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Abstract: Multiscale modeling for cement-based materials, such as concrete, is a relatively young
subject, but there are already a number of different approaches to study different aspects of these
classical materials. In this paper, the parameter-passing multiscale modeling scheme is established
and applied to address the multiscale modeling problem for the integrated system of cement paste,
mortar, and concrete. The block-by-block technique is employed to solve the length scale overlap
challenge between the mortar level (0.1–10 mm) and the concrete level (1–40 mm). The microstructures
of cement paste are simulated by the HYMOSTRUC3D model, and the material structures of mortar
and concrete are simulated by the Anm material model. Afterwards the 3D lattice fracture model is
used to evaluate their mechanical performance by simulating a uniaxial tensile test. The simulated
output properties at a lower scale are passed to the next higher scale to serve as input local properties.
A three-level multiscale lattice fracture analysis is demonstrated, including cement paste at the
micrometer scale, mortar at the millimeter scale, and concrete at centimeter scale.

Keywords: parameter-passing upscaling; lattice fracture analysis; Anm material model; cement paste;
mortar; concrete; irregular real-shape aggregates

1. Introduction

Cement-based materials, such as cement paste, mortar, and concrete, are multiscale heterogeneous
construction materials. Normal concrete is made from coarse aggregates (e.g., crushed stones, river
gravels), fine aggregates (e.g., sands), cement, and water. The chemical reaction starts immediately
when water is mixed with cement, and cement paste is produced. The cement paste keeps aggregates
together, and forms a system which is able to carry loads. Mortar consists of cement paste and sands,
and concrete is composed of mortar and coarse aggregates.

A three-level approach was proposed by Wittmann [1] for the study of multiscale phenomenon in
cement-based materials, as shown in Figure 1. The three levels are: (a) the micro level, which concerns
the microstructure of hardened cement paste; (b) the meso level, which deals with pores, inclusions,
and cracks; (c) the macro level, which is related to the structural element, and concrete can be regarded
as homogeneous materials at this level.
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Figure 1. Three-level approach (micro, meso, and macro) according to Wittmann [1]. 

Cement-based materials have different fracture behaviors at different scales, due to different 
material structures at the level of interest. The mechanical performance of the material structure is 
determined by the distribution of the phases, and the local mechanical properties of an individual 
phase. They can be measured in the laboratory, as well as be simulated by computational models. 

The concept of lattice was proposed by Hrennikoff in the 1940s to solve elasticity problems using 
the framework method [2]. In the 1970s, the lattice model was introduced to theoretical physics to 
study the fracture behaviors of disordered media. In the 1990s, Schlangen and van Mier started to 
adapt and apply this model to simulate the fracture processes in concrete [3]. Plenty of efforts were 
made to develop the lattice fracture model in a variety of different settings: regular/irregular network, 
triangular/quadrangular mesh, truss/beam element, the method to implement heterogeneity 
(random distribution of local properties/microstructure mapping), and whether to introduce the 
softening at the element level [4–14]. 

In the lattice fracture model, the continuum is replaced by a lattice network of beam elements. 
Subsequently, the microstructure of the material can be mapped onto these beam elements by 
assigning them different properties, depending on whether the beam element represents a grain or 
matrix. More details about the modeling procedures can be found in Section 3 in this paper. Various 
conventional laboratory experiments, such as uniaxial tensile tests, compressive tests, shear tests, 
bending tests, and torsional tests, can be simulated by the lattice fracture model, and the model can 
be applied towards a wide range of multiphase materials, such as cement paste, mortar, concrete, 
asphalt, and graphite. 

The 3D lattice fracture model, which was implemented in [15–17], can simulate the fracture 
processes and crack propagation in cement-based materials, and thus, predict the global mechanical 
properties, such as Young’s modulus, tensile strength, and fracture energy. 

A parameter-passing multiscale modeling scheme can be defined to link the fracture in cement 
paste at the microscale to the mechanical performance of concrete at the macroscale. The lattice 
fracture model is called three times to simulate the global mechanical properties of cement paste at 
the microscale, mortar at the mesoscale, and concrete at the macroscale, respectively. Each higher 
scale asks for local mechanical properties from its neighboring lower scale, and the global mechanical 
properties simulated at a lower scale are passed to the next higher scale to be used as inputs. Applying 
the parameter-passing scheme towards cement paste, mortar, and concrete yields the following 
modeling procedures. The mechanical properties of cement paste at the microscale, including its 
elastic properties and fracture properties, are simulated by the lattice fracture model, and then these 
properties are used as inputs to predict the mechanical properties of mortar at the mesoscale. After 
that, the simulated properties of mortar are passed to the macroscale to obtain the global mechanical 
performance of concrete. A schematic diagram of the parameter-passing multiscale modeling scheme 
is given in Figure 2. 

Figure 1. Three-level approach (micro, meso, and macro) according to Wittmann [1].

Cement-based materials have different fracture behaviors at different scales, due to different
material structures at the level of interest. The mechanical performance of the material structure is
determined by the distribution of the phases, and the local mechanical properties of an individual
phase. They can be measured in the laboratory, as well as be simulated by computational models.

The concept of lattice was proposed by Hrennikoff in the 1940s to solve elasticity problems using
the framework method [2]. In the 1970s, the lattice model was introduced to theoretical physics to
study the fracture behaviors of disordered media. In the 1990s, Schlangen and van Mier started to
adapt and apply this model to simulate the fracture processes in concrete [3]. Plenty of efforts were
made to develop the lattice fracture model in a variety of different settings: regular/irregular network,
triangular/quadrangular mesh, truss/beam element, the method to implement heterogeneity (random
distribution of local properties/microstructure mapping), and whether to introduce the softening at
the element level [4–14].

In the lattice fracture model, the continuum is replaced by a lattice network of beam elements.
Subsequently, the microstructure of the material can be mapped onto these beam elements by assigning
them different properties, depending on whether the beam element represents a grain or matrix. More
details about the modeling procedures can be found in Section 3 in this paper. Various conventional
laboratory experiments, such as uniaxial tensile tests, compressive tests, shear tests, bending tests,
and torsional tests, can be simulated by the lattice fracture model, and the model can be applied towards
a wide range of multiphase materials, such as cement paste, mortar, concrete, asphalt, and graphite.

The 3D lattice fracture model, which was implemented in [15–17], can simulate the fracture
processes and crack propagation in cement-based materials, and thus, predict the global mechanical
properties, such as Young’s modulus, tensile strength, and fracture energy.

A parameter-passing multiscale modeling scheme can be defined to link the fracture in cement
paste at the microscale to the mechanical performance of concrete at the macroscale. The lattice
fracture model is called three times to simulate the global mechanical properties of cement paste at the
microscale, mortar at the mesoscale, and concrete at the macroscale, respectively. Each higher scale asks
for local mechanical properties from its neighboring lower scale, and the global mechanical properties
simulated at a lower scale are passed to the next higher scale to be used as inputs. Applying the
parameter-passing scheme towards cement paste, mortar, and concrete yields the following modeling
procedures. The mechanical properties of cement paste at the microscale, including its elastic properties
and fracture properties, are simulated by the lattice fracture model, and then these properties are used
as inputs to predict the mechanical properties of mortar at the mesoscale. After that, the simulated
properties of mortar are passed to the macroscale to obtain the global mechanical performance of
concrete. A schematic diagram of the parameter-passing multiscale modeling scheme is given in
Figure 2.
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Figure 2. Parameter-passing multiscale modeling scheme. 

2. Material Structures of Cement Paste, Mortar, and Concrete 

The material structures of cement paste, mortar, and concrete are analyzed by the lattice fracture 
model at their respective scales, with part of the input parameters coming from lower-scale 
simulations. The methods to obtain these material structures are discussed in this section. 

2.1. Microstructures of Cement Paste 

The clinker of Portland cement is mainly composed of calcium, silicon, and oxygen. In cement 
chemistry, it is usually represented in terms of constituents as tricalcium silicate 3ܱܽܥ · ܱܵ݅ଶ (ܥଷܵ), 
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accompanied by heat release, as the energy state of the cement mixture turns from a higher one to a 
lower one. The heat released indicates the degree of hydration, and it can be used as a measurement 
to determine the extent of hydration. The hydration products are also generated during the hydration 
process, which mainly include calcium silicate hydrates (ܪܵܥ) and calcium hydroxides (ܪܥ). 

The microstructure of cement paste can be obtained either experimentally or numerically. Micro 
X-ray Computed Tomography (micro CT) offers a non-destructive experimental technique to collect 
microstructure information of cement paste in terms of digitized voxels [18]. Computer modeling 
packages are also available to simulate the cement hydration and microstructure formation processes, 
for instance, the HYMOSTRUC3D model developed by TU Delft [19,20], the NIST CEMHYD3D 
toolkit [21], and the µic model by EPFL [22]. 

In the HYMOSTRUC3D model, the cement particles are modeled as spheres and these spherical 
particles grow during the hydration process. The inputs include the specimen size, the mineralogical 
composition of the cement, the cement fineness in terms of the Blaine value (Rosin-Rammler particle 
size distribution is assumed) and the water/cement ratio. The amount of hydration products is 
dependent on the degree of hydration. A simplification is made in the model that the amount of ܪܥ 
product is substituted with the same amount of the ܪܵܥ product. In general, the hydrating cement 
particle contains three layers from the center to the outward surface, namely, unhydrated cement, 
inner product, and outer product, as shown in Figure 3a. 
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2. Material Structures of Cement Paste, Mortar, and Concrete

The material structures of cement paste, mortar, and concrete are analyzed by the lattice fracture
model at their respective scales, with part of the input parameters coming from lower-scale simulations.
The methods to obtain these material structures are discussed in this section.

2.1. Microstructures of Cement Paste

The clinker of Portland cement is mainly composed of calcium, silicon, and oxygen. In cement
chemistry, it is usually represented in terms of constituents as tricalcium silicate 3CaO·SiO2

(C3S), dicalcium silicate 2CaO·SiO2 (C2S), tricalcium aluminate 3CaO·Al2O3 (C3 A), and calcium
ferroaluminate 4CaO·Al2O3·Fe2O3 (C4 AF). A set of chemical reactions is initiated when water is mixed
with cement, the process of which is called hydration. The hydration process is always accompanied
by heat release, as the energy state of the cement mixture turns from a higher one to a lower one.
The heat released indicates the degree of hydration, and it can be used as a measurement to determine
the extent of hydration. The hydration products are also generated during the hydration process,
which mainly include calcium silicate hydrates (CSH) and calcium hydroxides (CH).

The microstructure of cement paste can be obtained either experimentally or numerically. Micro
X-ray Computed Tomography (micro CT) offers a non-destructive experimental technique to collect
microstructure information of cement paste in terms of digitized voxels [18]. Computer modeling
packages are also available to simulate the cement hydration and microstructure formation processes,
for instance, the HYMOSTRUC3D model developed by TU Delft [19,20], the NIST CEMHYD3D
toolkit [21], and the µic model by EPFL [22].

In the HYMOSTRUC3D model, the cement particles are modeled as spheres and these spherical
particles grow during the hydration process. The inputs include the specimen size, the mineralogical
composition of the cement, the cement fineness in terms of the Blaine value (Rosin-Rammler particle
size distribution is assumed) and the water/cement ratio. The amount of hydration products is
dependent on the degree of hydration. A simplification is made in the model that the amount of CH
product is substituted with the same amount of the CSH product. In general, the hydrating cement
particle contains three layers from the center to the outward surface, namely, unhydrated cement, inner
product, and outer product, as shown in Figure 3a.
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Figure 3. Hydration of a single cement particle (U: unhydrated cement, I: inner product, O: outer 
product): (a) earlier stage; and (b) later stage. 

The cement grain dissolves and the hydration products are generated gradually during the 
hydration process, which yields expansion and layer thickness change of the cement particle, as 
shown in Figure 3b. The amount of unhydrated cement is decreasing, while the inner product and 
outer product are being produced. The interactions between the neighboring particles are taken into 
account in the HYMOSTRUC3D model. If the outer product of one hydrating cement particle meets 
the outer product of another particle, then the overlapping part is redistributed to the outer layer of 
the particles. 

The initial microstructure of cement paste can be created by parking multiple spherical particles 
into an empty container, as shown in Figure 4a, with a water/cement ratio equal to 0.4. The hydration 
reaction produces the inner and outer products. The microstructure of cement paste keeps changing 
during the hydration process, as shown in Figure 4b,c. The corresponding degrees of hydration are 
69% and 88%, respectively. The size of the cement paste specimen is 100 µm, and periodic material 
boundary conditions apply. 
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Figure 4. Microstructures of cement paste at different degrees of hydration simulated by the 
HYMOSTRUC3D model (U: unhydrated cement, I: inner product, O: outer product, W: water, P: pore): 
(a) initial state; (b) degree of hydration 69%; and (c) degree of hydration 88%. 

2.2. Material Structures of Mortar and Concrete 

Mortar can be made by putting sands into cement paste, and if some additional coarse 
aggregates are also inserted into the system, then it becomes concrete. From a modeling point of view, 
the material mesostructures of both mortar and concrete can be represented as particles embedded 
in a matrix. The particles are interpreted as sands, and the matrix as cement paste in the mortar model, 
while the particles are coarse aggregates, and the matrix is mortar in the concrete model. Therefore, 
it is achievable to make a universal material mesostructure model for mortar and concrete. However, 
the particle shape characterizations can be different for sands and coarse aggregates, furthermore, 
they can even be different for different classes of sands or coarse aggregates. This requires the 
universal material model to be able to recognize various particle shape characterizations. It is pointed 
out by Garboczi [23] that the spherical harmonics is an appropriate mathematical tool to characterize 
the shape of particles mathematically. The procedures to retrieve particle shape characterizations for 
a given class of aggregates based on CT (Computed Tomography) scanned digital images are also 
established in [23]. The next step is to place multiple irregularly-shaped particles into a pre-defined 
empty container to build up a complete model of particles embedded in a matrix, which is addressed 
in [15,24] and is named the Anm material model. The name of the model is derived from the symbol 

Figure 3. Hydration of a single cement particle (U: unhydrated cement, I: inner product, O: outer
product): (a) earlier stage; and (b) later stage.

The cement grain dissolves and the hydration products are generated gradually during the
hydration process, which yields expansion and layer thickness change of the cement particle, as shown
in Figure 3b. The amount of unhydrated cement is decreasing, while the inner product and outer
product are being produced. The interactions between the neighboring particles are taken into account
in the HYMOSTRUC3D model. If the outer product of one hydrating cement particle meets the outer
product of another particle, then the overlapping part is redistributed to the outer layer of the particles.

The initial microstructure of cement paste can be created by parking multiple spherical particles
into an empty container, as shown in Figure 4a, with a water/cement ratio equal to 0.4. The hydration
reaction produces the inner and outer products. The microstructure of cement paste keeps changing
during the hydration process, as shown in Figure 4b,c. The corresponding degrees of hydration are
69% and 88%, respectively. The size of the cement paste specimen is 100 µm, and periodic material
boundary conditions apply.
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Figure 4. Microstructures of cement paste at different degrees of hydration simulated by the
HYMOSTRUC3D model (U: unhydrated cement, I: inner product, O: outer product, W: water, P: pore):
(a) initial state; (b) degree of hydration 69%; and (c) degree of hydration 88%.

2.2. Material Structures of Mortar and Concrete

Mortar can be made by putting sands into cement paste, and if some additional coarse aggregates
are also inserted into the system, then it becomes concrete. From a modeling point of view, the material
mesostructures of both mortar and concrete can be represented as particles embedded in a matrix.
The particles are interpreted as sands, and the matrix as cement paste in the mortar model, while
the particles are coarse aggregates, and the matrix is mortar in the concrete model. Therefore, it is
achievable to make a universal material mesostructure model for mortar and concrete. However,
the particle shape characterizations can be different for sands and coarse aggregates, furthermore, they
can even be different for different classes of sands or coarse aggregates. This requires the universal
material model to be able to recognize various particle shape characterizations. It is pointed out by
Garboczi [23] that the spherical harmonics is an appropriate mathematical tool to characterize the
shape of particles mathematically. The procedures to retrieve particle shape characterizations for
a given class of aggregates based on CT (Computed Tomography) scanned digital images are also
established in [23]. The next step is to place multiple irregularly-shaped particles into a pre-defined
empty container to build up a complete model of particles embedded in a matrix, which is addressed
in [15,24] and is named the Anm material model. The name of the model is derived from the symbol
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of spherical harmonic coefficients anm The Anm material model is employed to simulate the material
mesostructures of mortar and concrete, respectively, in this paper.

In the Anm material model, the concept of particles embedded in matrix applies. An empty
container is created to represent a specimen at the beginning, and then all of the particles are placed
one after one into this container, from the larger ones to the smaller ones. It is good to start with the
largest particles as it would be more difficult to place them if they were processed at a later stage.
All of the particles are separated into several sieve ranges, according to the particle sizes indicated
by the particle widths. The largest sieve range is processed first. A width within this sieve range
is picked up randomly, and then it is assigned to a particle which is chosen from the appropriate
particle shape database. The particle shape database can be created for varying classes of powders and
aggregates with the procedures proposed in [23]. An arbitrary rotation is performed on the particle
to avoid possible orientation bias which might be introduced during the production of the particle
shape database. After the rotation, the particle is placed at a randomly-chosen primary location in the
specimen, and then the ghost locations are determined, if any, depending on the type of the specimen
boundary conditions and the position of the particle. Those particles which reside at boundaries are
mirrored to ghost locations in case periodic boundary conditions apply. See [15,24] for details about
periodic material boundaries. The primary particle and its ghost particles are checked against all of the
previously-placed particles for overlap. If no overlap is detected, then the particle enters the simulation
box successfully, otherwise it will be moved to a new randomly-chosen location. The reassignment of
the location is subject to a pre-defined maximum number of attempts. After the consecutive failures
reach the limit, the particle will be resized to another randomly-selected width within the current sieve
range, and then be thrown into the specimen following the same trial-and-error procedure. The particle
size rescale is also subject to a pre-defined maximum number of attempts. If the rescales do not help,
then the particle will be rotated to have another orientation. If the problem still exits, then a new shape
will be chosen from the particle shape database. In the case that the particle cannot find its position
eventually, it may suggest that there is no space available for new particles within the current sieve
range any more. The next sieve range will be processed when no availability for the current sieve
range is found, or when all of the particles within the current sieve range have already been placed.
The above trial-and-error procedures are called parking procedures. Some other parking/packing
models are also available in the literature that might lead to denser material structures, such as the
dynamic particle packing by Stroeven [25]. The Anm model was later improved by Thomas et al. [26].

The mesostructure of mortar is simulated for a cubic specimen of the size 10 mm, and it is
represented by sand particles embedded in a cement paste matrix. A periodic material boundary
condition is employed, which mirrors the sticking-out particles to the opposite surfaces, as this mortar
represents a randomly-chosen material phase inside concrete. The Anm material model parks all of the
sand particles into the empty simulation box with periodic material boundaries one after one, ensuring
that there is no overlap between any of the two particles. The resulting mesostructure of the 10 mm
cubic mortar specimen with irregularly-shaped sand particles is sketched in Figure 5a.
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A concrete specimen of the size 150 mm in cubic shape is simulated, as shown in Figure 5b.
The specimen has two phases, the mortar matrix and the irregularly-shaped crushed stone aggregates.
The mold material boundary applies, which requires all of the particles to be inside the specimen and
no part of a particle can pass through a surface.

A smaller piece of concrete 40 mm in size is cut out from the original simulated 150 mm concrete
specimen at its center, as shown in Figure 5c, in order to reduce the computational cost for the
subsequent lattice fracture analysis. However, the cut would introduce some scatter in the simulated
mechanical performance of concrete, as a smaller specimen contains less aggregates; moreover, the size
of the specimen and the size of the largest aggregate it contains are getting closer as well.

3. Mechanical Performance Evaluation of Cement Paste at the Microscale

The 3D lattice fracture model is employed to evaluate the mechanical performance of cement paste at
the microscale, based on the microstructures of cement paste which are provided by the HYMOSTRUC3D
model. The microstructures of cement paste, in terms of spherical particles, are converted into voxel-based
digital images. After that, a lattice network is constructed on the basis of the digital image, which
represents the microstructure of cement paste. The lattice construction procedures are discussed in [15,16].

The specimen of the size 100 µm is meshed at the resolution 1 µm/voxel, and a 3D hexahedral
lattice network is constructed. A cell is created within each voxel sharing the same center, and the
length ratio of the cell to the voxel is defined as randomness. The value of randomness is always
between 0 and 1. More details about the randomness can be found in [15]. A lattice node is chosen
within the cell randomly. Neighbor nodes are connected by a lattice element. In the lattice mesh of
cement paste at the microscale, the randomness of the lattice system is set to 0 for all of the boundary
cells and 0.5 for other cells. This configuration would yield a realistic crack pattern and a regular
specimen shape. The cross-section of the lattice element is assumed to be circular, and its area is equal
to the perpendicular voxel surface area which is 1 µm2 in this simulation example.

The elastic properties of solid phases can be measured or simulated as presented in [27,28],
the values of which are scattered due to different measurement approaches used. The tensile strength
ratio of each phase 1.8:0.24:0.15 is equal to the measured nanoindentation hardness ratio 12:1.6:1.
The measured and assumed local mechanical properties of individual solid phases are given in Table 1.

Table 1. Measured and assumed local mechanical properties of solid phases of cement paste [27,28].

No. Solid Phase Young’s Modulus E
(GPa)

Shear Modulus G
(GPa)

Tensile Strength ft
(GPa)

1 Unhydrated cement 135 52 1.8
2 Inner product 30 12 0.24
3 Outer product 22 8.9 0.15

The assignment of local mechanical properties to a lattice element is related to the type of the
lattice element in question, which is determined by the locations of its two nodes. If both ends of
an element are located in the same phase, then this element is assigned the same mechanical properties
as the phase in question, otherwise it is classified as an interface element. The mechanical properties
of an interface element are preferred to be measured in laboratory test, but if it lacks experimental
data, the following guidelines may be applied. The Young’s modulus of an interface element EI is the
harmonic average of the Young’s moduli of the grain EG and the matrix EM, which reads EI =

2EGEM
EG+EM

.
The tensile strength of an interface element takes the lower value of the two phases of the grain and
the matrix, because failure takes place at the weakest location. Shear modulus of an interface element
is determined in a similar way to the determination of its Young’s modulus. Three solid phases in the
microstructure result in six types of lattice elements, as listed in Table 2. No lattice node is generated in
the voxels which represent pore phase, as it does not contribute to the global mechanical performance
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of the specimen. All lattice elements behave as linear-brittle, and the Young’s modulus, shear modulus,
and tensile strength are given in Table 3.

Table 2. Classification of lattice element types in cement paste.

No. Element Type Node 1 Phase Node 2 Phase

1 Unhydrated cement Unhydrated cement Unhydrated cement
2 Inner product Inner product Inner product
3 Outer product Outer product Outer product
4 Interface U-I Unhydrated cement Inner product
5 Interface I-O Inner product Outer product
6 Interface O-U Outer product Unhydrated cement

Table 3. Derived local mechanical properties of lattice elements in cement paste.

No. Element Type Young’s Modulus E
(GPa)

Shear Modulus G
(GPa)

Tensile Strength ft
(GPa)

1 Unhydrated cement 135 52 1.8
2 Inner product 30 12 0.24
3 Outer product 22 8.9 0.15
4 Interface U-I 49 20 0.24
5 Interface I-O 25 10 0.15
6 Interface O-U 38 15 0.15

A conventional uniaxial tensile test is simulated on the lattice system. The external tensile load is
imposed on the top and bottom surfaces in the z-direction, and all the other surfaces are free to expand
and/or shrink, as shown in Figure 6.
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The fracture process is simulated by the removal of lattice elements step by step. The basic
idea of lattice fracture analysis is that of imposing a prescribed displacement on the lattice structure,
finding the critical element that has the highest stress/strength ratio, and then removing it from
the system. At every analysis step, a unit displacement is first imposed, and the reaction force is
calculated. Then the displacement and the force are scaled linearly to make the weakest element
just broken. The corresponding pair of displacement and force is recorded and becomes a point on
the final simulated load-displacement curve for the system. This procedure is repeated until the
system fails, and these multiple steps produce multiple points. These points are connected to form the
load-displacement diagram, which can be converted to a stress-strain diagram, as shown in Figure 7.
The sequentially-removed lattice elements indicate the microcrack propagation process, as shown in
Figure 8.



Materials 2017, 10, 587 8 of 14
Materials 2017, 10, 587 8 of 14 

 

 
Figure 7. Simulated tensile stress-strain diagram of cement paste at the microscale. 

 
(a) (b) (c) 

Figure 8. 3D microcracks propagation of cement paste due to tension at the microscale, corresponding 
with Figure 7: (a) microcracks initiation (step 5); (b) microcracks at peak load (step 956); and (c) 
microcracks in the final failure state (step 38,106). 

The stress-strain diagram reveals the tensile behavior of cement paste at the microscale, from 
which the elastic modulus, tensile strength, strain at peak load, and fracture energy can be obtained. 
The Young’s modulus is the slope of the curve at the linear stage in the stress-strain diagram in Figure 7, 
the tensile strength corresponds to the peak point, and the fracture energy can be computed as the 
length in the loading direction multiplied by the area below the stress-strain curve. The absolute 
values of the global tensile strength and the strain at peak load are linearly dependent on the local 
input strength, so if all of the local input strengths would be doubled, then the resulting global tensile 
strength and the strain at peak load would also be doubled, and the fracture energy would be four 
times larger as it is related to the square of the local strength values. 

In Figure 8, it shows that first a few microcracks are initiated around the middle part of the 
specimen, and then the microcracks spread further until the final failure state. In total 38,106 lattice 
analysis steps are performed, which means 38,106 lattice elements are broken, and thus, are removed 
from the system, as all elements behave as linear-brittle locally. The pre-peak and post-peak 
microcracks are also shown in Figure 8. 

4. Upscaling from Cement Paste to Mortar, and then to Concrete 

The material structures of cement paste are simulated by the HYMOSTRUC3D model, and 
mortar and concrete are simulated by the Anm material model, respectively, in Section 2. The 
mechanical properties of cement paste are predicted by the 3D lattice fracture model in Section 3. In 
this section the simulated properties of cement paste are passed to the mesoscale for the mechanical 
performance evaluation of mortar, and then the upscaling is performed again from mortar to 
concrete, using the 3D lattice fracture model with the parameter-passing scheme. 

Figure 7. Simulated tensile stress-strain diagram of cement paste at the microscale.

Materials 2017, 10, 587 8 of 14 

 

 
Figure 7. Simulated tensile stress-strain diagram of cement paste at the microscale. 

 
(a) (b) (c) 

Figure 8. 3D microcracks propagation of cement paste due to tension at the microscale, corresponding 
with Figure 7: (a) microcracks initiation (step 5); (b) microcracks at peak load (step 956); and (c) 
microcracks in the final failure state (step 38,106). 

The stress-strain diagram reveals the tensile behavior of cement paste at the microscale, from 
which the elastic modulus, tensile strength, strain at peak load, and fracture energy can be obtained. 
The Young’s modulus is the slope of the curve at the linear stage in the stress-strain diagram in Figure 7, 
the tensile strength corresponds to the peak point, and the fracture energy can be computed as the 
length in the loading direction multiplied by the area below the stress-strain curve. The absolute 
values of the global tensile strength and the strain at peak load are linearly dependent on the local 
input strength, so if all of the local input strengths would be doubled, then the resulting global tensile 
strength and the strain at peak load would also be doubled, and the fracture energy would be four 
times larger as it is related to the square of the local strength values. 

In Figure 8, it shows that first a few microcracks are initiated around the middle part of the 
specimen, and then the microcracks spread further until the final failure state. In total 38,106 lattice 
analysis steps are performed, which means 38,106 lattice elements are broken, and thus, are removed 
from the system, as all elements behave as linear-brittle locally. The pre-peak and post-peak 
microcracks are also shown in Figure 8. 

4. Upscaling from Cement Paste to Mortar, and then to Concrete 

The material structures of cement paste are simulated by the HYMOSTRUC3D model, and 
mortar and concrete are simulated by the Anm material model, respectively, in Section 2. The 
mechanical properties of cement paste are predicted by the 3D lattice fracture model in Section 3. In 
this section the simulated properties of cement paste are passed to the mesoscale for the mechanical 
performance evaluation of mortar, and then the upscaling is performed again from mortar to 
concrete, using the 3D lattice fracture model with the parameter-passing scheme. 

Figure 8. 3D microcracks propagation of cement paste due to tension at the microscale, corresponding
with Figure 7: (a) microcracks initiation (step 5); (b) microcracks at peak load (step 956); and (c)
microcracks in the final failure state (step 38,106).

The stress-strain diagram reveals the tensile behavior of cement paste at the microscale, from
which the elastic modulus, tensile strength, strain at peak load, and fracture energy can be obtained.
The Young’s modulus is the slope of the curve at the linear stage in the stress-strain diagram in Figure 7,
the tensile strength corresponds to the peak point, and the fracture energy can be computed as the
length in the loading direction multiplied by the area below the stress-strain curve. The absolute
values of the global tensile strength and the strain at peak load are linearly dependent on the local
input strength, so if all of the local input strengths would be doubled, then the resulting global tensile
strength and the strain at peak load would also be doubled, and the fracture energy would be four
times larger as it is related to the square of the local strength values.

In Figure 8, it shows that first a few microcracks are initiated around the middle part of the
specimen, and then the microcracks spread further until the final failure state. In total 38,106 lattice
analysis steps are performed, which means 38,106 lattice elements are broken, and thus, are removed
from the system, as all elements behave as linear-brittle locally. The pre-peak and post-peak microcracks
are also shown in Figure 8.

4. Upscaling from Cement Paste to Mortar, and then to Concrete

The material structures of cement paste are simulated by the HYMOSTRUC3D model, and mortar
and concrete are simulated by the Anm material model, respectively, in Section 2. The mechanical
properties of cement paste are predicted by the 3D lattice fracture model in Section 3. In this section
the simulated properties of cement paste are passed to the mesoscale for the mechanical performance
evaluation of mortar, and then the upscaling is performed again from mortar to concrete, using the 3D
lattice fracture model with the parameter-passing scheme.
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The scale division of cement paste, mortar and concrete is given in Table 4. Some conditions
need to be satisfied when determining the scale division. The specimen size should be at least
2.5 times larger than the largest particle, and the mesh size should be smaller than the smallest
particle. The connecting length between cement paste and mortar is 100 µm, thus, the upscaling can be
performed seamlessly, as demonstrated in Section 4.1. However, there is some length scale overlap
between mortar and concrete, and the block-by-block technique is employed to solve this problem,
which will be elaborated below.

Table 4. Scale division and specifications of the cement paste, mortar and concrete specimens.

Cement Paste Mortar Concrete

Specimen size 100 µm 10 mm 40 mm
Lattice mesh size 1 µm 0.1 mm 1 mm

Minimum particle size 1 µm 0.125 mm 4 mm
Maximum particle size 37 µm 4 mm 16 mm

4.1. Connecting Cement Paste to Mortar

The microstructure of cement paste of the size 100 µm is simulated by the HYMOSTRUC3D
model, as shown in Section 2.1, and then its tensile mechanical performance is evaluated by the 3D
lattice fracture analysis, as demonstrated in Section 3. The resulting stress-strain curve is approximated
by a piece-wise linear curve, as shown in Figure 9. The piece-wise linear curve serves as the input
local mechanical properties of cement paste for the mortar properties prediction at the mesoscale.
The points should be chosen in such a way that it makes the change of input properties gradual in
terms of Young’s modulus and tensile strength, as listed in Table 5.
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piece-wise linear approximation).

Table 5. Mechanical properties of the 100 µm cement paste, corresponding with Figure 9.

Point P1 P2 P3 P4 P5 P6 P7

Young’s modulus E (MPa) 12,846 11,096 7601 3627 1590 611 87
Shear modulus G (MPa) 5265 4548 3115 1486 652 250 36
Tensile strength ft (MPa) 10 20 18.6 15.1 10.3 5.4 2.7

The mesostructure of mortar of the size 10 mm is simulated by the Anm material model, as shown
in Section 2.2. The resulting mesostructure in Figure 5a is then digitized to facilitate the subsequent
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lattice network construction. In the mesostructure of mortar, two solid phases are present, namely
cement paste and sand. The lattice mesh size is 0.1 mm, as shown in Figure 10a, ensuring that the
properties of the cement paste can be passed to the mesoscale modeling seamlessly from the microscale
modeling. Three types of lattice elements are defined during the lattice network mesh, which represent
sand, cement paste, and interface elements, respectively. The local mechanical properties of sand and
interface elements can be measured in the laboratory. The properties of cement paste are given in
Figure 9, which are resulted from the microscale modeling. Table 6 summarizes the local mechanical
properties of sand, cement paste, and interface elements in mortar at the mesoscale.
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Table 6. Measured and derived local mechanical properties of lattice elements in mortar [3].

No. Element Type Young’s Modulus E
(GPa)

Shear Modulus G
(GPa)

Tensile Strength ft
(MPa)

1 Sand (uncrushed) 70 29 24

2 Cement paste Piece-wise linear, see Table 5

3 Interface 22 8.9 0.75

Rather than directly evaluating the global mechanical performance of the 10 mm mortar, the lattice
system in Figure 10a is decomposed to a network of blocks. The size of a single block is 1 mm, thus,
there are 10 blocks per direction in the original lattice system and in total 1000 blocks. This is done to
provide inputs for the concrete level simulation, because the concrete specimen is meshed at 1 mm.
Uniaxial tensile tests are simulated on these blocks one after one, using the local mechanical properties
in Table 6 [3]. The resulting mechanical responses are scattered as the material structures of blocks may
differ significantly. The simulated Young’s modulus and tensile strength of every block are shown in
Figure 10b,c.

The simulated Young’s modulus of a 1 mm block is in the range of 17–65 GPa and the average
value over these 1000 blocks is 29 GPa. The tensile strength is in the range of 1.1–19.5 MPa and the
average value is 5.8 MPa. The stress-strain responses of these blocks are randomly passed onto the
concrete mesomechanical modeling and serve as inputs there, as elaborated in Section 4.2.

4.2. Upscaling from Mortar to Concrete

The block-by-block technique is employed for the upscaling from mortar to concrete, due to
the length scale overlap between them, as indicated in Table 4. The mortar specimen of 10 mm is
decomposed into a network of 1 mm blocks, and then these blocks are evaluated by the 3D lattice
fracture model one after one to get stress-strain responses, as demonstrated in Section 4.1.

Having obtained the mechanical properties of the 1 mm mortar blocks, the concrete
mesomechanical modeling can now proceed. The mesostructure of the concrete is simulated by
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the Anm material model, as presented in Section 2.2. The 40 mm concrete specimen is then digitized at
a resolution of 1 mm, and consists of two solid phases, namely stone and mortar. A lattice network is
constructed based on the digital concrete specimen, and three types of lattice elements are identified,
which represent crushed stone, mortar, and interface elements, respectively, as shown in Figure 11a.
The local mechanical properties are given in Table 7 [3]. The properties of the lattice elements
representing mortar are randomly picked up out of those 1000 mortar blocks to reflect the fact that the
property of mortar is not a constant value, but in a range of varying values.
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Table 7. Measured and derived local mechanical properties of lattice elements in concrete [3].

No. Element Type Young’s Modulus E
(GPa)

Shear Modulus G
(GPa)

Tensile Strength ft
(MPa)

1 Stone (crushed) 70 29 24
2 Mortar Piece-wise linear and varied based on the 1 mm mortar blocks
3 Interface 41 17 1

A uniaxial tensile test is simulated on the lattice system meshed from the 40 mm concrete
specimen as shown in Figure 11a, using the local mechanical properties listed in Table 7. The resulting
stress-strain response is presented in Figure 11b, and some mechanical properties can be computed as
given in Table 8.

Table 8. Simulated mechanical properties of concrete at mesoscale, corresponding with Figure 11b.

Young’s Modulus E
(GPa)

Tensile Strength ft
(MPa)

Strain at Peak
Load εp

Fracture Energy GF
(N/mm)

31 1.8 0.04% 0.127

The pattern of the simulated stress-strain response of the concrete specimen of the size 40 mm is
similar to the one observed in laboratory, and the mechanical properties computed from the stress-strain
diagram are also located within the reasonable range [29].

5. Summary, Discussion and Outlook

Cement-based materials, such as cement paste, mortar, and concrete, are multiscale heterogeneous
construction materials. In this paper, the parameter-passing multiscale modeling scheme is established
and applied to simulate fracture mechanisms.

The starting point of the fracture simulations is the microstructure of hardened cement paste at the
microscale. It is assumed that the local mechanical properties are brittle at this scale. This is an arbitrary
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assumption. The properties at this scale are difficult to measure experimentally, and therefore, there is
no proof yet for this assumption of brittle behavior at the microscale. Perhaps it is necessary to go
to the nanoscale, or even to the atomic scale, to have real local brittle behavior, but at least it seems
reasonable to assume that the behavior becomes more brittle at lower scales.

At the microscale, the local mechanical properties can be determined with the help of
a nanoindentation test. The test gives local stiffness and hardness, which can be related to the tensile
strength of the components. In this paper, the absolute values of the tensile strength are not measured
directly by the test, but the tensile strength ratios of the components are used to assume the tensile
strength values of the components at the microscale. The real tensile strength values can be corrected
after simulations on a level (mesoscale or macroscale) where mechanical tests can be performed easily.
At the microscale, some attempts have been made to conduct direct mechanical tests on the composites,
and they seem quite successful [30].

In the multiscale modeling scheme presented in this paper, the block-by-block technique,
is employed to solve the length scale overlap between mortar and concrete. The material structures of
cement paste are simulated by the HYMOSTRUC3D model, and mortar and concrete are simulated
by the Anm material model, respectively. The 3D lattice fracture model is used to evaluate their
mechanical performance by simulating a uniaxial tensile test. The simulated output properties at
a lower scale are passed to a higher scale to be served as input local properties, thus, a three-level
multiscale lattice fracture analysis is demonstrated.

Bažant concluded that the only valid approach was a discrete (lattice-particle) simulation of the
mesostructure of the entire structural region, in which softening damage could occur [31]. However,
this problem was later overcome by Nguyen et al. [32]. In this paper, the material structures of cement
paste, mortar, and concrete are based on particles embedded in matrix model. The localization limiter
of fracture energy is enabled by the inclusion of particles in the material structures. Furthermore,
the simulated softening behavior of cement paste at micrometer scale is transferred to millimeter
scale for mortar level simulation. The obtained softening behavior of mortar at the millimeter scale is
passed to the centimeter scale for concrete-level simulation. This implies that the softening behavior of
a material at a lower scale should be taken into account in a higher-scale simulation.

The proposed model will be adopted in the future to simulate fracture at multiple scales in
different geometries. For example, the sample size, aggregate shapes, and boundary conditions are
taken the same as in the laboratory. An experimental campaign has started to perform tests on different
levels and different materials. This would be able to validate the modeling procedure further, and to
obtain proof for the assumed local material properties.
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