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Abstract. The most common and potentially fatal side effect 
of postoperative radiotherapy using radioactive 125I particles 
in the chest is radiation‑induced pneumonia (RP). The 
present study aimed to develop a nomogram to accurately 
predict RP in patients with lung cancer following this type of 
radiotherapy. A retrospective analysis was conducted on data 
from 436 patients with advanced lung cancer who underwent 
close‑range radiotherapy using radioactive 125I particles at 
the General Hospital of Northern Theater Command from 
January 2016 to December 2023 (Shenyang, China). Risk 
factors for RP were identified through least absolute shrinkage 
and selection operator logistic regression and multivariable 
logistic regression analysis. These factors were then used to 
construct a dynamic nomogram. The predictive performance 
of the nomogram was validated using receiver operating char‑
acteristic (ROC) curves, calibration plots, and decision curve 
analysis. Additionally, the grading of RP and Kaplan‑Meier 
analysis were performed. Preoperative N and M staging, the 
maximum dose and whether chemotherapy was administered 
were identified as significant predictors of RP. A dynamic 

nomogram for predicting RP was developed based on these 
risk factors. The area under the ROC curve was 0.878 (95% 
CI, 0.814‑0.942) for the training cohort and 0.828 (95% CI, 
0.787‑0.870) for the validation cohort, indicating favorable 
discriminatory ability. The nomogram demonstrated excellent 
calibration. In both cohorts, the maximum dose parameter 
provided the most significant clinical benefits, supporting 
its promising clinical utility. Patients staged as T1 and T3 
preoperatively were more likely to develop RP compared with 
those staged as T2 (P<0.001). Likewise, patients staged as M1 
preoperatively, those receiving a maximum dose above the 
mean, and those who had undergone chemotherapy exhibited a 
higher probability of developing RP (P<0.001). The developed 
nomogram offers a precise and user‑friendly tool for clinical 
application in predicting the risk of RP in patients with lung 
cancer undergoing close‑range radiotherapy with radioactive 
125I particles.

Introduction

Radioactive particles are small rods composed of sealed 
radioactive isotopes encased within metal shells, measuring 
0.8 mm in diameter and 4.5 mm in length, with a half‑life of 
59.6 days (1). Close‑range radiotherapy using radioactive 125I 
particles is a form of radiation therapy in which these particles 
are implanted into tumors or surrounding tissues infiltrated by 
cancer cells, guided by imaging modalities such as computed 
tomography (CT) and positron emission tomography‑computed 
tomography (PET‑CT) (2). This technique is considered one of 
the emerging treatment modalities in oncologic radiotherapy. 
Radioactive 125I particles are directly implanted at the lesion site, 
where they continuously emit beta particles and gamma rays 
during their radioactive decay, disrupting the DNA structure of 
tumor cells and achieving precise targeted therapy (3). A study 
by Wang et al (4) demonstrated that CT‑guided close‑range 
radiotherapy with radioactive 125I particles for locally advanced 
non‑small cell lung cancer, following first‑line chemotherapy 
failure, yielded favorable local control rates, effectively 
alleviating symptoms and improving patients' quality of life. 
Additionally, research by Ji et al (5) confirmed that CT‑guided 
125I seed implantation is both effective and safe for treating 
recurrent and/or metastatic malignant tumors in the chest.
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Radiation‑induced pneumonia (RP) is a common complica‑
tion associated with radiotherapy. When surrounding normal 
tissues are exposed to close‑range radiation from 125I particles, 
damage can occur to type II alveolar cells, leading to alveolar 
collapse and atelectasis, Additionally, endothelial cell damage 
can result in altered pulmonary blood flow, increased vascular 
permeability, and capillary obstruction (6). Cytokines such 
as Interleukin‑1 alpha, Tumor Necrosis Factor‑alpha (TNF‑α) 
and TNF‑β also play a role in the inflammatory response (7). 
Pathological examinations revealed changes such as alveolar 
septal edema, endothelial cell swelling and thickening of the 
vessel wall. Typical clinical symptoms of RP include dyspnea, 
dry cough, hypoxemia and low‑grade fever (8). There is no 
specific time interval for the onset of RP following close‑range 
radiotherapy. Acute RP typically occurs 4‑12 weeks after treat‑
ment, while symptoms of delayed or fibrotic RP may appear 
6‑12 months later. The severity of inflammation is influenced 
by the volume and dose of radiation received by surrounding 
normal tissues (9). Currently, various predictive models have 
been proposed to assess the risk of RP; however, most of these 
models are based on singular or limited variables and often 
fail to comprehensively consider individual patient character‑
istics and biological mechanisms. Due to the complexity and 
multifactorial nature of RP, there is no definitive model that 
accurately predicts its occurrence following close‑range radio‑
therapy with radioactive 125I particles. The present study aimed 
to combine relevant data, including basic patient information, 
clinical symptoms, tumor characteristics, preoperative labo‑
ratory tests, intraoperative data and dose‑related parameters 
of close‑range radiotherapy, to predict RP and validate the 
effectiveness of the model.

A nomogram is a visual statistical tool used to integrate the 
effects of multiple predictors into a simple and understandable 
graphic, assisting clinicians in assessing the risk of a specific 
disease or complication. By assigning a score to each vari‑
able, a nomogram allows users to calculate the probability of 
a particular event (such as the occurrence of RP) based on the 
patient's specific characteristics.

In medicine, the application of nomograms is becoming 
increasingly widespread, as they can transform complex multi‑
variable models into intuitive and convenient tools, enhancing 
the efficiency of clinical decision‑making. The present study 
employed a nomogram to develop a risk prediction model 
for RP that incorporates multiple relevant variables, thereby 
providing reliable risk assessment and decision support for 
clinical practice.

Materials and methods

Study population. The present study included data from 
436  patients with advanced lung cancer who underwent 
close‑range radiotherapy with radioactive 125I particles at 
General Hospital of Northern Theater Command from January 
2016 to December 2023 (Shenyang, China). The patients were 
randomly assigned in a 7:3 ratio, with 305 patients allocated to 
the modeling cohort and 131 patients included in the internal 
validation cohort. The inclusion criteria were as follows: 
i) Poor cardiopulmonary function or advanced age preventing 
surgical intervention; ii)  refusal of surgical intervention; 
iii)  ineligibility for repeat surgery due to postoperative 

recurrence; iv) patients with residual or progressive tumors 
after radiotherapy or chemotherapy; v) patients with disease 
progression following other anti‑tumor treatments; and vi) an 
expected survival of at least 3 months. The exclusion criteria 
were as follows: i) Poor control of obstructive RP around 
the lesion, skin infection, or ulceration at the puncture site; 
ii) patients with severe bleeding tendencies, a platelet count 
<50x109/l, or severe coagulation disorders. Anticoagulant 
therapy and/or platelet medications should be discontinued for 
at least 5‑7 days prior to particle implantation; iii) patients with 
severe hepatic, renal, cardiac, pulmonary, or cerebral dysfunc‑
tion, severe anemia, dehydration, and severe nutritional 
metabolism disturbances that cannot be corrected or improved 
in the short term, as well as those with severe systemic infec‑
tions or high fever. All patients included in the present study 
provided signed informed consent prior to the procedure. The 
present study was approved (approval no. YL2021‑07) by the 
Ethics Review Committee of the General Hospital of Northern 
Theater Command in China (Shenyang, China).

Data collection. The present study collected a comprehensive 
set of perioperative data, including patients' basic information, 
clinical symptoms, tumor characteristics and preoperative 
laboratory test results. Patient baseline information comprised: 
Age, sex, smoking status, Zymosan‑Activated Serum (ZPS) 
scale, key performance indicator system (KPS) score and 
Numeric Rating Scale (NRS) score. Clinical symptoms include 
cough, sputum production, chest tightness and shortness of 
breath. Tumor characteristics encompassed: Preoperative lung 
cancer diameter, preoperative TNM staging, tumor location, 
preoperative lung atelectasis, obstructive pneumonia, superior 
vena cava obstruction syndrome. Preoperative laboratory tests 
included: Carcinoembryonic antigen (CEA), neuron‑specific 
enolase (Nse), cytokeratin 19 fragment, squamous cell 
carcinoma (SCC) antigen, and preoperative white blood cell 
count. Additionally, intraoperative data and dosimetric param‑
eters related to close‑range radiotherapy dose were collected: 
Surgical time, planned target volume (PTV), maximum dose, 
average dose, single particle dose, preoperative diameter at 
90% cumulative volume (D90) and volume at 100% cumulative 
volume (V100), D90 and V100 of the 1‑cm and 2‑cm irradiated 
areas around the lesion (represented as X1 cmD90, X2 cmD90, 
X1 cmV100, X2 cmV100), number of particles, puncture needle path 
and puncture distance.

Close‑range radiotherapy method using radioactive 125I 
particles. Preoperative planning: Imaging studies (CT, 
enhanced CT, PET‑CT) are transferred to a three‑dimensional 
treatment planning system. Treatment plans are designed 
within this system, establishing pre‑treatment protocols that 
determine the number of implanted needles, their positions, 
and the number and placement of particles. Individual particle 
activities are selected, total activity in the target area is 
calculated, and the anticipated dose distribution in both tumor 
and normal tissues. Intraoperative procedure: Based on the 
patient's condition, an appropriate position was chosen and 
was secured. Local anesthesia is administered for the implan‑
tation of radioactive particles. The implantation is performed 
under CT guidance, with a routine scan of 0.5‑cm slice thick‑
ness to local the tumor and mark the corresponding range 
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on the body surface. According to the TPS treatment plan, 
the appropriate intercostal space is selected as the puncture 
implantation plane, and the needle insertion position, angle 
and depth are determined. Under CT guidance, the particle 
needle is inserted into the predetermined position within the 
tumor, and particles are implanted according to the TPS plan. 
The particle needle is inserted in a single motion to minimize 
the dose received by the operator during implantation and to 
reduce the risk of postoperative pneumothorax. A pen‑style 
implantation gun is used to implant the particles in a retract‑
able manner, with spacing of 0.5‑1.5 cm between particles. 
During the procedure, the patient's heart rate, blood pressure 
and blood oxygen saturation are continuously monitored. The 
patient's level of consciousness, breathing, pain, coughing, 
and any hemoptysis are also observed and symptomatic treat‑
ment is provided as needed. Following particle implantation, 
postoperative CT images are uploaded into the TPS for quality 
assessment, focusing on particle and dose reconstruction. 
After the procedure, the patient is monitored with electrocar‑
diogram and oxygen therapy until their condition stabilizes. 
A follow‑up chest CT scan is conducted 24 h postoperatively 
to check for any secondary pneumothorax, hemothorax, or 
particle displacement.

The grading of radiation pneumonitis and symptomatic 
treatment. Radiation pneumonitis refers to a series of patho‑
logical and physiological changes induced by the irradiation 
of a certain volume of normal lung tissue by particles. This 
condition can lead to acute exudative or tissue fibrotic changes, 
ultimately impairing the patient's respiratory function. Grade 
0: No abnormalities. Grade 1: Mild dry cough or shortness 
of breath after exertion. Grade 2: Persistent cough requiring 
antitussive medication and mild exertional dyspnea with no 
dyspnea at rest. Symptomatic support and antibiotics (consider 
corticosteroids) are required for fever, acute exudative changes 
on chest CT, or elevated neutrophil percentage require. Grade 
3: Severe cough that is unresponsive to antitussive medication, 
or dyspnea at rest. Intermittent oxygen therapy is necessary if 
there is clinical or radiographic evidence of acute pneumonia, 
and steroid therapy may be required. Grade 4: Severe respi‑
ratory failure necessitating continuous oxygen therapy and 
mechanical ventilation.

Statistical analysis. R software (Version 4.1.2; https://www. 
R‑project.org) was utilized for statistical analysis, while 
Graphpad Prism (Version 6.0; Dotmatics) was employed to 
create forest plots. The data were randomly divided into a 
training set and a validation set in a 7:3 ratio. All data were 
assessed for normality using the Kolmogorov‑Smirnov 
test. For continuous variables with normal distribution, the 
mean and standard deviation were calculated, and unpaired 
Student's t test was applied. The Mann‑Whitney U test was 
employed to evaluate non‑normally distributed data, which 
are expressed as the median (interquartile range). Comparative 
analysis of categorical variables was performed using Pearson 
chi‑square test or Fisher's exact test, with results presented 
as P‑values and percentages. Subsequently, the least absolute 
shrinkage and selection operator (LASSO) method was 
applied to identify potential predictive features. Multivariable 
logistic regression analysis was conducted on variables with 

P<0.05 from the univariate analysis. And a line chart predic‑
tion model for radiation pneumonitis due to late‑stage lung 
cancer treated with radioactive 125I particle brachytherapy 
was developed using the four selected variables. A calibration 
curve was plotted to assess the calibration of the line chart and 
the discriminatory performance was measured using receiver 
operating characteristic (ROC) curve. The clinical utility of 
the line chart was evaluated through decision curve analysis 
(DCA) by measuring the net benefit at different probability 
thresholds. The incidence rates of RP at different grades were 
estimated using the Kaplan‑Meier method, and differences 
in RP incidence rates between groups were compared using 
the log‑rank test. The flowchart detailing these procedures is 
presented in Fig. 1.

Results

The baseline data. The present study included 436 patients 
with late‑stage lung cancer who underwent radioactive 125I 
particle brachytherapy. The patients were randomly allocated 
in a 7:3 ratio, with 305 patients assigned to the modeling cohort 
and 131 patients included in the internal validation cohort. 
The modeling cohort consisted of 134 men with a mean age of 
62.37±10.37 years, while the internal validation cohort included 
67 males with a mean age of 64.29±10.35 years. Statistical 
analysis was performed on patient demographics, clinical 
symptoms, general tumor characteristics, and preoperative 
laboratory tests in the both cohorts. These variables included: 
Age, sex, smoking status, ZPS scale, KPS score, NRS score, 
clinical symptoms (cough, sputum, chest tightness, dyspnea), 
preoperative lung cancer diameter, preoperative TNM 
staging, tumor location, preoperative lung collapse, obstruc‑
tive pneumonia, superior vena cava obstruction syndrome 
and laboratory test results (preoperative CEA, preoperative 
Nse, preoperative cytokeratin 19 fragment, preoperative SCC 
and white blood cell count). In addition, intraoperative data 
and relevant dosimetric parameters for brachytherapy were 
collected, including: operation time, PTV volume, maximum 
dose, average dose, single particle dose, preoperative D90 

and V100, X1 cmD90, X2 cmD90, X1 cmV100, X2 cmV100, number of 
particles, puncture needle path and puncture distance. There 
were no significant statistical differences in any of these data 
between the two cohorts (all P>0.05, Table I).

Factors influencing RP following brachytherapy for late‑stage 
lung cancer. Based on LASSO Logistic regression, the inde‑
pendent variables in the dataset were screened, and those 
corresponding to non‑zero coefficients at Lambda.min were 
selected for subsequent multivariate analysis. As illustrated 
in Fig.  2, the selected variables include: Smoking status, 
preoperative N and M staging, superior vena cava obstruction 
syndrome, preoperative white blood cells, maximum dose and 
chemotherapy. To further evaluate seven potential predictive 
factors and optimize the predictive model, a multivariable 
logistic regression analysis was conducted. The results indi‑
cated that preoperative N3 stage [95% CI, 2.171 (1.234‑3.821), 
P=0.007], preoperative M1 stage [95% CI, 2,955 (1.667‑5.237), 
P<0.001], maximum dose [95% CI 1.000, (1.000‑1.000), 
P=0.002] and chemotherapy [95% CI, 0.586 (0.343‑1.002), 
P=0.049] were independent risk factors influencing RP in 
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patients with late‑stage lung cancer treated with brachytherapy, 
as summarized in Table II and depicted in Fig. 3.

Development and validation of the predictive model. A 
nomogram plot (Fig. 4) was constructed based on four inde‑
pendent risk factors: Preoperative N and M staging, maximum 
dose and whether chemotherapy was administered. To use 
the nomogram, a vertical line is drawn for each variable to 
determine its respective score. By summing those scores, the 
total score, which indicates the risk probability of RP, can be 
calculated. For example, a patient with a preoperative T3N2M1 
stage, a maximum dose of 136510  Gy, and who received 
preoperative chemotherapy would have a total score of 114 
points, corresponding to a 77% risk of RP.

As illustrated in Fig. 5, the area under the ROC curve in 
the training set (Fig. 5A) was 0.878 (95% CI, 0.814‑0.942). The 
calibration curve and ROC curve for the validation set yielded 
results similar to those in the training set, with the area under 
the ROC curve in the validation set (Fig. 5B) being 0.828 (95% 
CI, 0.787‑0.870). For individual predictors in the training set 
(Fig.  5C), the area under the ROC curve was 0.778 (95% 
CI, 0.706‑0.850) for smoking, 0.751 (95% CI, 0.674‑0.828) 
for preoperative N staging, 0.794 (95% CI, 0.725‑0.864) for 

preoperative M staging, 0.874 (95% CI, 0.808‑0.940) for 
maximum dose, and 0.805 (95% CI, 0.737‑0.872) for preop‑
erative chemotherapy. In the validation set (Fig.  5D), the 
areas under the ROC curve were 0.650 (95% CI, 0.607‑0.693) 
for smoking, 0.713 (95% CI, 0.669‑0.758) for preoperative 
N staging, 0.755 (95% CI, 0.715‑0.795) for preoperative M 
staging, 0.832 (95% CI, 0.791‑0.873) for maximum dose, and 
0.705 (95% CI, 0.662‑0.748) for preoperative chemotherapy. 
The calibration curves indicate that both the training (Fig. 5E) 
and validation (Fig. 5F) set were close to the 45‑degree line, 
indicating that the model accurately predicts actual events.

DCA demonstrates that clinical decisions based on the 
predictive model are beneficial, highlighting the practical 
clinical application and feasibility of the model in both the 
training set (Fig. 6A) and validation set (Fig. 6B). Among the 
variables, maximum dose achieves the most significant clinical 
benefits in practice, showing promising prospects for clinical 
application. The maximum dose provides the highest benefits 
in both the training and validation sets (Fig. 6C and D).

Grading of RP and Kaplan‑Meier analysis. Based on the 
grading of RP, the data were divided into two RP of grade 2 or 
below and grade 3 or higher. In the group with RP of grade 3 

Figure 1. Flowchart. LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; DCA, decision curve analysis.
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or higher, the average maximum dose is 139,187.27 mCi, while 
in the group with grade 2 or below, it is 129,864.09 mCi.

Patients with preoperative T1 and T3 staging (P<0.001) 
(Fig.  7A), preoperative M1 staging [P<0.01, HR=8.26 
(4.66‑14.64)] (Fig. 7C), a maximum dose exceeding 139,187.27 
mCi [P<0.001, HR=9.63 (4.61‑20.12)] (Fig. 7E), and those who 
underwent preoperative chemotherapy [P<0.001, HR=0.12 
(0.07‑0.22)] (Fig. 7G) were found to be more likely to develop 
RP of grade 3 or higher (P<0.001). Specifically, for patients 
with T3 staging, the probability of developing pneumonia of 
grade 3 or higher at 6 and 12 weeks was 15 and 24%, respec‑
tively. For patients with M1 staging developing pneumonia of 
grade 3 or higher at 6 weeks and 12 weeks is 12 and 29%, 
respectively. Patients who underwent chemotherapy have 
a 10% probability at 6 weeks and 22% probability at 12 weeks 
of developing pneumonia of grade 3 or higher.

Conversely, for RP of grade 2 or lower, patients with preop‑
erative T1 and T3 staging (P<0.001) (Fig. 7B), preoperative 
M1 staging [P<0.01, HR=4.64 (3.36‑6.41)] (Fig. 7D), and a 
maximum dose exceeding 139,187.27 mCi [P<0.001, HR=8.46 
(5.79‑12.35)] (Fig. 7F), and those who underwent preoperative 
chemotherapy [P<0.001, HR=0.33 (0.25‑0.44)] (Fig. 7H) were 
found to be more likely to develop RP of grade 2 or below 
(P<0.001). Specifically, for patients with T3 staging, the prob‑
ability of developing pneumonia of grade 2 or below at 6 and 
12 weeks was 20 and 41%, respectively. For patients with M1 
staging, these probabilities were 18% at 6 weeks and 33% at 
12 weeks. Patients who underwent chemotherapy had an 18% 
probability at 6 weeks and 36% probability at 12 weeks of 
developing pneumonia of grade 2 or below.

Discussion

In 2022, lung cancer ranked first among all new cases of 
malignant tumors in China, accounting for 18.06% of the 
total cancer cases. Similarly, lung cancer accounted for 23.9% 
of all deaths from malignant tumors in China, also ranking 
first  (10). Early‑stage lung cancer often presents with no 

obvious symptoms, and in clinical practice, most patients 
seek medical attention when symptoms appear, by which 
time it is already in the advanced stage, leading to a loss of 
the opportunity for surgery. The overall 5‑year survival rate 
for patients with advanced‑stage lung cancer is ~15% (11). 
Radioactive 125I particle brachytherapy, radio‑chemotherapy 
and targeted immunotherapy techniques are widely used in 
the treatment of advanced lung cancer (12). The radioactive 
125I particle brachytherapy has the advantages of minimal 
complications and significant efficacy, leading to a rapid 
increase in the number of patients with advanced lung cancer 
receiving this treatment annually. In epidermal growth factor 
receptor tyrosine kinase inhibitor treatment failure, 58.6% of 
patients experience progression of the original lesion, while 
20.7% of patients have both progression of the original lesion 
and the emergence of new lesions. Therefore, radioactive 125I 
particle brachytherapy can effectively provide local control 
of the original lesion, thereby extending the patients' progres‑
sion‑free survival and overall survival (OS) (13). A study by 
Zhang et al (14) reported that in patients with oligo‑recurrence 
after first‑line chemotherapy failure in non‑small cell lung 
cancer, the short‑term efficacy and quality of life of those 
receiving radioactive 125I particle implantation therapy were 
superior to those continuing chemotherapy, while the OS was 
comparable. Compared with external beam radiation therapy, 
radioactive 125I particle brachytherapy avoids the disadvantage 
of expanding the irradiation range due to respiratory motion, 
thereby effectively reducing damage to surrounding normal 
tissues  (15). The incidence of radiation pneumonitis after 
combined radio chemotherapy for non‑small cell lung cancer 
is 43.33%, while the incidence of radiation pneumonitis with 
radioactive 125I particle implantation therapy is 6.25%. Both 
approaches have similar short‑term efficacy rates and 1 and 
2‑year OS rates (16). Brachytherapy is particularly effective 
in treating certain types of tumors, but it still faces numerous 
challenges in predicting and managing RP, which underscores 
the significance of the present study. Uneven dose distribution: 
Brachytherapy typically uses high‑dose rate or low‑dose rate 

Figure 2. The feature selection using LASSO Logistic regression. (A) Parameter tuning (λ) selection was performed using 10‑fold cross‑validation in LASSO 
Logistic regression, and a plot of binomial deviation against log(λ) was created based on the minimum criteria. The black vertical line marks the optimal 
λ based on both the minimum criteria and minimum standard error. (B) LASSO coefficient profiles of 10 clinical factors. A plot of coefficient profiles cor‑
responding to log(λ) is demonstrated. LASSO, least absolute shrinkage and selection operator.
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radiation sources, resulting in complex dose distributions that 
may lead to some healthy lung tissue receiving excessively 
high radiation doses. This heterogeneity in dosing complicates 

risk assessment, as different patients and treatment protocols 
can lead to variable dose exposures. Biological heteroge‑
neity: There may be significant differences in the biological 

Table II. Logistic univariate and multivariate regression analysis of risk factors for radiation pneumonia following brachytherapy 
for late‑stage lung cancer.

	 Univariate analysis	 Multivariate analysis
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Characteristics	 Total (N)	 Odds ratio (95% CI)	 P‑value	 Odds ratio (95% CI)	 P‑value

Smoke	 436				  
  No	 276	 Reference		  Reference 	
  Yes	 160	 3.919 (2.569‑5.978)	 <0.001	 1.598 (0.944‑2.707)	 0.081
Preoperative N	 436				  
  1	 35	 Reference		  Reference	
  2	 188	 1.654 (0.784‑3.490)	 0.186	 1.998 (0.854 4.673)	 0.111
  3	 213	 7.307 (4.698‑11.364)	 <0.001	 2.171 (1.234‑3.821)	 0.007
Preoperative M	 436				  
  0	 218	 Reference 		  Reference 	
  1	 218	 9.514 (6.143‑14.736)	 <0.001	 2.955 (1.667‑5.237)	 <0.001
preoperative white blood cells	 436	 0.942 (0.864‑1.027)	 0.177		
Maximum dose	 436	 1.000 (1.000‑1.000)	 <0.001	 1.000 (1.000‑1.000)	 0.002
Chemotherapy	 436				  
  Yes	 212	 Reference		  Reference 	
  No	 224	 0.174 (0.115‑0.263)	 <0.001	 0.586 (0.343‑1.002)	 0.049
Superior vena cava obstruction	 436				  
Yes	 213	 Reference 			 
No	 223	 1.388 (0.952‑2.024)	 0.088		  0.091

CI, confidence interval.

Figure 3. Forest plot of multivariable logistic regression analysis of radiation pneumonia following brachytherapy for late‑stage lung cancer. OR, odds ratio; 
CI, confidence interval.

https://www.spandidos-publications.com/10.3892/mco.2024.2797
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characteristics of lung tissue among patients, including lung 
function, tissue response and individual sensitivity to radia‑
tion. This heterogeneity makes predictions based on a single 
marker or risk factor less accurate, increasing the complexity 
of managing RP. Complexity of clinical assessment: The 
symptoms of RP can be similar to those of other complica‑
tions (such as infections or tumor progression), making it 
challenging for clinicians to recognize and diagnose RP 
early on. This misdiagnosis or late diagnosis may adversely 
affect patient management and treatment outcomes. Lack of 
standardized predictive models: Currently, while there are 
some risk assessment tools available, there are still limited 
standardized predictive models that specifically address the 
unique risk factors associated with brachytherapy. This results 
in a lack of effective tools in clinical practice to predict and 
manage the risk of RP, thereby limiting the implementation of 
personalized treatment. The significance of the present study 
lies in filling these gaps by developing a predictive model 
that can more accurately identify RP risk factors associated 
with brachytherapy and providing clinicians with practical 
management strategies. In doing so, it was aimed to enhance 
the accuracy of RP predictions, deliver improved treatment 
outcomes for patients, and improve their quality of life.

The present study collected data from 436 patients with 
advanced lung cancer who underwent radioactive 125I particle 
brachytherapy. These patients were randomly assigned in a 7:3 
ratio, with 305 patients allocated to the modeling cohort and 
131 patients included in the internal validation cohort. Since 
the research was conducted in a military hospital, collaboration 
with other medical institutions poses certain challenges. In the 
future, the authors plan to gradually initiate collaborative proj‑
ects with local hospitals to expand their sample size, thereby 
improving the statistical accuracy. Currently in the present 
study, combining patient demographics, clinical symptoms, 
tumor characteristics, preoperative laboratory tests, intraop‑
erative data and brachytherapy dosage for screening, LASSO 
logistic variable selection identified non‑zero coefficient 

variables including: Smoking, preoperative N and M staging, 
superior vena cava syndrome, preoperative white blood cell 
count, maximum dose and chemotherapy. Further evalua‑
tion using a multiple logistic regression model revealed that 
preoperative N3 stage [95% CI, 2.171 (1.234‑3.821), P=0.007], 
preoperative M1 stage [95% CI, 2.955 (1.667‑5.237), P<0.001], 
maximum dose (95% CI, 1.000 (1.000‑1.000), P=0.002) and 
chemotherapy [95% CI, 0.586 (0.343‑1.002), P=0.049] were 
independent risk factors influencing radiation pneumonitis in 
patients with advanced lung cancer undergoing brachytherapy. 
The correlation between tumor volume, tumor staging and 
radiation pneumonitis is controversial.

Some studies suggest that higher tumor TNM staging, 
larger volume, closer proximity to the hilum or lower lung, 
and a larger irradiated lung volume are associated with an 
increased risk of radiation pneumonitis. This is consistent 
with the findings of De Petris et al (17). However, other studies 
have revealed that tumor volume is not related to the occur‑
rence of radiation pneumonitis (18). This is mainly related to 
other confounding factors such as patient lung volume size and 
volume of lung tissue irradiated (19). When combined radio‑
therapy is used, it leads to exudative and inflammatory changes 
in the local lung tissue, a reduction in type II alveolar cells and 
surfactant, and a series of pathophysiological changes in the 
blood vessel wall and lung tissue. The combined toxic effects 
exacerbate lung damage, making radiation pneumonitis more 
likely to occur and difficult to recover from when combined 
with chemotherapy. The study by Zha et al (16) confirmed that 
chemotherapy is an important factor in accurately predicting 
symptomatic pneumonitis. Together with age, smoking 
index and whole lung volume at 5 Gy/mean lung dose, they 
constructed a nomogram prediction model with an area under 
the ROC curve of 0.89, demonstrating favorable calibration. 
Chemotherapy, as a significant risk factor for predicting 
radiation pneumonitis, is consistent with the results of the 
aforementioned study. The authors understand the potential 
value of conducting stratified analyses based on different 
chemotherapy regimens or timing (for example, combination 
therapy vs. sequential therapy), as this could indeed provide 
more specific guidance for clinical decision‑making. However, 
due to the sample size of the present study and the availability 
of data, categorizing chemotherapy regimens and timing at 
this stage may lead to instability in the statistical results and 
complexity in interpretation. Therefore, stratified analyses 
were decided not to be performed on chemotherapy regi‑
mens and timing in order to maintain the rigor of the present 
study and the reliability of the results. This direction will be 
considered in future research.

There is still controversy regarding the correlation 
between dosimetric parameters and the occurrence of radia‑
tion pneumonitis. The study by Bi et al (20) concluded that the 
MLD is the most critical dose‑volume parameter influencing 
radiation pneumonitis, and it can improve prevention of the 
occurrence of radiation pneumonitis in patients undergoing 
combined immunotherapy and radiotherapy. On the other 
hand, Ji et al (21) hypothesized that there is no clear correla‑
tion between dosimetric parameters and the occurrence of 
postoperative radiation pneumonitis. The correlation between 
radiotherapy dose and radiation pneumonitis cannot be 
directly applied to the prediction of radiation pneumonitis in 

Figure 4. A nomogram for predicting radiation pneumonia following stereo‑
tactic radiotherapy for advanced lung cancer. A nomogram was constructed 
using logistic multivariate regression, including preoperative N staging, 
preoperative M staging, maximum dose, and whether chemotherapy was 
administered.
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brachytherapy using radioactive 125I particles. The conclusion 
of the present study is that among dosimetric parameters, only 
the maximum dose is a predictor of radiation pneumonitis, 

which is consistent with the findings of Flakus et al  (22). 
Moreover, it is noteworthy that the maximum dose as a 
predictor of radiation pneumonitis in brachytherapy with 

Figure 5. The receiver operating characteristic curves of the prediction model in the (A) training set and (B) validation set are demonstrated. (C) ROC curves 
for the training set and (D) validation set grouped by Smoke, Preoperative N, Preoperative M, maximum dose and chemotherapy. (E) Calibration curves for 
the training set and the (F) validation set. AUC, area under curve; CI, confidence interval; FPR, false positive rate; TPR, true positive rate.
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radioactive 125I particles is a significant finding that adds 
to the understanding of the complex relationship between 
radiotherapy and lung toxicity. While dosimetric parameters 
may not always correlate directly with the occurrence of 
radiation pneumonitis, the maximum dose appears to be a 
critical factor in brachytherapy, possibly due to the localized 
high‑dose delivery characteristics of this treatment modality. 
Regarding the implications of this finding for treatment plan‑
ning and dose limitations, reassessment of current dosing 
standards and treatment protocols may be needed to ensure 
that the selection of the maximum dose effectively targets the 
tumor while not excessively increasing the risk of RP. This 
may involve individualized dose adjustment, assessment of 
pulmonary sensitivity and a comprehensive application of 
other therapeutic modalities to mitigate potential side effects.

Furthermore, the present study underscores the need for a 
comprehensive approach in predicting and managing radiation 
pneumonitis. Age, smoking history and other patient‑specific 
factors must be considered along with dosimetric param‑
eters to develop accurate prediction models. Additionally, the 
combined effects of radiotherapy and chemotherapy on lung 
tissue need to be carefully evaluated to optimize treatment 
outcomes and minimize toxicity. Time‑to‑event analysis was 

considered to be included in the predictive model and the 
possibility of developing a nomogram to update risk predic‑
tions over time as well as creating an online calculator was 
explored. However, the current understanding of this approach 
is limited, which prevented the authors from implementing it 
in the present study. Additionally, it was observed that some 
relevant literature also did not include dynamic nomograms or 
online calculators but instead opted for static risk prediction 
models. Nevertheless, this did not hinder the present study 
from obtaining valuable predictive results (23).

The predictors identified in the present study primarily 
emphasize the individual characteristics of patients (such as 
age, underlying diseases and lung function) as well as the 
specific characteristics of the tumor (such as N and M classi‑
fications). These factors reflect the biological characteristics 
and treatment suitability of the patients when undergoing 
radiation therapy, providing a basis for personalized treat‑
ment. By contrast, the predictors for EBRT typically place 
greater emphasis on the radiation dose, irradiated area, 
radiation technique and specific implementation details 
of the treatment. These factors directly affect the extent 
of radiation's impact on lung tissue and are essential 
components in assessing the risk of RP. By comparing the 

Figure 6. Decision curve analysis. (A) DCA plot for the training set. (B) DCA plot for the validation set. (C) DCA plot for multiple models in the training 
set. (D) DCA plot for multiple models in the validation set. (C and D) indicate that the maximum dose provides the highest benefit in both the training and 
validation sets.
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two, it was found that while the factors recognized in the 
present study's model focus more on the patient's individual 
biological characteristics, integrating these factors with the 
dosage and technical factors of EBRT could provide clini‑
cians with a more comprehensive risk assessment tool. This 
multidimensional analysis can improve support of clinical 
decision‑making and assist physicians in developing more 
personalized radiation therapy plans, thereby reducing the 
incidence of RP. Therefore, further exploring the relation‑
ships among these predictive factors will help expand the 

understanding of the mechanisms underlying RP and guide 
future research directions.

In conclusion, the findings of the present study contribute to 
the ongoing efforts to improve the prediction and management 
of radiation pneumonitis in patients undergoing brachytherapy 
with radioactive 125I particles. Compared with existing models 
or guidelines, the present study's approach emphasizes multi‑
variable analysis, which can consider the subtle differences in 
patients' individual characteristics and treatment plans. This 
personalized risk assessment method can assist clinicians in 
making more precise decisions when formulating treatment 
plans. In comparing with existing models, it was also noted 
that some commonly used risk assessment tools may be based 
solely on a single or few clinical characteristics, lacking a 
comprehensive consideration of multiple factors. The present 
study aimed to address this limitation by introducing more 
variables, thereby enhancing the predictive capability for the 
occurrence of RP. Through these comparisons, it was aimed 
to be demonstrated that the nomogram of the present study 
did not only improve accuracy but also assisted physicians 
in improving identification of high‑risk patients in clinical 
applications, allowing for the formulation of more rational 
treatment plans.

The limitations of the present study include: i)  Data 
completeness and accuracy: Retrospective studies rely on 
existing medical records and databases, the accuracy and 
completeness of which can be affected by various factors, 
such as data entry errors, missing information, or inconsisten‑
cies in recording treatment protocols. This may lead to some 
key variables being excluded from the analysis, potentially 
impacting the accuracy of the present study's predictive 
model. ii) Time effects: With advances in medical technology, 
the methods and standards of radiation therapy have evolved. 
In light of new treatment strategies and techniques, the data 
from retrospective studies may not reflect the true impact of 
radiation pneumonia risk in current clinical practice. This 
needs to be considered when applying the present study's 
findings to avoid generalizing outdated standards and results 
to modern treatments. iii) Limitations in inferring causality: 
Retrospective studies typically struggle to establish clear 
causal relationships. In the present study research, although 
several risk factors were identified to be associated with 
radiation pneumonia, this did not imply that these factors 
necessarily cause the occurrence of RP. The present study's 
findings need to be cautiously interpreted and the predictive 
nature of this mod emphasized rather than making causal 
judgments. iv) Inherent limitations of retrospective studies: 
The present study was a retrospective analysis and there may 
be biases in patient selection criteria and data collection. For 
instance, the selected patients may significantly differ from 
the general population (for example, age and tumor staging), 
which can affect the model's applicability. v) Limitations 
in variable selection: Even when using advanced methods 
such as LASSO for variable selection, important influencing 
factors may still be omitted, or unrelated variables may be 
included, thereby affecting the model's accuracy. vi) Lack of 
external validation: Ideally, validation should be conducted 
on external datasets to ensure the model's generalizability. 
However, the present study may lack sufficient external vali‑
dation data.

Figure 7. Kaplan‑Meier curves of patients staged preoperatively as T1, T2 and 
T3: (A) for grade 3+ pneumonia, (B) for grade 2‑pneumonia. Preoperative 
staging as M0, M1: (C)  for grade 3+ pneumonia, (D)  for grade 2‑pneu‑
monia. Patients divided into high and low groups based on maximum dose 
>139,187.27 mCi, <139,187.27 mCi: (E) for grade 3+ pneumonia. Patients 
divided into high and low groups based on maximum dose >129,864.09 mCi, 
<129,864.09 mCi: (F) for grade 2‑pneumonia. Grouping based on whether 
preoperative chemotherapy was administered (1 for yes, 2 for no): (G) for 
grade 3+ pneumonia, (H) for grade 2‑pneumonia.
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Future research should continue to explore the interac‑
tion of various risk factors and dosimetric parameters to 
develop more effective strategies for preventing and treating 
this potentially debilitating complication of radiotherapy. In 
the present study, it was demonstrated that four independent 
risk factors (preoperative N and M staging, maximum dose 
and receipt of chemotherapy) can predict the occurrence of 
postoperative radiation pneumonitis in patients undergoing 125I 
brachytherapy for cancer. The training cohort's area under the 
ROC curve for the nomogram construction was 0.878 (95% 
CI, 0.814‑0.942), while the validation cohort's area under the 
ROC curve was 0.828 (95% CI, 0.787‑0.870). The calibration 
curve indicates that the model can perfectly predict actual 
events. The DCA suggests that clinical decisions based on the 
predictive model are beneficial, implying practical clinical 
applicability and operability of the model. The maximum dose 
in both the training and validation cohorts revealed the most 
ideal clinical benefits in clinical practice, indicating promising 
clinical utility.

Integrating the nomogram into the existing clinical 
workflow can provide clinicians with a practical tool to aid in 
making more accurate patient care and treatment adjustment 
decisions. By showcasing real case studies that demonstrate 
the application of the nomogram in patient management, its 
value and effectiveness can be highlighted in clinical deci‑
sion‑making, helping physicians understand its importance. 
Effectively incorporating the nomogram into the existing 
clinical workflow will enhance clinicians' decision‑making 
capabilities, offering patients more precise and personalized 
care and treatment adjustments. Combining educational 
training, system integration, standardized processes and 
multidisciplinary collaboration will be beneficial in achieving 
this goal, ultimately improving patient health outcomes. 
The feasible initiatives mainly include integrating it with 
Electronic Health Records for direct data access, developing a 
user‑friendly interface for easy data entry, providing training 
for clinicians, embedding it into Clinical Decision Support 
Systems for risk‑based recommendations, establishing feed‑
back channels for continuous improvement, standardizing risk 
communication through clinical documentation, promoting 
collaboration among healthcare professionals, and regularly 
updating the nomogram based on new research. These efforts 
will ultimately enhance the effectiveness and application of 
the nomogram in clinical practice, leading to improved patient 
care outcomes.
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