standard Decision Boundary in a Support-Domain of Fuzzy Classifier 115

References

1. Aditsania, A., Adiwijaya, Saonard, A.L.: Handling imbalanced data in churn pre-
diction using ADASYN and backpropagation algorithm. In: Proceeding - 2017 3rd
International Conference on Science in Information Technology: Theory and Appli-
cation of IT for Education, Industry and Society in Big Data Era, ICSITech 2017
(2017)
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