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ABSTRACT

The accumulation of large epigenomics data consor-
tiums provides us with the opportunity to extrapo-
late existing knowledge to new cell types and con-
ditions. We propose Epitome, a deep neural network
that learns similarities of chromatin accessibility be-
tween well characterized reference cell types and a
query cellular context, and copies over signal of tran-
scription factor binding and modification of histones
from reference cell types when chromatin profiles
are similar to the query. Epitome achieves state-of-
the-art accuracy when predicting transcription factor
binding sites on novel cellular contexts and can fur-
ther improve predictions as more epigenetic signals
are collected from both reference cell types and the
query cellular context of interest.

INTRODUCTION

Over the past decade, large scale projects such as EN-
CODE (1,2) and the Roadmap Epigenomics project (3) have
amassed over 20 terabytes of epigenetic profiles. These pro-
files include measurements of histone modifications, tran-
scription factor binding, and chromatin accessibility, and
are measured in a select set of cellular contexts. This data
has enhanced our understanding of transcriptional regula-
tion within these samples and has served to explore general
questions in chromatin biology, pertaining to the function
of the non-coding genome (4,5), the interplay between his-
tone modifications and transcription factors (6), and their
association with transcription (7–9).

To date, one of the most prevalent types of genome-scale
epigenetic information is chromatin accessibility. Respec-
tive assays such as DNase I hypersensitive sites sequenc-
ing (DNase-seq) (10) and Assay for Transposase-Accessible
Chromatin using sequencing (ATAC-seq) (11) identify ac-
cessible chromatin regions genome-wide through enzymatic
cleavage of exposed DNA. These assays do not only inform
us about the local structure of chromatin, but also aid in
identifying the location of genomic regions (mostly non-
coding) that help regulate transcription from nearby loci
(12,13). Beyond accessibility, regulatory regions are often
associated with other epigenetic events such as binding of
transcription factors (TFs) and other DNA binding pro-
teins, or chemical modifications of histone tails (14). These
events are often indicative of the function of their respective
region (2) and could be evaluated genome-wide through as-
says such as Chromatin Immunoprecipitation followed by
DNA sequencing (ChIP-seq) (15) or Cleavage Under Tar-
gets and Release Using Nuclease (CUT&RUN) (16). Al-
though these assays can in principle be used to identify and
characterize the activity of regulatory regions in a cellular
context of interest (15), running separate ChIP-seq exper-
iments for each of a large number of relevant DNA bind-
ing proteins and histone modifications is time and cost-
intensive and, in some instances, unfeasible due to low input
size.

As a result, the task of predicting the location of such
epigenetic events in silico in lieu of experimental evaluation
received great deal of attention (17). Methods developed
to predict such events can be broadly categorized based on
the genomic properties they use as features for drawing pre-
dictions. The first broadly utilized category of classification
methods is restricted to using only DNA sequences as fea-
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tures (18–21). As it has been repeatedly observed that the
presence of a TF binding site may depend on a wider con-
text around the site (13,22), many approaches use neural
networks to consider wide genomic contexts around a re-
gion of interest to predict epigenetic signal. Although these
methods cannot predict epigenetic events that are specific
to cellular contexts that have a similar genome, they can be
used to explain the effect of changes in DNA sequence on
the strength of the signal of DNA binding proteins and hi-
stone modifications. A second group of classification meth-
ods utilizes available measurements of chromatin state from
a cellular context of interest to predict epigenetic events
which were not measured experimentally (23–26). Many of
these methods use chromatin accessibility in particular as
an indication of cell type specificity due to its prevalence and
ability to capture nuanced variation in accessibility at the
protein-DNA physical interface (17,27). However, a subset
of these methods augment the feature space to additionally
incorporate DNA sequence information, RNA-sequencing
information, or other epigenetic information specific to the
cellular context of interest (24). Regardless of the choice
of features used, an important advantage of using epige-
netic data as features is that it provides the means to distin-
guish epigenetic events between different cellular contexts
that have a similar genome.

One common property of many classification methods
designed to predict epigenetic signal in a new cellular con-
text is that they learn a single model that is applied similarly
to all positions in the genome. In this position-agnostic ap-
proach, models are applied separately for each candidate lo-
cus, using its local properties as features (such as the occur-
rence of DNA binding motifs or the enzymatic cleavage pat-
terns of DNase-seq). To ensure accuracy and generalizabil-
ity, these models are trained to identify local properties that
are commonly predictive in many different loci. The natu-
ral caveat in this approach is that different loci may largely
differ in terms of which specific features (or combination
thereof) are in fact predictive. For instance, a single TF can
bind the genome while interacting with different factors (i.e.
by co-binding or tethered binding (28)), thus leading to dif-
ferent footprints and, possibly, different DNA binding mo-
tifs (28,29).

In order to solve this caveat of position-agnostic learn-
ing, a third group of methods, referred to as imputation
methods, directly uses epigenetic signal from known cellular
contexts to predict in a new cellular context, instead of con-
structing complex features (30–32). Novel imputation meth-
ods, such as Avocado (30) and PREDICTD (32), specifi-
cally use tensor factorization, assuming a low rank repre-
sentation of the feature space, and jointly learn a model for
all missing epigenetic signals (30,32). However, a caveat of
joint learning of epigenetic signal in a single model is that
objectives for each epigenetic signal can contradict each
other, and update model parameters at different rates (33).
These limitations of joint learning can produce sub optimal
predictions for epigenetic signal, compared to models opti-
mized for a particular epigenetic signal of interest.

With these caveats in mind, we present Epitome - a con-
ceptually simple alternative for predicting epigenetic events,
such as TF binding and histone modifications. Similar to
imputation methods, Epitome uses known epigenetic sig-

nal from multiple known cell types to predict epigenetic sig-
nal in a held out cellular context, bypassing the need to
learn complex rules based on chromatin footprinting and
DNA sequence. However, Epitome differs from imputation
methods in three ways. First, Epitome approaches the prob-
lem of predicting epigenetic events as a classification task,
treating each epigenetic signal as a binary event. As we ex-
plain in Overview of Epitome, this approach helps miti-
gate noise that arises from variation across different exper-
iments, antibodies, and protocols that may affect quanti-
tative results. Secondly, imputation methods such as Avo-
cado (30) and PREDICTD (32) use a tensor factorization
scheme, which assumes that epigenetic signals can be largely
explained through a low dimensional representation and
looks for a single decomposition scheme for the entire ten-
sor that couples all prediction tasks. Epitome has the flex-
ibility of treating each prediction task completely indepen-
dently from each other. As we show in Supplementary Fig-
ure S6b, Epitome performs better when considering each
epigenetic signal independently. Lastly, Epitome explicitly
computes local similarities between all available reference
cell types and the query cellular context. These local sim-
ilarities, along with information from reference cell types,
are combined in an ensemble of reference cell types. This
approach helps the model explicitly learn the importance of
experimental data from each reference cell type when pre-
dicting in the query cell type.

As input, Epitome requires chromatin accessibility in a
query cellular context and a set of reference cell types in
which the epigenetic event of interest was assayed. Epitome
particularly requires chromatin accessibility as its primary
indicator of cell type specificity because it is normally easy
to generate (10,11) and is informative of epigenetic events
(34). It then ‘copies over’ epigenetic events from the ref-
erence cell types to the query cellular context in positions
where their chromatin accessibility is similar. In this case,
we define similarity by comparing chromatin accessibility
profiles in regions of different resolution surrounding the
genomic locus in question. This similarity, along with the
manner by which evidence across multiple reference cell
types is aggregated, are learned using a neural network.

At the heart of our approach is the reliance on large
amounts of publicly available data. While it is the case that
practically any given cellular context will have a uniquely
characteristic epigenome, there is a great deal of overlap
between contexts. Consequently, epigenetic events that are
uniquely observed in one cellular context become less preva-
lent as the number of other cellular contexts that have mea-
sured epigenetic events become available. This phenomenon
is demonstrated in Figure 1A, showing that for a given epi-
genetic event (binding of a certain TF, or a certain his-
tone modification) the prevalence of genomic sites that are
uniquely observed in only one cellular context in the ChIP-
Atlas database (35) decreases substantially with the num-
ber of cellular contexts in which this event has been assayed
with ChIP-seq. Particularly, we observe a mean level of cov-
erage, or sensitivity, of over 90% for widely-assayed TFs and
histone modifications (measured in 26 or more cellular con-
texts available in ChIP-Atlas). Looking ahead, we expect a
continued increase in the size and quality of data sets in the
public domain, leading to further increase in coverage.
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Figure 1. Epitome leverages multiple reference cell types in public data consortiums to learn the shared similarities of chromatin accessibility and its
predictive effect on epigenetic events. (A) Weighted means and standard deviation of percent of unique peaks observed in a cell type as the number of
available cell types for a given ChIP-seq target increases. Means and standard deviations are weighted inversely proportional to the number of data points
for a given ChIP-seq target. ChIP-seq targets include transcription factors, histone modifications, chromatin accessibility, chromatin modifiers, and histones
from called peaks in the ChIP-Atlas database (35). (B) Schematic of Epitome for a single ChIP-seq target. Features for each cell type include ChIP-seq
peaks at a genomic locus and the chromatin accessibility similarity vector (CASV), which compares the chromatin accessibility of each reference cell type
to the query cellular context. The model outputs ChIP-seq peak probabilities for the query cellular context.

An important caveat of Epitome is that it will miss all
sites that were not observed in any other cellular context.
In the following, we show that in practical application this
is a reasonable compromise. We compare Epitome to var-
ious methods that are designed to predict histone modifi-
cations and protein binding sites in novel cellular contexts.
These methods include TF footprinting methods (23) and
methods that use a combination of features constructed
from chromatin accessibility, epigenetic signal and DNA se-
quence (24,30,36). Regardless of the choice of features used,
Epitome achieves state-of-the-art accuracy when predicting
TF binding sites in held out cellular contexts and chromo-
somes. We additionally demonstrate the deleterious effect
of joint learning for multiple epigenetic signals and suggest
that Epitome, along with current imputation methods, may
achieve optimal performance by using a loss function ded-
icated to one epigenetic signal of interest. We additionally
show how Epitome can extend its definition of cell type sim-
ilarity to incorporate commonly assayed histone modifica-
tions, in additional to chromatin accessibility. We show that

this extension of similarity between reference cell types and
the query cellular context can further improve predictive
performance.

Finally, we leverage Epitome to predict acetylation of
H3K27 across seven time points in neural differentiation,
demonstrating the ability of Epitome to leverage changes
in chromatin accessibility from the same starting popula-
tion to provide sensitive predictions of histone modifica-
tions over alternative methods. These results demonstrate
that Epitome can significantly enrich the information that
is routinely extracted in studies that use a limited view of
the epigenome. Since such studies are increasingly preva-
lent in literature, we believe that such a method will have a
substantial impact, providing a mechanistic complement to
commonly used gene-ontology based approaches (37).

Epitome is an open-source project, and includes pub-
lished tools and documentation. Epitome is available on
GitHub and can be installed using the Python Package
Index (PyPI). Documentation for Epitome is available at
readthedocs.
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MATERIALS AND METHODS

Processing ENCODE data for model training and validation

Epitome uses peak called DNase-seq and ChIP-seq from
ENCODE for training, validation and testing models. Peak
called DNase-seq and ChIP-seq from the hg19 and hg38
genome were processed from the ENCODE portal (ver-
sion v94) (2). We utilized ChIP-seq and DNase-seq experi-
ments from all cell types that had available DNase-seq and
contained ChIP-seq peaks for at least one ChIP-seq target.
Only ChIP-seq targets that had experiments for more than
three cell types were considered. We only considered experi-
ments that were compliant with the ENCODE pipeline and
had no audit errors. This filter resulted in 17 cell types with
153 unique ChIP-seq targets for hg19, and 93 cell types with
250 unique ChIP-seq targets for hg38. We used optimal irre-
producible discovery rate (IDR) peaks (https://github.com/
nboley/idr) for ChIP-seq experiments when available in the
ENCODE portal and MACS2 called peaks for the remain-
ing DNase-seq experiments (38). All ENCODE accessions
used are listed in Supplementary Table S2.

We next joined all peak sets together in 200 bp binned re-
gions using bedtools (39). This join resulted in 8.5 million
binned regions for h19, and 10.9 million regions for hg38,
each of which contained at least one DNase-seq or ChIP-
seq peak in at least one of the included cell types. Mitochon-
drial and sex chromosomes were removed from the peak set.
The final regions were divided into a set for training, vali-
dation, and test. The validation set contains all 200 bp re-
gions on chromosome 7 that have at least one DNase-seq
or ChIP-seq peak. The test set contains all 200 bp regions
on chromosomes 8 and 9 that have at least one DNase-seq
or ChIP-seq peak. The training set consists of all remaining
autosomal chromosomes, including chromosomes 1–6, and
10–22.

Code for downloading and processing ENCODE (2)
DNase-seq and ChIP-seq datasets used for Epitome train-
ing and validation can be found in the Epitome GitHub
repository. Curated datasets for hg19 and hg38 are publicly
available in Amazon S3.

Processing ChIP-Atlas database for analyzing the fraction of
unique peaks across cell types for available ChIP-seq targets

In Figure 1A, we calculate the fraction of unique peaks
found in a held-out cell type for a given ChIP-seq tar-
get, or DNase-seq. We use ChIP-seq and DNase-seq from
ChIP-Atlas (35), a comprehensive database of ChIP-seq
and DNase-seq experiments that are publicly submitted in
Sequence Read Archives (SRA) (40). We selected all ChIP-
seq targets from ChIP-Atlas that were observed in at least
three cell types, and selected

all cell types that had DNase-seq and at least one ChIP-
seq experiment. This filter resulted in downloading exper-
iments across 197 cell types for 694 ChIP-seq targets for
hg19 and 194 cell types for 697 ChIP-seq targets for hg38.
Experiments used from ChIP-Atlas are listed in Supple-
mentary Table S3. Significant peaks from each experiment
were defined as peaks called from MACS2 (38) with a Q-
value < 1.0e–5. Because many of the cell type and ChIP-seq
target combinations in ChIP-Atlas have multiple replicates,

we used a consensus approach to merge peaks from repli-
cates. This consensus approach chose all peaks for a given
type/target combination that were present in at least 25% of
the replicates. If only two replicates were available, all peaks
were used. If only three replicates were available, all peaks
present in at least two replicates were used. Final consen-
sus peaks for each type and target combination were binned
into 200 bp regions of the genome.

In Figure 1A, we calculate the fraction of unique peaks
that are observed in a held-out cell type in ChIP-Atlas, com-
pared to peaks identified in remaining cell types for 121
ChIP-seq targets that had experimental data from at least
four cell types. Let A be the set of peaks in a held-out cell
type for a ChIP-seq target of interest, where this ChIP-seq
target is available in n cell types. Let Bi be the set of all peaks
combined from a set of randomly selected cell types i, where
|i| < n.

We then calculate the fraction of unique peaks shown in
Figure 1A and Supplementary Figure S2 as:

|A− Bi |
|A| (1)

Ideally, for each ChIP-seq target, we would calculate the
fraction of unique peaks for every held-out cell type, for ev-
ery combination of cell types in which that ChIP-seq tar-
get is measured in. However, for some ChIP-seq targets,
this is computationally infeasible. For a target available in

n cell types, there are
∑n−1

i = 1 n(
n − 1

i ) combinations of held

out cell types and choices of reference cell types. For ex-
ample, H3K4me3 is available in 138 cell types, resulting

in
∑137

i = 1 138 (
137

i ) = 2.4 × 1043 combinations. Due to this

constraint, we randomly choose a held-out cell type to de-
fine A and sample the remaining cell types to define set
Bi for a given target. |i| is chosen randomly for each sam-
ple, and ranges from 1 to n – 1 for a given target and held
out cell type combination. We perform this sampling pro-
cedure 3,000 times to calculate the fraction of unique peaks
for 3000 combinations of cell types chosen to form Bi for a
given ChIP-seq target.

Because we want to observe general trends in the rela-
tionship between the fraction of unique peaks and num-
ber of available cell types, we do not want certain ChIP-
seq targets available in many cell types to overweight the
results shown in Figure 1A. Therefore, for each number of
cell types, shown on the x-axis in Figure 1A, we calculate
the weighted mean and weighted standard deviation of frac-
tion of unique peaks for all combinations of ChIP-seq tar-
gets and held out cell types. Each data point representing a
ChIP-seq target and held out cell type is weighted inversely
proportional to the number of samples for that TF observed
at the number of selected cell types.

Overview of Epitome

Epitome predicts the genomic locations of epigenetic events
that can be measured through ChIP-seq, including protein-
DNA binding sites, histone modifications, chromatin mod-
ifier binding sites, and locations of histone variants. All
ChIP-seq targets and cell types used in Epitome are listed in

https://github.com/nboley/idr


PAGE 5 OF 22 Nucleic Acids Research, 2021, Vol. 49, No. 19 e110

Supplementary Table S2. Epitome can predict unmeasured
epigenetic events in any cellular context of interest, as long
as genome-wide measurements of chromatin accessibility in
that context is available. This is shown in Figure 1B, where
chromatin accessibility from a query cell type c′is compared
to chromatin accessibility from reference cell types in order
to predict epigenetic signal in c′. As input, Epitome requires
peak called DNase-seq or

ATAC-seq in the form of bed or narrow peak file for-
mats from the query cellular context of interest, as well as a
similar formatted file containing all genomic regions to be
queried. For training, Epitome additionally requires a set
of cell types that have both measured epigenetic signal for
the epigenetic event of interest and chromatin accessibility.
We refer to these cell types with known epigenetic signal
and available chromatin accessibility as reference cell types.
Because of the abundance of DNase-seq available in EN-
CODE (34), Epitome uses DNase-seq as the primary mea-
sure of chromatin accessibility for model training. How-
ever, Epitome can make predictions in a query cellular con-
text using other assays that measure chromatin accessibil-
ity, such as ATAC-seq (see Supplementary Figure S14). We
leverage chromatin accessibility from all reference cell types
to compute an explicit metric of similarity between refer-
ence cell types and the query cellular context. This metric
is referred to as the chromatin accessibility similarity vector
(CASV), and compares the similarity between reference cell
types and a query by comparing the similarity of chromatin
accessibility at multiple windows of resolution surrounding
a genomic locus of interest (see Measuring cell type sim-
ilarity with the Chromatin Accessibility Similarity Vector
(CASV)). The CASV, along with binary epigenetic events
from reference cell types, are used as features in a neural
network, which uses the CASV to weigh the importance of
each reference cell type for predicting epigenetic events in
the query. Final predictions are the probabilities of observ-
ing each epigenetic event in question.

The set of candidate positions on which Epitome is ap-
plied consists of all loci in which the epigenetic event of in-
terest has been observed in at least one of the reference cell
types. This set of candidates is determined by unifying all
the observed peaks from reference cell types (see Processing
ENCODE data for model training and validation). One im-
portant observation is that Epitome simplifies the input epi-
genetic data as binary, and the features it uses represent the
presence or absence of ‘peaks’ (or a signal). While this can
lead to loss of information, it helps mitigate bias and noise
arising from variations in sequencing depth, quality of an-
tibodies and other technical factors that may affect the data
quantitatively (41). This strategy also facilitates the use of
multiple types of epigenetic events as features (in addition
to the mandatory accessibility data) without the need for
calibration of their dynamic range or other quantitative at-
tributes. Specifically, if a query cellular context has available
measurements of certain histone modifications in addition
to chromatin accessibility, these can be used to better eval-
uate similarity to the reference cell types and thus guide the
prediction process (by extending the definition of CASV; see
Adding histone modifications to the CASV).

Underlying Epitome is a feed forward neural net-
work (NN). Epitome’s underlying NN can be written as

P(y|x, w). For the problem of predicting the presence of
ChIP-seq peaks, y ∈ [0, 1] is a set of classes, where each class
is a ChIP-seq target predicted by Epitome. The values of y
indicate the presence (1) or absence (0) of a ChIP-seq peak
in a given 200 bp region in the genome. w are a set of pa-
rameters learned by the Epitome model. x represents a set
of features used to train an Epitome model. Features x con-
tain ChIP-seq peaks from well characterized ENCODE cell
types, as well as a measure of chromatin accessibility simi-
larity between ENCODE cell types and query cellular con-
text q. These features x are explained in greater detail in
Sections Measuring cell type similarity with the Chromatin
Accessibility Similarity Vector (CASV) and Constructing
features from ENCODE cell types. Figure 1B represents a
schematic of Epitome. This figure visualizes how Epitome
computes the similarity of chromatin accessibility between
ENCODE cell types and q and uses this similarity as input
into the model, along with binarized ChIP-seq peaks from
ENCODE cell types, to predict peak probabilities for ChIP-
seq targets in q. Model output are the probabilities of ob-
serving a peak for each ChIP-seq target being predicted in q
at a 200 bp genomic region i. Epitome can predict individ-
ual or multiple ChIP-seq targets in a single model, depend-
ing on which ChIP-seq targets and cell types are selected to
train the model. We model the loss as the sigmoid cross en-
tropy between the model’s prediction of ChIP-seq targets ŷ
and the ground truth labels y. Cross entropy loss is defined
in defined in Equation (2).

loss = max (ŷ, 0) − ŷ × y + log
(
1 + e−|ŷ|) (2)

Equation (2) is derived from the logistic loss (−y ×
log(sigmoid(ŷ)) + (1 − y) log(1 − sigmoid(ŷ)), modified to
avoid overflow and provide stability (42). We parameterize
P(y|x, w) by constructing cell type specific channels for each
reference cell type used in training. Cell type specific chan-
nels are visualized in Figure 1B and explained in Section
2.3.2.

Measuring cell type similarity with the Chromatin Accessibil-
ity Similarity Vector (CASV). As previously mentioned,
Epitome uses a metric of cell type similarity to weigh the
importance of reference cell types when predicting epige-
netic signal in a query cellular context. This metric is re-
ferred to as the chromatin accessibility similarity vector
(CASV). Figure 1B visualizes how the CASV is calculated
between a query cellular context q and a reference cell type
k at a 200 bp genomic region i. The CASV compares the
agreement of binarized accessibility peaks between q and
k at varying genomic windows up to 12 kb surrounding i.
This maximum genomic distance of 12 kb was determined
through hyperparameter search using validation chromo-
some 7 (See Supplementary Figure S12a). Epitome uses the
CASV to determine how similar q is to all reference cell
types. This similarity is leveraged to determine the relative
importance of each reference cell types in predicting ChIP-
seq peaks for q. Without the CASV, Epitome is not able to
provide cell type specific predictions for q, as shown in Sup-
plementary Figure S12a.

We formally define the CASV in Equation (3). ak and
aq indicate binarized chromatin accessibility peaks for cell
types k and q binned in 200 bp bins across the genome,
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where ak
i ∈ [0, 1] represents the presence (1) or absence (0)

of a peak in bin i. The CASV calculates the fraction that ak

and aq have shared chromatin accessibility peaks in region
i. It also calculates the fraction that ak and aq have shared
chromatin accessibility peaks in larger genomic windows
surrounding region i. We consider exclusive 200 bp genomic
windows surrounding i in windows R = {rz; 0 ≤ z ≤ 3}. We
set |r0| = 1, |r1| = 5, |r2| = 19, and |r3| = 59, representing
the number of 200 bp bins considered in each window sur-
rounding i. We first compute CASVn, a vector of fractions
of how many bins ak and aq agree for each window rz ∈ R
surrounding region i, relative to the size of each window.
Here, agreement criteria are met if both q and k have a peak
or do not have a peak. Each window r is computed exclu-
sively from smaller windows to avoid redundancy:

CASVn
(
i, aq , ak) =

[
1

[
ak

i = aq
i

]
|r0| ,

∑
g∈r1,g /∈r0

1
[
ak

g = aq
g

]
|r1| − |r0| ,

∑
g∈r2,g /∈r1

1
[
ak

g = aq
g

]
|r2| − |r1| ,

∑
g∈r3,g /∈r2

1
[
ak

g = aq
g

]
|r3| − |r2|

⎤
⎦

Because chromatin accessibility peaks are sparse across
the genome for most cell types, regions where both q and k
have a chromatin accessibility peak are rare. Therefore, high
values of CASVn mostly represent regions of the genome
where ak and aq do not have peaks. However, to gain a
complete understanding of cell type similarity, we must also
know where ak and aq are both accessible. We encapsulate
shared accessibility in CASVp. This metric indicates shared
regulatory regions between cell types (13).

CASVp
(
i, aq , ak) =

[
ak

i · aq
i

|r0| ,

∑
g∈r1,g /∈r0

ak
g · aq

g

|r1| − |r0| ,

∑
g∈r2,g /∈r1

ak
g · aq

g

|r1| − |r1| ,

∑
g∈r3,g /∈r2

ak
g · aq

g

|r3| − |r2|

]

The final CASV for a region i is a concatenation of the
agreement and positive CASV vectors:

CASV
(
i, aq , ak)

= [
CASVp

(
i, aq , ak) || CASVn

(
i, aq , ak) ]

(3)

CASV(i, aq , ak) are used as features in the Epitome
model, described in Equation (4). The final CASV compar-
ing similarity between two cell types is a vector of length
8. Using the CASV, Epitome is thus able to learn different
weights corresponding to elements in the CASV and can

thus determine the relative importance of chromatin acces-
sibility similarity at varying distances from the genomic re-
gion of interest for each reference cell type.

In practice, Epitome uses binarized peaks called from
DNase-seq to calculate the CASV during model training.
However, ATAC-seq can also be used to compute the CASV
(See Supplementary Figure S14). In the case of model train-
ing, the CASV measures similarity of binarized DNase-seq
peaks between a held out cell type k’ and each training cell
type k ∈ C, k �= k′ where C is the set of reference cell types in
which the epigenetic event of interest has been measured. In
the case of evaluating a query cellular context q, the CASV
measures either binarized DNase-seq or ATAC-seq peak
similarity between q and each reference cell type k ∈ C.

Constructing features from ENCODE cell types. Epitome
trains on multiple reference cell types in a single model.
These reference cell types are primarily taken from EN-
CODE. This allows Epitome to jointly learn from multiple
cell types, without biasing models to overfit to a single train-
ing cell type. Therefore, features x for training a model con-
tain cell type specific features for each cell type k ∈ C that
is selected for training. Here, we notate the number of cell
types used to train a model as n, which is equivalent to |C|.
Epitome can train on 2–93 ENCODE cell types in a single
model. Because each reference cell type is uniquely charac-
terized with different ChIP-seq targets, not all cell types can
be utilized by Epitome to predict binding for a ChIP-seq
target of interest. Therefore, the cell types chosen to train a
model is determined by the number of cell types that have
available ChIP-seq experiments for the ChIP-seq targets of
interest. Figure 1B demonstrates an example schematic of
an Epitome model in which three reference cell types are
used for training a model that predicts an epigenetic event
for a single ChIP-seq target.

The set of cell type specific features xk for a cell type k
selected for training is written in Equation (4). In Equation
(4), Fk

i represents binarized ChIP-seq peak in a 200 bp re-
gion i for the set of all ChIP-seq experiments that are avail-
able from cell type k. CASV(i, aq , ak) is the chromatin ac-
cessibility similarity vector (CASV, see Section 2.3.1), and
measures the similarity between chromatin accessibility in
the query cell type, aq , and the chromatin accessibility in
the training cell type, ak, at region i. || represents concatena-
tion.

xk
i = [Fk

i || CASV
(
i, aq , ak)] (4)

Finally, xk
i is input into a cell type specific channel with

two densely-connected layers. The input dimension for each
cell type channel is the number of ChIP-seq targets included
in the model and available in k, plus the dimension of the
CASV (see Equation 3). This dimension can range from
9 (1 ChIP-seq target + 8 dimensional CASV) to 258 (the
maximum number of ChIP-seq targets in a dataset + 8-
dimensional CASV). The dimension of the first layer is the
input dimension divided by 2. The dimension of the sec-
ond layer is the input dimension divided by 4. Each layer
uses a hyperbolic tangent activation function. The output
of the last layer from each cell type channel is combined into
a final output layer that applies a sigmoid non-linearity to
gather final predictions ŷ.
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Training an Epitome model. Epitome trains a model on n
ENCODE cell types by using n – 1 cell types for features
x (defined in Equation 4) and a held-out cell type as la-
bels y. Epitome can train using up to 93 cell types in a sin-
gle model, depending on the data availability of cell types
for the ChIP-seq target being evaluated. Training on multi-
ple cell types allows Epitome to generalize well to new cell
types, and allows Epitome to achieve similar precision to
methods that see the cell type being evaluated during train-
ing (Supplementary Figures S10 and S11). To make full
use of publicly available ChIP-seq experiments and effec-
tively generalize to new cell types, Epitome uses a cell type
rotation mechanism for training. This mechanism rotates
through which cell type is used for y, and uses the remain-
ing cell types to construct x. This rotation mechanism is re-
peated for all regions of the genome, excluding validation
and testing regions, until the method converges. Algorithm
1 demonstrates how Epitome iterates through all training
regions and all ENCODE cell types to update model pa-
rameters, using a different training cell type for y in each it-
eration. This procedure is visualized in Supplementary Fig-
ure S4, where at each iteration, the choice of cell types used
in x and the cell type used for y are rotated through until
the model has converged.

Note that when a given cell type is used for labels y dur-
ing training, its cell type specific features are still included in
x through its respective cell type specific channel. Although
this allows the model to see the labels during training, it also
allows the model to learn the importance of cell type simi-
larity in predicting ChIP-seq peaks. In this case, the model
will compute identity cell type similarity between the cell
type used for y and its features in x. This high similarity ul-
timately teaches the model to up-weight features from cell
types that are similar to the cell type being predicted.

We determine convergence of Epitome by defining an
early stopping criterion in Training with early stopping to
prevent overfitting that determines when to stop training.
This criteria halts training of models when validation loss
no longer sees improvement. Supplementary Figure S16 vi-
sualizes changes in validation and training loss for a sub-
set of 18 ChIP-seq targets in a joint Epitome model trained
for 2000 iterations, where training loss is calculated as the
mean sigmoid cross entropy across 10 000 randomly se-
lected training regions, and the validation loss is calculated
as the mean sigmoid cross entropy across all 200 bp regions
on chromosome 7 that have epigenetic signal from at least
one of the 18 ChIP-seq targets. Epitome sets a batch size of
64, and trains between 800 and 5000 batches.

Epitome models require different memory requirements
and time allocation based on the number of ChIP-seq tar-
gets included in a model, and the number of batches re-
quired for convergence. Models trained on only one ChIP-
seq target, with few available reference cell types take 0.5GB
of RAM (16 features from reference cell types), while meth-
ods training on many ChIP-seq targets with many reference
cell types, require up to 20GB of RAM (for ChIP-seq targets
resulting in 928 features from reference cell types). On hard-
ware configurations defined in Resource requirements, run
times range from 14 minutes (for 800 batches) to 50 min (for
5000 batches). Run times depend on the number of batches
required for convergence.

Algorithm 1 Rotate through cell types for training

Require: C (set of training cell types)
Require: R (genomic regions selected for training)

1: for i in R do
2: for k in C do
3: xi ← xi

j ∀j ∈ C, j (xi
j are cell type specific features as

defined in Equation 4)
4: yi

k ← ChIP-seq peaks for cell type k in region i
5: loss = calculateLoss(xi, yi

k)
6: updateGradients(loss)

7: if model has converged then
8: exit
9: end if
10: end for
11: end for

Sampling underrepresented ChIP-seq targets. When train-
ing a model for multi-label classification, imbalance across
labels in the training data can result in a model that is bi-
ased towards learning over-represented labels. This problem
is known as imbalanced learning. Imbalanced learning is
present in models that predict peaks for multiple ChIP-seq
targets because the quantity of peaks across the genome for
different ChIP-seq targets is highly variable. As a solution to
the problem of imbalanced learning when predicting ChIP-
seq peaks, we over-sample underrepresented ChIP-seq tar-
gets to create a dataset with similar distributions of peaks
for each ChIP-seq target in a multi-label model. This allows
the model to see similar counts of positive instances for each
ChIP-seq target during training.

To effectively over-sample underrepresented ChIP-seq
targets, we borrow key incites from existing literature (43)
which calculates an imbalance ratio, IRLbl, for each label
to determine which labels need to be over-sampled. IRLbl
measures how imbalanced a given label in a dataset is, rela-
tive to the other labels. Higher values of IRLbl indicate that
a given label is more imbalanced, and thus needs to be over-
sampled. IRLbl is defined in Equation (5). In this equation,
D = {(x}i , yi ) represents the multi-label dataset, L repre-
sents the set of labels (or ChIP-seq targets), and yi repre-
sents labels for the ith instance of dataset D.

I RLbl (l) =
argmaxL|L|

l ′=L1

(∑|D|
i=1 h (l ′, yi )

)
∑|D|

i=1 h (l, yi )
,

h (l, yi ) =
{

1 l ∈ yi
0 l /∈ yi

(5)

For each label l, IRLbl(l) can then be compared to the
mean imbalance ratio, meanIR, for all labels l ∈ L. For each
label l, if IRLbl(l) is greater than the meanIR, we re-sample
kl regions in the genome that have a ChIP-seq peak for l.
Here, we set kl to be:

kl = 10
I RLbl (l)
meanI R

∗
|D|∑

i = 1

h (l, yi ) (6)

The final set of training instances includes all original in-
stances in D, as well as instances oversampled for all labels
l ∈ L with IRLbl(l) > meanIR.
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In the case where Epitome is only trained on one ChIP-
seq target, multi-label sampling is not required. In this case,
we undersample non-peak instances for the single ChIP-seq
target so that there are 10 times more non-peak instances,
compared to the number of positive peak instances.

Training with early stopping to prevent overfitting. Like all
machine learning models, Epitome is susceptible to over-
fitting by memorizing the detail and noise of reference cell
types, which can negatively impact performance on unseen
cellular contexts. Although overfitting is a common prob-
lem with neural network architectures, regularization meth-
ods such as early-stopping methods can help (44). Early
stopping methods halt training once the model stops im-
proving on a validation set, effectively stopping training
before the model begins to overfit. Without this step, the
model may memorize biological contexts specific to the cell
types being trained on. Anchor, a co-winner of the 2017
ENCODE-DREAM challenge, addresses this problem by
implementing a crisscross validation early stopping scheme
that evaluates performance on a held out validation set dur-
ing training to determine when to stop training (45). An-
chor splits its training data into two sets (train and train-
validation) and computes the loss on the train-validation
set after every 1000 batches of training. Once the train-
validation loss plateaus, the model stops training (45).

Epitome similarly provides an optional early-stopping
method that evaluates on a subset of the genomic regions
to determine when to stop model training. First, genomic
regions are split into two sets: a training set consisting
of chromosomes 1–6, 10–21 and a validation set consist-
ing of chromosome 22 (called the train-validation set) that
is used to evaluate the model during training. Epitome
then trains a model on the training set with the specified
training cell types and computes the weighted mean sig-
moid cross entropy loss (called the train-validation loss) on
the train-validation data set every train-validation iteration
(200 training batches). We found that validating every 200
batches was more effective than at a lower frequency, as
most of Epitome’s learning occurs in the first 1000 train-
ing batches. To speed up run-time but prevent Epitome
from overfitting to the train-validation set, we sample 1000
points from the train-validation set every train-valid iter-
ation (200 training batches) using the sampling method
described in Sampling underrepresented ChIP-seq targets.
Once the model’s train-validation loss stops decreasing,
Epitome halts model training.

Because the train-validation loss might increase before
decreasing to a minimum (46), we allow the model to train
for up to five additional train-validation iterations after
the train-validation loss stops improving, in order to pre-
vent under-fitting. Sometimes the model might still over-
train if the train-validation loss decreases by minuscule
amounts every train-validation cycle, as the model will con-
tinue to train without significant improvements. Thus, we
added a min-delta hyper parameter that requires the train-
validation loss to decrease by a certain amount from the
best train-validation loss in order to qualify as a train-
validation loss improvement. For Epitome, we found 5 and
0 to be the most optimal patience and min-delta, respec-
tively, after tuning and comparing the hyperparameters

shown in Supplementary Figure S15b. Training is halted
once either the model begins to converge (based on the min-
delta and/or patience hyperparameters) or the model trains
on the maximum number of training steps.

Supplementary Figure S15a compares the model accu-
racy (auPRC) with and without the early stopping method
on 85 ChIP-seq targets. Epitome early stopping validation
performs comparably with running Epitome for a set num-
ber of 5000 training batches, with the exception of ZNF274.
ZNF274 achieves significantly better performance than its
baseline method because it requires an average of 2680
batches using early stopping validation, while other ChIP-
seq targets require a mean of 4300 batches using early stop-
ping validation. These results imply that ZNF274 benefits
from early stopping more than other ChIP-seq targets, and
thus avoids overfitting that occurs when running for 5000
batches.

Adding histone modifications to the CASV. Figure 4C and
D demonstrates the effect on performance of adding his-
tone modifications in addition to DNase-seq to compute
cell type similarity in the CASV. We extended Equation (3)
to compute the similarity of multiple assays between two
cell types. To extend the CASV to use additional histone
modifications, we compute the CASV for each assay, as
shown in Equation (3), and concatenate results together as
input features.

To assess the effect of extending the CASV to include
histone modifications, we trained 256 Epitome models on
13 TFs, including: TCF12, MAFK, JUND, YY1, REST,
CTCF, GABPA, RFX5, TBP, SIN3A, NRF1, KDM1A
and EP300. These TFs were chosen because they had ChIP-
seq availability in at least four ENCODE cell lines that
also had ChIP-seq for 7 histone modifications. Each model
considered a different combination of the following his-
tone modifications to be used in the CASV to compare cell
lines: DNase, H3K9ac, H3K4me3, H3K4me2, H3K4me1,
H3K36me3, H3K27me3 and H3K27ac. For each of the 256
combinations of histone modifications and DNase-seq con-
sidered in the CASV, we trained four models on three of
four cell lines and evaluated on the fourth held out cell lines.
Cell lines considered include K562, H1-hESC, HepG2 and
GM12878. Each model was evaluated on 50,000 regions
from chromosome 7.

Comparison to existing methods for predicting transcription
factor binding sites in new cellular contexts

We compared Epitome to three methods that are designed
to predict TFBS in cellular contexts not seen during train-
ing. This comparison includes Avocado (30), Catchitt (24),
and DeFCoM (23). Each of these methods uses a different
algorithm and different features as input to train and pre-
dict TFBS. Information regarding each algorithm and the
features used for each method are listed in Supplementary
Table S1. Because each method differs in their features and
regions used for training, we compare to each method dif-
ferently to ensure a fair comparison. We compared these
methods by predicting binding sites for 77 TFs and chro-
matin modifiers in 40 held out cell lines, tissues, and primary
cells, enumerated in Supplementary Table S6. To ensure that
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methods were not tested on sequences that are similar to
the training data, we held out chromosomes 8 and 9 for
evaluation of all methods. We specifically chose to hold out
two whole chromosomes to ensure that there were sufficient
chromosomes for training all models, allowing methods to
sufficiently generalize. Additionally, this strategy of holding
out entire chromosomes for validation and testing was sim-
ilarly used by competing methods (19, 24) and ENCODE
DREAM challenges (36). However, because Avocado can-
not predict epigenetic signal in regions it has not seen during
training, we train Avocado on chromosomes 8 and 9. Figure
2 compares these methods against two metrics: area under
the precision recall curve (auPRC) and and partial area un-
der the receiver operating characteristic curve (pAUC), us-
ing sklearn (47). We calculate the standardized pAUC (48)
over the range of false positive rates ranging from 0 to 0.05
to limit our analysis to regions on the receiver operating
characteristic curve with high specificity.

Training, evaluation and comparison to DeFCoM. DeF-
CoM (23) is a footprinting method that uses enzymatic
cleavage patterns of DNase I from DNase-seq or Tn5 trans-
posase from ATAC-seq to predict TF binding sites. We
chose to compare to DeFCoM because it was shown to pre-
dict TFBS better than nine other footprinting methods (23).
Unlike Epitome, DeFCoM is limited to using data from a
single reference cell type for training, and its feature set is
limited to a genomic context of 100 bp surrounding a ge-
nomic locus of interest. As input, DeFCoM requires the ge-
nomic positions of motif sites for all available motifs specific
to a TF of interest. To gather positions of motif sites, we
used motifs from the Cis-BP database (49). We additionally
used motifs published by Kheradpour et al. (50), available
at http://compbio.mit.edu/encode-motifs/ (See Supplemen-
tary Table S5 for a list of motifs used). All motifs were pro-
cessed using FIMO (51) to identify motif sites for each motif
of interest. We calculate the FIMO background model as a
0 order Markov model over the hg38 genome.

We next trained DeFCoM models on all combinations
of TFs and cell types that had available ChIP-seq data and
motifs from either Cis-BP or Kheradpour et al. (50). All
combinations considered are listed in Supplementary Ta-
ble S6. For each combination, three hg38 ChIP-seq peak
experiments were downloaded from ENCODE and com-
bined to define the set of ChIP-seq peaks. We trained
each model on all autosomal chromosomes, except chro-
mosomes 7, 8, and 9, which were held out for validation
and testing. We trained on all motif sites for a given TF,
as identified using FIMO, where motif sites overlapping
a ChIP-seq peak were labeled as positive and motif sites
not overlapping a ChIP-seq site were labeled as negative.
We additionally filtered out motif sites as suggested by
Quach et al. (23). This filtering strategy removed any mo-
tif sites that fell in ENCODE blacklisted regions, available
at https://github.com/Boyle-Lab/Blacklist/raw/master/lists/
hg38-blacklist.v2.bed.gz, overlapped DNase-seq peaks by
less than 10%, or were less than 400 bp from chromosome
boundaries. We additionally removed inactive motif sites
that had ChIP-seq fold change over control greater than 1.
We furthermore did not consider TF and cell type combi-
nations that had less than 10 active motif sites overlapping

ChIP-seq peaks. We downloaded one DNase-seq alignment
file and one DNase-seq peak file for each cell type of interest
from ENCODE, filtering out potential DNase-seq experi-
ments that had audit errors and biosample treatments. We
installed DeFCoM using PyPI and trained DeFCoM us-
ing default parameters. In total, we trained 323 DeFCoM
models. auPRC and pAUC scores for both methods can be
found in Supplementary Table S7.

DeFCoM does not allow training on more than one cell
type. Therefore, DeFCoM cannot make predictions in a
held-out cell type while considering information from mul-
tiple available cell types. Therefore, to get predictions in a
held-out cell type, we used an ensemble method by aver-
aging DeFCoM predictions from all models trained using
DNase-seq from the remaining cell types to gather predic-
tions in the held-out cell type of interest.

Because DeFCoM is a motif-centric method, it was not
designed to predict TFBS in regions not overlapping motif
sites. Therefore, we only compare Epitome and DeFCoM in
regions overlapping motifs, shown in Figure 2B and Supple-
mentary Figure S8. Additionally, DeFCoM trains separate
models for each TF of interest. We therefore compare DeF-
CoM to Epitome by training individual Epitome models for
each TF of interest, instead of using a joint Epitome model
that predicts binding for multiple TFs.

Defining the test set to compare Epitome, Catchitt and Av-
ocado. Unlike motif centric methods, Catchitt, Epitome,
and Avocado can predict TFBS outside of motif sites.
We therefore evaluated these three methods on all 200 bp
binned regions of chromosomes 8 and 9. However, Epit-
ome can only generate features and make predictions in re-
gions overlapping known epigenetic events. When Epitome
predicts in regions not overlapping epigenetic events, it will
automatically predict non-binding (0). Therefore, if we in-
clude genomic regions outside of this set, which are, by defi-
nition, non-binding, Epitome will have artificially high area
under the receiver operating characteristic curve, as it will
predict these regions as absolute true negatives. In contrast,
other methods that can predict in these regions will have in-
creased numbers of false positives, resulting in worse preci-
sion than if these regions were not included. This is demon-
strated in Supplementary Figure S7, which shows compar-
isons of pAUC and auPRC when evaluated on all 200 bp
regions on chromosomes 8 and 9. We therefore only eval-
uate on 200 bp regions of chromosomes 8 and 9 that over-
lap at least one ChIP-seq peak from the TF being evalu-
ated, or overlap a DNase-seq peak from at least one of the
cell types that has measured ChIP-seq for the TF in ques-
tion. This choice of the testing set has three advantages. The
first advantage is that it removes all regions in which Epit-
ome will automatically predict 0 in regions that are truly
negative, thus providing an advantage to competing meth-
ods. The second benefit of sub-sampling negative regions
from the genome in general is to balance out positives and
negatives to get more meaningful receiver operating charac-
teristic curves. In the case that we consider all nonbinding
regions, these metrics will be skewed heavily towards pre-
dicting negatives, and would thus give us less information
on the ability of individual methods to detect true positives.
The third benefit is that this sampling strategy of the test

http://compbio.mit.edu/encode-motifs/
http://arxiv.org/abs/https://github.com/Boyle-Lab/Blacklist/raw/master/lists/hg38-blacklist.v2.bed.gz
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Figure 2. Comparison of methods for predicting transcription factor binding sites (TFBS) for 77 transcription factors (TFs) and chromatin modifiers in
40 primary cells, cell lines, and tissues from ENCODE. Transcription factor binding sites were predicted on all 200 bp regions on chromosomes 8 and 9
that overlap at least one binding site in at least one of the 40 cell types considered. (A) Frequency at which each method obtains a rank for predicting TFBS
across 77 transcription factors and chromatin modifiers in 40 held out cell lines, tissues, and primary cells, totaling 264 comparisons. Evaluated methods
include Avocado (30), Catchitt (24), a joint Epitome model, and single Epitome models, where each TF is trained separately. (Left) Mean pAUC (5% FPR)
and auPRC ranking for each method. (Right) Frequency at which each method obtains a rank based on pAUC and auPRC. (B) Scatter plots comparing
auPRC and pAUC (5% FPR) between Epitome and DeFCoM. Only regions overlapping motifs specific to the TF being evaluated were considered. Both
DeFCoM and Epitome trained individual models for each TF evaluated. (C) Scatter plots comparing auPRC and pAUC (5% FPR) between Epitome and
Catchitt. Both Catchitt and Epitome trained individual models for each TF evaluated. (D) Scatter plots comparing auPRC and pAUC (5% FPR) between
Epitome and Avocado. Both Avocado and Epitome trained joint models for all TFs evaluated.
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set isolates evaluation of methods to regions of the genome
that are generally harder to predict in. While it is generally
a simple classification problem to predict nonbinding in ge-
nomic loci with no measured regulatory activity, it is harder
to predict nonbinding in regions that have some epigenetic
signal. pAUC and auPRC values used to generate Figure 2
using this sampling technique on chromosomes 8 and 9 can
be found in Supplementary Table S8. Example ROC and
PR curves are shown in Supplementary Figure S9.

Training, evaluation and comparison to Catchitt. Catchitt
is a TF binding prediction method that uses DNase-seq and
motifs to predict binding sites. We compared to Catchitt be-
cause of its recent success as a co-winner of the DREAM
challenge (36). Although Anchor (45) also performed well
in this DREAM challenge, we did not compare to it be-
cause Anchor used features that were similar to those used
by Catchitt and code for retraining Anchor models was not
documented well enough to easily reproduce. We trained
Catchitt (24) with a default bin width of 50 bp windowed on
the hg38 genome. We used all motifs as those used to train
DeFCoM, available in Cis-BP database and Kheradpour
et al. (49,50) (Supplementary Table S5). Bigwig DNase-seq
reads as well as conservative and relaxed ChIP-seq peak files
were downloaded from ENCODE (2). Catchitt was trained
on chromosomes 1–4 with five iterations.

Similar to DeFCoM, Catchitt can only train on a single
cell type. We therefore use an ensemble technique to predict
on a held-out cell type by averaging predictions from mul-
tiple models trained using DNase-seq and ChIP-seq from
different cell types. We first trained separate Catchitt mod-
els on each cell type and TF combination. To evaluate a new
cell type, for a given TF, we averaged predictions from all
other models trained on that TF, excluding models trained
using data from the cell type being evaluated. We aggregate
predictions in each 200 bp window as described by Keilwa-
gen et al. (24) by calculating the probability that each 200 bp
window overlaps at least one of the peaks in each 50 bp win-
dow contained within the larger 200 bp window.

Catchitt trains separate models for each TF of interest.
We therefore compared Catchitt to Epitome by training in-
dividual Epitome models for each TF of interest, instead of
using a joint model that predicts multiple TFs.

Training, evaluation and comparison to Avocado. Avocado
(30) is a deep neural network tensor factorization method
designed to impute, or fill in, missing epigenetic signal. We
compare to Avocado because it was shown to perform bet-
ter than existing imputation methods (30). We processed
data for Avocado by downloading signal P-value tracks for
TF ChIP-seq and read-depth normalized signal for DNase-
seq for 40 cell types used for training from ENCODE. All
tracks were binned into 25 bp windows, which is default
window size in Avocado. The signal for each 25 bp window
was calculated as the arcsinh transformation of the mean
signal in each 25 bp window.

For each cell type evaluated, we trained a separate model
that included all DNase-seq and ChIP-seq information
from all other cell types, as well as DNase-seq from the cell
type being evaluated. DNase-seq from the evaluation cell

type was included to provide cell type specific information
from the evaluated cell type. We then applied Avocado to
impute missing signal for each held out cell type for the 77
TFs and chromatin modifiers across all 25 bp windows of
chromosomes 8 and 9. To calculate predictions in a 200 bp
window, we took the maximum score of all 25 bp predic-
tions overlapping the 200 bp window in consideration.

We attempted to aggregate predictions in each 200 bp
window as described by Keilwagen et al. (24) by calculating
the probability that each 200 bp window overlaps at least
one of the peaks in each 25 bp window contained within
the larger 200 bp window. However, this aggregation strat-
egy resulted in worse performance, in terms of both auPRC
and pAUC (5% FPR).

Avocado trains a joint model for all TFs of interest. We
therefore compared Avocado and Epitome by training 40
joint models for each method, where each model held out
ChIP-seq information from a different

cell type. Each model was trained using all 77 TFs and
chromatin modifiers.

Training, evaluation and comparison to DeepSEA. We ad-
ditionally compared Epitome to DeepSEA. DeepSEA can-
not predict TFBS in held out cellular contexts that were
not seen during training. DeepSEA uses DNA sequence
alone to predict TFBS, and thus does not use any in-
formation specific to the cellular context being predicted.
DeepSEA is a convolutional neural network that predicts
TFBS better than existing sequence based support vec-
tor machine (SVM) methods (19). For this reason, we
chose to include DeepSEA to represent sequence based
methods.

Evaluations of Epitome and DeepSEA are shown in Sup-
plementary Figures S10 and S11. We evaluated these meth-
ods on ENCODE data aligned to the hg19 genome, because
DeepSEA models trained on hg19 data were available pub-
licly (52). We evaluated these methods on four held out cell
lines available in ENCODE: K562, GM12878, HepG2, and
H1-hESC. For each of these cell lines, we evaluated the fol-
lowing 17 TFs: CEBPB, CHD2, EP300, GABPA, JUND,
MAFK, MAX, MYC, NRF1, RAD21, REST, RFX5, SRF,
TAF1, TBP and USF2. Because DeepSEA trains a joint
model to predict TFBS, we compared to Epitome mod-
els trained jointly on all 17 TFs. We evaluated on chro-
mosomes 8 and 9 and trained on the remaining autosomal
chromosomes, except chromosome 7, held out for valida-
tion. We selected all 200 bp regions for evaluation as de-
fined in Defining the test set to compare Epitome, Catchitt
and Avocado. pAUC and auPRC values used to generate
Supplementary Figure S10 can be found in Supplementary
Table S9.

Training and evaluating DeepSEA. We use pre-trained
DeepSEA models available in Kipoi (52) to evaluate
DeepSEA (19). For a given genomic region, DeepSEA
predicts 919 epigenetic marks from ENCODE, includ-
ing ChIP-seq and DNase-seq from multiple cell types. Of
these 919 predictions, we take predictions for the K562,
GM12878, HepG2 and H1-hESC cell lines for the 17 ChIP-
seq targets evaluated.
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Evaluation of motif overlap of ChIP-seq peaks for 77 tran-
scription factors and chromatin modifiers in 40 cell types

Supplementary Figure S5 shows the ratio of ChIP-seq
peaks that do not overlap any motif for a TF or chromatin
modifier of interest. We calculated the ratio of ChIP-seq
peaks that do not overlap a motif by considering all ChIP-
seq peaks for a given TF and cell type combination, win-
dowed in 200 bp regions. For each 200 bp region with a
peak, we tested whether that region overlapped any motifs
specific to the TF in question. We considered all motifs spec-
ified in Supplementary Table S5. Motifs were processed as
described in Training, evaluation and comparison to DeF-
CoM. We calculated the ratio of ChIP-seq peaks not over-
lapping a motif by dividing the number of 200 bp regions
that do not overlap a motif by the total number of 200 bp
regions containing a ChIP-seq peak. TFs, chromatin mod-
ifiers, and cell types evaluated are listed in Supplementary
Table S6. Ratios used to generate Supplementary Figure S5
can be found in Supplementary Table S10.

Calculating the effect of adding cell types to Epitome on
model performance

Figure 3A and C demonstrates the effect of adding more
reference cell types to the Epitome model on auPRC perfor-
mance. We evaluated the auPRC of 82 ChIP-seq targets in
separately trained models. Of the 82 ChIP-seq targets eval-
uated, 59 included TFs and 23 included histone modifica-
tions. For each of these 82 ChIP-seq targets, we trained sep-
arate models that contained 2 to n cell lines, where n is the
maximum number of ENCODE cell lines that had avail-
able ChIP-seq for a given target. For each cell line count,
we run 4-fold cross-validation on 4 separate held out cell
lines. The four cell lines evaluated were K562, HepG2, H1,
and GM12878. For each held out cell line, a model was
trained on the i most similar cell lines, where the cell line
similarity was computed by the Jaccard similarity between
peak-called chromatin accessibility of the two cell lines be-
ing compared. We computed the mean auPRC of each of
these four models, which are visualized in Figure 3A and C.
Heatmaps shown in Supplementary Figure S12 were gener-
ated using Seaborn (53).

Prediction of H3K27ac in neural differentiation

Figure 5 shows Epitome predictions of H3K27ac peaks us-
ing ATAC-seq data in neural differentiation across seven
time points. Time points included 0, 3, 6, 12, 48 and 72
h. ATAC-seq and H3K27Ac ChIP-seq was taken from In-
oue et al. (accession number GSE115046) (54). This data set
consisted of seven time points for ATAC-seq and H3K27ac
ChIP-seq with two replicates per time point. Data was
aligned, peak called, and replicates were combined using the
ChIP-seq and ATAC-seq ENCODE DCC pipelines. EN-
CODE optimal ATAC-seq peaks were used in Epitome to
predict H3K27ac peaks across the seven time points in 39
000 regions. These 39 000 regions were identified by Inoue
et al. (54) as regions that had at least one H3K27ac peak
in one of the seven time points (54). Clusters in Figure 5A
were taken from Inoue et al. (54) and included 2400 peaks.

Values for the heatmap in Figure 5B for H3K27ac was cal-
culated based on the normalized read counts overlapping
the 2400 peaks.

ATAC-seq baseline predictor of H3K27ac. Figure 5A com-
pares predictions of H3K27ac peaks by Epitome and an
ATAC-seq baseline predictor. To construct an ATAC-seq
baseline predictor, we used IDR enrichment scores of
ATAC-seq peaks to determine whether an H3K27ac peak
existed within a given region of the genome. These scores
ranged from 0 (indicating no ATAC-seq IDR peak) and
44.40.

Training and evaluating DeepHistone. DeepHistone (59) is
a deep learning method that uses DNA sequence and chro-
matin accessibility signal to predict seven histone modifica-
tions. We leveraged DeepHistone to predict H3K27ac peaks
across seven timepoints of neural differentiation, shown in
Figure 5A. We trained DeepHistone using default train-
ing data parameters and demonstration data as defined in
DeepHistone’s GitHub repository. We next used DeepHi-
stone to predict 39 010 H3K27ac peaks using features ex-
tended 1000 bp surrounding each H3K27ac peak of inter-
est. We used optimal ATAC-seq peak signal processed from
ENCODE as chromatin accessibility signal for DeepHis-
tone.

Plotting 0 and 72 h H3K27ac predictions in neural differenti-
ation. Figure 5C shows Epitome predictions at 0 and 72 h
time points in regions that have unique ATAC-seq peaks in
each of these time points. 0 h peaks (shown in red) indicate
regions with an ATAC-seq peak at 0 h, but no peak at 72 h.
Seventy-two hours peaks (shown in black) indicate regions
with an ATAC-seq peak at 72 h, but no peak at 0hr. Shared
peaks (yellow) indicate Epitome predictions of regions that
have ATAC-seq peaks at both 0 and 72 h.

Prediction of TFBS using ATAC-seq on DNase-seq trained
models

Supplementary Figure S14 shows that Epitome models that
are trained on DNase-seq and validated using ATAC-seq
perform comparably when validated using DNase-seq. We
used ATAC-seq peaks from the A549 and K562 cell lines
to validate the performance of Epitome models that were
trained using DNase-seq and validated using ATAC-seq.
ATAC-seq and DNase-seq peaks for A549 and K562 were
downloaded from ENCODE (datasets ENCSR220ASC,
ENCSR000E, ENCSR483RKN and ENCSR000EKP).
Datasets are

listed in Supplementary Table S4. Because ATAC-seq
peaks for both A549 and K562 were aligned to the hg38
genome, we used liftover (55) to lift over peaks to the hg19
genome for input into Epitome. Each model was trained on
17 cell types: Panc1, PC-9, OCI-LY7, MCF-7, Karpas-422,
K562, IMR-90, HepG2, HeLa-S3, HEK293T, HCT116,
H9, H1, GM23338, GM23248, GM12878 and A549. When
testing the performance of A549 and K562, the respective
cell line was held out for test. Due to limited availability
of ChIP-seq data for validation, we validated the A549 and
K562 cell lines on 33 and 128 ChIP-seq targets, respectively.
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Figure 3. The number of cell types selected to train an Epitome model changes predictive performance of transcription factors, histones, and histone
modifications. (A) Normalized mean auPRC of 59 transcription factors in heldout chromosome 7 as more cell types are incorporated into Epitome for
training. For each set of reference cell types considered for a given TF, mean auPRC was calculated across four models with different combinations of
training and validation cell types. y-axis indicates the addition of more reference cell types used to train each target specific model, where numbers indicate
the number of cell types used to train a model. The number of training cell types considered ranges from 2 to 48 cell types. This range is dependent on the
availability of reference cell types for a given transcription factor in ENCODE. (B) Cumulative distribution function (CDF) of auPRC performance of 59
transcription factors in held-out chromosome 7. Models were trained on 2 to 40 cell types. Transcription factors evaluated are listed in (A). (C) Normalized
mean auPRC of 23 histone modifications and histones in held-out chromosome 7 as more cell types are incorporated into Epitome for training. Mean
auPRC was calculated across four models with different combinations of training and validation cell types. y-axis indicates the addition of more cell types
used to train each target specific model, where numbers indicate the number of cell types used to train a model. The number of training cell types considered
ranges from 2 to 84 cell types. This range is dependent on the availability of experiments for a given histone modification or histone in ENCODE. (D)
Cumulative distribution function (CDF) of auPRC of 23 histone modifications and histones in held-out chromosome 7. Models that were trained on 2 to
48 cell types were included. Histone modification and histones evaluated are listed in (C).

For each cell line, we ran whole genome predictions us-
ing both ATAC-seq and DNase-seq. We compared perfor-
mance using auPRC and pAUC with a 5% FPR cutoff.

Resource requirements

All experiments were submitted and managed using
TORQUE, which submitted jobs to nodes with one of two
configurations: (1) 40 Intel(R) Xeon(R) CPU E5-2690 v2
@ 3.00 GHz CPI CPUs with 254 RAM, or (2) 48 Intel(R)
Xeon(R) Gold 6226 CPU @ 2.70 GHz CPUs with 376GB
RAM.

Due to resource limitations, we trained all models using
CPUs only. However, Epitome is designed to work with a

GPU if installed on a machine with a GPU that is com-
patible with the current TensorFlow version. However, be-
cause Epitome spends a majority of its time computing fea-
tures for input into the model, most of the resources used
for Epitome are CPU intensive, and thus a GPU is not re-
quired.

RESULTS

Epitome achieves state-of-the-art accuracy for prediction of
TFBS

To evaluate Epitome, we compared to four state-of-the-
art methods that predict transcription factor binding sites,
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Figure 4. Considering wide genomic contexts and multiple epigenetic signals to compute cell type similarity improves model performance. CDFs of Epitome
performance in terms of (A) pAUC and (B) auPRC as various DNase-seq window sizes are considered for computing the chromatin accessibility vector
(CASV). Only DNase-seq is used to compute cell type similarity in the CASV. DNase-seq window sizes considered include the identity CASV, 200, 1200,
4000 and 12,000 bp around a peak of interest. Only models training on less than 10 cell types were considered. Identity CASV implies that no CASV is used
in Epitome. (C) Difference in auPRC for 13 TFs when Epitome uses a single histone modification and DNase-seq in the CASV, compared to performance
when only DNase-seq is used in the CASV. All 200 bp regions on chromosome 7 that have at least one ENCODE epigenetic event were evaluated, where
positive include 200 bp regions that overlap a ChIP-seq peak for the ChIP-seq target evaluated, and negative regions are all 200 bp regions not overlapping
a ChIP-seq peak. (D) Shapley values of seven histone modifications and DNase-seq demonstrating their contribution of auPRC performance of 13 TFs
when incorporated into the CASV.

where each method is a best-in-class representative of meth-
ods designed to predict TFBS. For each TF and each
method, we evaluated the ability to predict the binding land-
scape in a held-out cellular context given information from
other cellular contexts that were used for training. The first
benchmark method, DeFCoM (23) represents the class of
footprinting methods, which use enzymatic cleavage pat-
terns of DNase 1 or Tn5 transposase as features to predict
TFBS. Because DeFCoM and other footprinting methods
are motif centric, they are only designed to predict binding
in regions centered around motifs. We therefore compared
Epitome and DeFCoM by evaluating the ability of each
method to predict TFBS overlapping motifs for 77 TFs and
chromatin modifiers across 40 cell lines, primary cells, and
tissues (Supplementary Table S6). Figure 2B shows scat-
ter plots of performance for both Epitome and DeFCoM
in regions overlapping motifs, where we compare the area
under the precision recall curve (auPRC) and partial area
under the receiver operating characteristic curve (pAUC)
(5% FPR). We note that while the former measure accounts
for all candidate binding sites, the latter measure is meant
to highlight the accuracy of top predictions (56). On aver-
age, both methods perform comparably under both metrics,
even though Epitome is not isolated to training in motif re-

gions. Additionally, out of the 280 comparisons, Epitome
ranks number one for 202 and 199 experiments for auPRC
and pAUC, respectively, while DeFCoM ranks number one
for only 78 and 76 experiments for auPRC and pAUC, re-
spectively (there were 5 ties for pAUC between methods).
These results suggest that Epitome can perform better than
motif centric footprinting methods that use explicit knowl-
edge of both motif location and cleavage patterns to predict
TFBS.

Although many footprinting methods are constrained to
only predict in regions overlapping motifs, TFs can bind in
regions not overlapping canonical motifs associated with
the TF of interest (29). This is demonstrated in Supple-
mentary Figure S5, which shows that the ratio of ChIP-
seq peaks that do not overlap any motif for a TF in ques-
tion can range from 0.45 to 1.0 for the 77 TFs and chro-
matin modifiers we evaluated (see Evaluation of motif over-
lap of ChIP-seq peaks for 77 transcription factors and chro-
matin modifiers in 40 cell types). Because limiting the pre-
diction regime to sites that overlap motifs can eliminate
many TFBS, Epitome and other methods have been de-
signed to predict epigenetic events genome wide to eliminate
this constraint. One example of such methods is Catchitt
(24), a co-winner of the ENCODE-DREAM TFBS predic-
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Figure 5. Epitome detects differential H3K27ac across seven time points in neural differentiation from human pluripotent stem cells. (A) ROC and PR
curves for predictions of H3K27ac peaks using three methods: Epitome, an ATAC-seq enrichment baseline predictor, and DeepHistone, at seven time
points of neural differentiation. (B) (Top) Mean Epitome scores of H3K27ac peaks across seven time points in six clusters from 2400 temporal peaks
(54). (Bottom) Mean normalized H3K27ac read counts across seven time points in six clusters. Rows are standardized. (C) CDFs of Epitome scores for
H3K27ac peaks at 0 and 72 h in regions that are uniquely accessible to a timepoint (black), are inaccessible for a timepoint (yellow) and have shared
accessibility across all timepoints (red). Both 0 and 72 h timepoints have low scores in inaccessible regions. Regions of unique and shared accessibility have
and moderate and strong scores, respectively. (D) Heatmap of features used by the Epitome model for 25 762 genomic regions containing H3K27ac peaks
at 72 h. Yellow and red columns indicate binary peaks for DNase-seq and H3K27ac, respectively, used as features from reference cell types. ATAC-seq
column, labeled in green, indicates presence of absence of ATAC-seq peaks in the 72 h time point. Color bar on left represents Epitome scores, where blue
represents instances of false negatives and red represents instances of true positives.
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tion challenge (36), which uses a combination of features
including DNA sequence content, motif scores, expression
levels of transcription factors (from RNA-seq), and chro-
matin accessibility (DNase-seq) to predict TFBS. Similar to
DeFCoM, Catchitt considers accessibility data in a quanti-
tative form, albeit at a default binned resolution of 50 bp.
It also uses a wider genomic context, taking up to 2000
bp around the candidate site of interest. Additionally, Av-
ocado (30) represents a class of imputation methods, de-
signed to impute missing signal for cell types and assays
that have not been measured experimentally. To compare
to these methods, we first evaluated chromosome wide pre-
dictions of Epitome, Avocado, and Catchitt, on all 77 TFs
and chromatin modifiers across 40 cell lines, primary cells,
and tissues (Supplementary Figure S6) on held-out chro-
mosomes 8 and 9 in Figure 2A, for a total of 264 compar-
isons. Here, we consider two versions of Epitome: single,
which trains an individual model for each TF, and joint,
which trains a single model to predict all TFs. These mod-
els are separately considered because Catchitt uses a sin-
gle prediction approach, while Avocado uses a joint ap-
proach. Figure 2A shows that of the four methods, Epit-
ome models trained individually for each TF perform the
best for a majority of the 264 experiments. While joint Epit-
ome models perform similarly in terms of pAUC and better
for many instances in terms of auPRC compared to single
Catchitt models (Supplementary Figure S6a), Avocado per-
forms poorest on these metrics (Figure 2A). Supplementary
Figure S6b additionally shows that for many cases, single
Epitome models perform better than jointly trained Epit-
ome models. It is unsurprising to note that single models
often perform better than joint models. In these cases, learn-
ing objectives for different TFs can have complex or com-
peting dynamics (33). As shown in Supplementary Figure
S16, different ChIP-seq targets trained in a joint model con-
verge at different iterations during training. This difference
in convergence across targets can result in variance in the
level of fit for each ChIP-seq target. Regardless, we find that
overall performance of both joint and single Epitome mod-
els is higher than the other two methods in the majority of
the 264 experiments, based on both auPRC and pAUC met-
rics (Figure 2A).

We also consider a different group of methods that use
NN architectures to predict TFBS from DNA sequence
but are not able predict on new cell types. This includes
DeepSEA (19), which uses a convolutional neural network
to learn the mapping from DNA sequence to TFBS. Sur-
prisingly, we find that the accuracy of Epitome compares
similarly or better to these types of models, which use all
the data during training (i.e. not leaving out one of the cell
line as query). This class of methods use DNA sequence
alone as features to predict binding of transcription factors.
While the goal of DeepSEA is to predict the effect of se-
quence mutations on the epigenetic events it is trained with
(rather than predicting events in unobserved cellular con-
texts), the fact that it sees all data during training provides a
conceptual upper bound for accuracy. To compare to DNA
sequence based methods, we compared the performance of
a set of 17 TFs which were assayed by the ENCODE consor-
tium in four cell lines that were available in DeepSEA mod-
els, resulting in 68 comparisons. All data used is from EN-

CODE and was aligned to the hg19 genome. Supplemen-
tary Figure S10 shows that even though DeepSEA trains
using a given test cell line and Epitome does not, Epit-
ome performs comparably to DeepSEA in both pAUC and
auPRC. These results demonstrate that Epitome can effec-
tively generalize to unseen cellular contexts. Supplementary
Figure S11 show receiver operating characteristic curves
and precision-recall curves for these methods in all four held
out cell lines from ENCODE.

Epitome places an upper bound on maximum achievable sen-
sitivity

Because Epitome constructs features using binarized epi-
genetic events in reference cell types, models are a-priori
limited to predict epigenetic events in regions in which the
epigenetic event in question has been observed in a pre-
vious experiment. Although this limitation could be alle-
viated by using genome-wide continuous signal, which is
available in all genomic regions, we explain in Overview of
Epitome our explicit choice to use binary epigenetic signal
to reduce noise. In Figure 1A, we calculated the fraction of
unique peaks observed a held out cell type for all ChIP-seq
targets available in ChIP-Atlas (35) to determine an upper
bound for the sensitivity that could be achieved using Epit-
ome, given this limitation. When more than 26 cell types are
available for a given ChIP-seq target, we observe that sen-
sitivity exceeds 90%, on average. Furthermore, we observe
that the upper bound on sensitivity increases quickly as the
number of available reference cell types increases (see Pro-
cessing ChIP-Atlas database for analyzing the fraction of
unique peaks across cell types for available ChIP-seq tar-
gets). While this approach places a strict upper bound on
the achievable sensitivity, in Figure 2 we demonstrate that
this strategy leads to a better overall balance between sen-
sitivity and specificity, compared to existing methods.

Models trained on multiple cell types similar to the query cell
type provide improved accuracy

Of the methods compared to in Section 3.1 that provide
predictions of TFBS specific to a cellular context of inter-
est, none are designed to jointly train on multiple refer-
ence data sets. This limitation bypasses the opportunity to
jointly learn from multiple cell types and can generate mis-
guided predictions when the query context greatly differs
from the cell types selected for training. As previously men-
tioned, Figure 1A shows that as the number of cell types
available for a given epigenetic event measured with ChIP-
seq increases, the fraction of unique TF binding sites or hi-
stone modifications observed in a new cell type decreases.
From this trend, we conclude that as more cell types for a
given event are used to train a model, it is more likely that
the model will have seen that event in the genomic location
we are trying to predict. We therefore sought to understand
the effect of the quantity and choice of reference cell types
used for training Epitome on accuracy when predicting epi-
genetic signal in a new cellular context.

To assess the effect of the number of cell types used dur-
ing training on model performance, we trained models for
82 different ChIP-seq targets, which included TFs, histones,
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and histone modifications. For each ChIP-seq target, we
considered a range of models trained on different numbers
of ENCODE cell types as references (ranging from 2 to n
– 1 reference cell types, where n is the number of cell types
available for the respective ChIP-seq target). Cell types used
include cell lines, in-vitro differentiated cells, primary cells,
and tissues from ENCODE (1). For each ChIP-seq target
and choice of cell type count used for training, we trained
four models with different combinations of training and
validation cell types. Each of these models were evaluated
by predicting peaks across validation chromosome 7, which
was held out from training. This procedure resulted in train-
ing 4 × (n − 2) models for each of the 82 ChIP-seq targets,
where each model trained on a different number and com-
bination of reference cell types.

Figure 3A and B demonstrates the change in perfor-
mance (auPRC) in predicting TFBS with increasing num-
bers of reference data sets. Across the 59 TFs included
in this analysis, we observe an overall consistent increase
in performance as one considers larger numbers of ref-
erence cell types in which the TF in question was mea-
sured. While for most TFs, the number of cell types for
which information was available is limited (under thirteen),
the ENCODE collection includes over forty contexts for
the CCCTC-Binding Factor CTCF. Considering the per-
formance of Epitome in predicting the binding positions
of CTCF, we observe that the value of adding more refer-
ence data sets starts to diminish at approximately ten data
sets, and that beyond this point the performance tends to
saturate. Since a similar level of saturation is not reached
in the other TFs, these results may serve to provide in-
tuition for the number of cell types which may be re-
quired to achieve high accuracy in future applications of
Epitome.

Interestingly, when Epitome is applied to predict the po-
sitions of histones or histone modifications, we observe a
similar trend of improvement in performance, but only up
to a certain level. Similar to the TFBS prediction task,
the performance of Epitome starts to saturate when more
than ten data sets are used as a reference. However, we
also observe a marked decrease in performance when the
number of cell types that are used as reference goes be-
yond twenty. Taken together, these results suggest an op-
timal regime for the number of data sets to be used by Epit-
ome as a reference. We note that this actual number can be
evaluated by cross-validation, a utility which will become
crucial as the number and diversity of ChIP-seq data sets
increases.

Considering wide genomic contexts and multiple epigenetic
signals to compute cell type similarity improves the perfor-
mance of Epitome

Epitome uses the chromatin accessibility similarity vector
(CASV) to estimate the extent to which a query cellular con-
text is similar to the reference cell types at each candidate
locus. The CASV accounts for similarities at several scales,
from a small window of 200 bp around the locus in question,
up to a window of size 12 kb. We next explored whether ac-
counting for multiple levels of resolution aids in learning

better decision rules. To this end, we evaluated the perfor-
mance of Epitome in predicting each of the 82 epigenetic
events, shown in Figure 3, while varying the size of the ge-
nomic context used for the CASV. We considered five possi-
ble sizes of genomic context to be considered by the CASV,
including 0 bp (the identity CASV), 200 bp, 1200 bp, 4000
bp and 12 kb. For each of the models trained in Figure 3,
we trained four additional models, each using a different ge-
nomic context ranging from 0 to 12 kb. These models were
similarly trained using different numbers of reference data
sets ranging from 2 to 30 in size, based on the availability of
data sets for a given ChIP-seq target.

Figure 4A and B depicts the overall change in pAUC and
auPRC, respectively, as larger genomic contexts are consid-
ered. The most basic models, which simply tally up the num-
ber of observed peaks (i.e. do not account for accessibility
data; ‘identity CASV’) as a decision rule perform the poor-
est, thus supporting the merit of using chromatin accessibil-
ity data. Consistently, we observe slight increases in perfor-
mance as the genomic context considered by the CASV in-
creases. This observation is most easily observed in change
in AUC as wider genomic contexts are considered, shown
in Supplementary Figure S12a. We find that while perfor-
mance increases with the presence of a wide genomic con-
text for models that are trained with less than 10 cell types,
histone modifications in particular suffer from considering
wide genomic context when models are trained on more
than 10 cell types. Supplementary Figure S12b and c shows
that when histone modifications are trained on more than
10 cell types, performance decreases as wider genomic con-
texts are considered. These observations agree with trends
seen in Figure 3C, showing that performance of histone
modifications does not saturate, but degrades, with increas-
ing information in models trained with more than 10 cell
types.

In all results shown thus far, Epitome only incorporates
chromatin accessibility in the CASV to compute similarity
between a query cellular context and reference cell types
used for training. However, additional assays, such as ChIP-
seq for histone modifications, are often available in addition
to chromatin accessibility, and could be used to compute
a more robust measure of similarity of a local chromatin
environment. Histone modifications in particular provide
valuable information to compute chromatin similarity, as
it has been observed that DNase-seq hypersensitivity sites
that are common to many cell types are only weakly corre-
lated with certain histone marks (57). In these cases, weakly
correlated histone marks can provide somewhat indepen-
dent and potentially more specific information of similarity
in regions that already have similar chromatin accessibility.
This is also a common use case that a query cellular context
has been partially characterized with multiple experiments,
including chromatin accessibility and various histone mod-
ifications (Supplementary Figure S3).

To make use of all assays that may partially character-
ize a cellular context, we explored whether extending the
CASV to include histone modifications in addition to chro-
matin accessibility could improve predictive accuracy of
Epitome. To test this, we evaluated the effect of incorpo-
rating various histone modifications in the CASV, and how
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this alteration changed the auPRC performance for thir-
teen TFs, listed in Figure 4C. These thirteen TFs were se-
lected in particular because they were available in the four
reference cell lines that had measurements for seven histone
modifications, allowing us to extend the CASV to use his-
tone modifications from reference cell types. The seven hi-
stone modifications incorporated into the CASV included
H3K9ac, H3K4me3, H3K4me2, H3K4me1, H3K36me3,
H3K27me3, and H3K27ac.

Incorporating these seven histone modifications, as well
as DNase-seq, in the CASV resulted in 256 configurations
of Epitome that used all possible combinations of the seven
histone modification and DNase-seq to compute the CASV.
For each configuration, we trained four separate models us-
ing three reference cell lines each, and then evaluated each
model on a fourth held out cell line. Final auPRC perfor-
mance for each configuration was calculated across pre-
dictions for all four evaluated models. Details on how the
CASV is extended to include histone modifications is de-
scribed in Methods (2.3.6).

Figure 4C shows the difference between auPRC perfor-
mance of Epitome using a single histone modification as
well as DNase-seq in the CASV and auPRC performance
using only DNase-seq in the CASV. A majority of these thir-
teen TFs see minor improvement in auPRC performance
when including a histone modification, with the exception
of YY1, TCF12, and TBP. All histone modifications eval-
uated have some positive improvement in auPRC, with the
exception of H3K9me3. This observation is consistent with
the association of H3K9me3 with the formation of tran-
scriptionally silent heterochromatin.

We next sought to understand the relative contributions
of DNase-seq and the seven histone modifications in the
CASV towards model performance for the 13 TFs evalu-
ated in Figure 4C. We computed the Shapley value for each
combination of experiments used in the CASV for each of
the 13 TFs. The Shapley value indicates the marginal contri-
bution computed from all possible subsets (58). These val-
ues ultimately can highlight which experiments provide the
maximal information for predicting TFBS, and which ex-
periments should be prioritized when partially characteriz-
ing a cellular context of interest. Shapley values are shown
in Figure 4D for each histone modification and DNase-seq,
and their effect on each of the 13 TFs evaluated. On av-
erage, repressive mark H3K9me3 gives the least informa-
tion when incorporated into the CASV, and in most cases,
provides negative contribution to auPRC performance. We
hypothesized that H3K9me3 gave the least amount of in-
formation because its correlation with TFs was low, pro-
viding the model with little to no consensus information.
To test this hypothesis, we computed the Jaccard index be-
tween TFBS in each 200 bp window for each TF in each
training cell line and each peak indicating a histone modifi-
cation used in the CASV. Indeed, H3K9me3 had the small-
est mean Jaccard score across training cell lines (0.0008),
compared to other histone modifications and DNase-seq
(0.04 mean). These results suggest that including histone
modifications in the CASV can improve predictive per-
formance when it correlates with the epigenetic signal of
interest.

Epitome recapitulates changes in H3K27ac over neural induc-
tion of human pluripotent stem cells

We next evaluated Epitome’s ability to leverage changes in
ATAC-seq to detect changes in the acetylation of H3K27
(H3K27ac) over neural induction of human pluripotent
stem cells (hPSCs). This analysis can demonstrate how well
Epitome is able to leverage changes in chromatin accessi-
bility from the same starting population to detect gradually
accumulating H3K27ac marks. Temporal analysis of neural
induction from hPSCs has shown that changes in chromatin
accessibility precede H3K27ac, a histone mark indicative
of transcriptionally active regions (54). We therefore sought
to use Epitome to predict H3K27ac in seven timepoints of
neural induction by using chromatin accessibility to com-
pare timepoints to reference cell types used to train a model.

In previous analyses of neural induction, Inoue et al. col-
lected H3K27ac and ATAC-seq across seven time points
of neural induction starting from hPSCs. Genomic re-
gions that were enriched for H3K27ac over timepoints were
grouped into six clusters, each associated with a differ-
ent temporal pattern. These clusters identified H3K27ac
peaks present in early induction (clusters 1–3), mid induc-
tion (cluster 4), and late induction (clusters 5–6). To deter-
mine whether Epitome could leverage ATAC-seq to identify
changes in H3K27ac over neural induction, we used ATAC-
seq from each time point as input into the CASV to predict
H3K27ac peaks. Although the Epitome model primarily
uses DNase-seq to compute the CASV and train its models,
we show in Supplementary Figure S14 that Epitome can ac-
curately predict histone modifications and TFBS when us-
ing ATAC-seq during evaluation in the CASV when Epit-
ome has been trained using DNase-seq. For this reason, we
hypothesized that Epitome could provide sensitive predic-
tions of H3K27ac by using the CASV to compare similarity
between DNase-seq in reference cell types and ATAC-seq
from neural differentiation time points. We trained an Epit-
ome model to predict H3K27ac peaks using all ENCODE
reference cell types that had both H3K27ac and DNase-seq,
resulting in 15 reference cell types.

Here, we compare Epitome to an additional benchmark
method specifically designed to predict histone modifica-
tions, called DeepHistone (59). DeepHistone is a deep
learning method for predicting seven histone modifications,
including H3K27ac, and uses DNA sequence and chro-
matin accessibility as features to provide predictions spe-
cific to a cellular context. For further insight we also added
a simple baseline predictor, which uses enrichment signal
from ATAC-seq peaks to directly indicate the signal of
H3K27ac (i.e. predict an H3K27ac peak whenever there
is an ATAC-seq peak). We chose this baseline because in-
creased acetylation of H3K27 is often observed in accessi-
ble regions, and in neural induction it was often observed
to be preceded by opening of the chromatin (54). Figure 5A
shows the ROC and PR curves for H3K27ac peaks across
seven time points in 39,000 regions for the three compara-
tive methods. All autosomal regions that had an H3K27ac
peak in at least one of the seven timepoints were considered.
For all time points, Epitome performs significantly better
than the baseline predictor as well as DeepHistone, with a
gain of mean auPRC of 0.09 and 0.21, over the baseline
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ATAC-seq predictor and DeepHistone, respectively. This
boost in performance seen by Epitome suggests that using
known H3K27ac peaks from ENCODE cell types, along
with the CASV to inform the model of similarity between
ENCODE cell types and differentiated hPSCs, improves
predictive performance of H3K27ac predictions over base-
line predictors that do not use signal from the epigenetic
event of interest as features.

Although Epitome can predict H3K27ac peaks better
than baseline predictors and existing models, ROC and
PR curves do not illuminate whether Epitome can identify
H3K27ac peaks that are unique to each timepoint, but share
a similar genome. We therefore sought to show that Epit-
ome can leverage changes in chromatin accessibility over
time to detect time point specific H3K27ac peaks. Figure
5B demonstrates the mean predictions of Epitome (top)
and the normalized H3K27ac read counts (bottom) in six
H3K27ac clusters indicating temporal H3K27ac peaks of
early, mid, and late induction across 2430 genomic regions.
These six clusters were defined by Inoue et al. (54). Epitome
predictions show that at 48 and 72 h, there is an increase
in H3K27ac in clusters 5 and 6. Additionally, clusters 2, 3,
and 4 have increased H3K27ac between time points 3 to 24
h, and decrease at 72 h. These broad trends of increased
H3K27ac in late induction clusters 5 and 6 and in early to
mid induction clusters 2–4 agree with Hexp3K27ac normal-
ized read counts shown in the bottom heatmap.

In this analysis, Epitome leverages ATAC-seq to predict
time point specific H3K27ac. This means that for a given
region of the genome, Epitome will predict the same prob-
abilities for H3K27ac for all samples, unless ATAC-seq sig-
nal varies across samples in or around a given region of
interest. Because of this, we would expect Epitome to pro-
vide sensitive results when predicting H3K27ac in regions
with differential ATAC-seq between time points. To assess
this hypothesis, we evaluated Epitome H3K27ac predic-
tions at 0 and 72 h, and separated predicted regions into
three groups: regions accessible in all time points, regions
only accessible in either 0 or 72 h, and regions not accessi-
ble in either 0 or 72 h. Figure 5C shows the CDFs of Epit-
ome H3K27ac predictions at 0 and 72 h across these three
groups. At both the 0 and 72 h time points, Epitome predic-
tions are higher in accessible regions, compared to inaccessi-
ble regions. These results suggest that Epitome is effectively
leveraging accessibility to predict H3K27ac. We note that
for both the 0 and 72 h predictions, Epitome is able to easily
detect H3K27ac in shared accessible regions of the genome,
compared to regions of the genome that have differential
accessibility in either the 0 or 72 h time points. In regions
of differential accessibility, Epitome predictions are lower
than those found in regions of shared chromatin accessibil-
ity. This is most likely an artifact of decreased availability
of evidence for H3K27ac in the training cell types in re-
gions that have differential accessibility. In regions of shared
accessibility, training cell types have H3K27ac marks in a
median of 8 out of 13 cell types, compared to peak regions
unique to either 0 or 72 h time points, which have H3K27ac
marks in a median of 2 out of 13 cell types. Thus, com-
monly accessible regions have greater evidence of H3K27ac
marks in training cell types and are predicted with greater
confidence.

Although Epitome can predict H3K27ac marks better
than existing methods, Epitome still incorrectly identifies
a subset of peaks as false negatives, and a subset of non-
peak regions as false positives. Figure 5D and Supplemen-
tary Figure S13a show Epitome predictions for H3K27ac at
72 h in peak and non-peak regions respectively. Figure 5D
demonstrates that while a majority of H3K27ac marks are
correctly identified, there is a small subset of peaks that are
incorrectly identified as false negatives. Additionally, many
of the non-peak regions are identified as peaks. Because of
this trend, we sought to identify the source of the false pos-
itives and negatives within the context of the reference cell
types used for training. Figure 5D shows reference data sets
used as input in the Epitome model for predicting H3K27ac
marks in peak regions at 72 h. Epitome’s true positives are
shown towards the bottom of the heatmap, while false nega-
tives are displayed at the top. This plot shows that true pos-
itives have ATAC-seq accessibility at the 72 h time point, as
well as supporting H3K27ac peaks from the reference cell
types used for training. False negatives generally have less
ATAC-seq accessibility at 72 h, and less H3K27ac peaks
from the reference cell types. These results demonstrate that
false negatives were generated from regions that had little
to no accessibility at the 72 h timepoint, as well as little
support for H3K27ac in reference cell types. This trend is
similarly shown in the predictions of non-peak regions at
72hr, shown in Supplementary S13b, where false positives,
shown towards the bottom of the heatmap, have more acces-
sibility at 72 h and representation of H3K27ac peaks in the
reference cell types than peaks correctly identified as true
negatives. These results show that false positives and false
negatives result from unexpected patterns in chromatin ac-
cessibility and H3K27ac in both the query cellular context
and reference data sets.

DISCUSSION

We presented Epitome, an algorithm to predict the proba-
bility of observing enriched genomic regions for transcrip-
tion factor occupancy and histone modifications in a new
cellular context, by estimating similarities to other cell types
in which epigenetic measurements are already available.
Due to Epitome’s design, both the quality of predictions
and quantity of epigenetic events that can be predicted will
be further improved and expanded as more ChIP-seq tar-
gets are measured in more cell types.

Existing data consortia can expand their repertoire of
regulatory regions through accumulation of ChIP-seq tar-
gets in two ways, both of which uniquely affect the perfor-
mance of Epitome. First, regulatory regions for a specific
ChIP-seq target can be further annotated through the ac-
cumulation of additional ChIP-seq targets (primarily tran-
scription factors) in already well characterized cell lines and
primary cell subsets. This accumulation strategy has been
exercised in ENCODE 3 (1), and is demonstrated through
the accumulation of DNA-associated proteins in the al-
ready well annotated K562 and HepG2 cell lines. This ac-
cumulation of ChIP-seq experiments in well annotated cell
lines provides Epitome with additional data to more accu-
rately predict ChIP-seq targets as their coverage across cell
types increases. The benefits of this type of data expansion



e110 Nucleic Acids Research, 2021, Vol. 49, No. 19 PAGE 20 OF 22

in Epitome is demonstrated in Figure 3, which shows that
the predictive performance of many ChIP-seq targets in-
creases as their characterization across reference cell types
increases. Secondly, data consortia can expand their anno-
tation of regulatory elements that are highly cell type se-
lective. This requires the expanded annotation of regions
in cell types and conditions that have rare, condition spe-
cific regulatory elements. This particular type of expansion
is going to be a key effort in ENCODE 4 (60) through the
expansion of the collection of cellular contexts in which the
experiments are conducted.

Because Epitome leverages cell type similarity to predict
epigenetic events in a new cellular context, Epitome can
only make predictions in regions that were previously anno-
tated by reference datasets for an event of interest. This lim-
itation is demonstrated in Figure 5D, where Epitome fails
to correctly identify H3K27ac in regions that are not al-
ready annotated in the reference cell types used for training.
In these cases, Epitome forfeits sensitivity in regions that
are not annotated in reference cell types. However, previous
work has demonstrated that as more cell types are charac-
terized, the number of unique events discovered in a new cell
type diminishes (27,29). Figure 1A and Supplementary Fig-
ure S1 similarly show that across 152 ChIP-seq and DNase-
seq experiments, the fraction of unique peaks discovered in
each cell type used in Epitome decreases as more cell types
are characterized for a given experiment. These trends show
that although Epitome cannot predict epigenetic events in
all regions of the genome, these regions have diminishing
chances of containing unique regulatory elements as more
cell types are collected by large data consortiums and are
incorporated into Epitome. Additionally, further initiatives
such as ENCODE 4 (60) will increase the coverage of regu-
latory regions that are cell type selective.

When considering various design decisions in Epitome,
in particular the construction of the CASV, we looked to
ChIP-seq centric studies to assess the best way to calcu-
late cell type similarity. Because of the wealth of DNase-
seq data available in the public domain across numerous
cell lines and primary cells (1,27), we have focused on us-
ing DNase-seq as the primary method to compute similarity
between cell types. However, we additionally evaluated the
frequency at which ChIP-seq targets were present in studies
in ChIP-Atlas that contained at least two ChIP-seq exper-
iments. These results are shown in Supplementary Figure
S3, and show that many histone modifications, including
H3K27ac, H3K27me3, and H3K4me1 and H3K4me2, are
frequently collected, along with at least one other additional
ChIP-seq target of interest. Excitingly, Figure 4D shows
that H3K4me1 and H3K4me2 provide the greatest informa-
tion gain, in terms of their expected added value (Shapley
value), when incorporated into the CASV to predict TFBS.
These results suggest that Epitome is well situated to utilize
this wealth of histone modification data in personal studies
to gain more confident predictions of TFBS.

Lastly, we acknowledge the distinction between models
that are designed to predict a single epigenetic event and
multiple epigenetic events in the same model in held out
cellular contexts. As shown in Figure 2 and Supplemen-
tary Figure S6b, models that are trained individually on epi-
genetic events of interest often outperform models trained

jointly. While existing literature in the machine learning
community observes this phenomenon (33), it has not been
acknowledged within the realm of methods for predicting
epigenetic events. Going forward, this loss in performance
that is accompanied with choice in model design should
be considered or reconciled with the utilization of meth-
ods that determine which epigenetic events can be trained
jointly without loss of performance (33).

Epitome is an open-source project, and is available on
GitHub and can be installed using the Python Package
Index (PyPI). We believe that Epitome will have a substan-
tial impact on studies that have collected data that pro-
vide a limited view of the epigenome through chromatin
accessibility. In particular, Epitome can provide a mech-
anistic complement to methods that annotate accessible
regions based on enrichment of nearby genes (37). Such
methods provide insight into which genes are affected by
changes in the epigenome at cis-regulatory regions. How-
ever, Epitome can analyze TF activity and histone modi-
fications of trans-regulatory regions independently of dis-
tance to nearby genes. Utilizing existing cis-regulatory gene-
ontology based approaches, along with Epitome, can pro-
vide comprehensive annotation of cis- and trans-regulatory
regions for any given dataset partially characterized with
chromatin accessibility.

DATA AVAILABILITY

Epitome is a python package that uses many libraries, in-
cluding: PyRanges (61), Scikit-learn (47), TensorFlow (42).
Libraries Matplotlib (62) and Seaborn (53) are used for fig-
ures.

Source code for Epitome can be found at GitHub. Epit-
ome can be installed through pypi. Documentation for
Epitome can be found at readthedocs.All datasets were cu-
rated using ENCODE (1,2) and ChIP-Atlas (35). All cu-
rated datasets for the hg19 and hg38 genomes used to train
and validate Epitome models are publicly available on Ama-
zon S3. GEO accession number GSE115046 was used for
evaluation of H3K27ac in neural differentiation (54).
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Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Gunjan Baid, Alex Ku, Roman Kuhn, Joseph
Gonzalez, Jennifer Listgarten, and Esther Rolf for their
support.

FUNDING

Chan-Zuckerberg Biohub. Funding for open access charge:
Chan-Zuckerberg Biohub.
Conflict of interest statement. Anthony Douglas Joseph is
the founder of Unite Genomics, Inc., and an employee. Jah-
navi Singh is an employee of Google.

REFERENCES
1. Abascal,F., Acosta,R., Addleman,N.J., Adrian,J., Afzal,V., Aken,B.,

Akiyama,J.A., Jammal,O.A., Amrhein,H., Anderson,S.M. et al.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkab676#supplementary-data


PAGE 21 OF 22 Nucleic Acids Research, 2021, Vol. 49, No. 19 e110

(2020) Expanded encyclopaedias of DNA elements in the human and
mouse genomes. Nature, 583, 699–710.

2. ENCODE Project Consortium (2004) The ENCODE (ENCyclopedia
of DNA elements) project. Science, 306, 636–640.

3. Kundaje,A., Meuleman,W., Ernst,J., Bilenky,M., Yen,A.,
Heravi-Moussavi,A., Kheradpour,P., Zhang,Z., Wang,J., Ziller,M.J.
et al. (2015) Integrative analysis of 111 reference human epigenomes.
Nature, 518, 317–330.

4. Keung,A.J., Bashor,C.J., Kiriakov,S., Collins,J.J. and Khalil,A.S.
(2014) Using targeted chromatin regulators to engineer combinatorial
and spatial transcriptional regulation. Cell, 158, 110–120.

5. Li,B., Carey,M. and Workman,J.L. (2007) The role of chromatin
during transcription. Cell, 128, 707–719.

6. Berger,S.L. (2007) The complex language of chromatin regulation
during transcription. Nature, 447, 407–412.

7. Jenuwein,T. and Allis,C.D. (2001) Translating the histone code.
Science, 293, 1074–1080.

8. Wang,D., Rendon,A., Ouwehand,W. and Wernisch,L. (2012)
Transcription factor co-localization patterns affect human cell
type-specific gene expression. BMC Genomics, 13, 263.

9. Zhang,Y. and Reinberg,D. (2001) Transcription regulation by histone
methylation: interplay between different covalent modifications of the
core histone tails. Genes Dev., 15, 2343–2360.

10. Boyle,A.P., Davis,S., Shulha,H.P., Meltzer,P., Margulies,E.H.,
Weng,Z., Furey,T.S. and Crawford,G.E. (2008) High-resolution
mapping and characterization of open chromatin across the genome.
Cell, 132, 311–322.

11. Buenrostro,J.D., Giresi,P.G., Zaba,L.C., Chang,H.Y. and
Greenleaf,W.J. (2013) Transposition of native chromatin for fast and
sensitive epigenomic profiling of open chromatin, DNA-binding
proteins and nucleosome position. Nat. Methods, 10, 1213–1218.

12. Andersson,R. and Sandelin,A. (2020) Determinants of enhancer and
promoter activities of regulatory elements. Nat. Rev. Genet., 21,
71–87.

13. Chen,A., Chen,D. and Chen,Y. (2018) Advances of DNase-seq for
mapping active gene regulatory elements across the genome in
animals. Gene, 667, 83–94.

14. Thurman,R.E., Rynes,E., Humbert,R., Vierstra,J., Maurano,M.T.,
Haugen,E., Sheffield,N.C., Stergachis,A.B., Wang,H., Vernot,B. et al.
(2012) The accessible chromatin landscape of the human genome.
Nature, 489, 75–82.

15. Raha,D., Hong,M. and Snyder,M. (2010) ChIP-Seq: A method for
global identification of regulatory elements in the genome. Curr.
Protoc. Mol. Biol., 91, 21–19.

16. Skene,P.J. and Henikoff,S. (2017) An efficient targeted nuclease
strategy for high-resolution mapping of DNA binding sites. eLife, 6,
e21856.

17. Vierstra,J. and Stamatoyannopoulos,J.A. (2016) Genomic
footprinting. Nat. Methods, 13, 213–221.

18. Alipanahi,B., Delong,A., Weirauch,M.T. and Frey,B.J. (2015)
Predicting the sequence specificities of DNA- and RNA-binding
proteins by deep learning. Nat. Biotechnol., 33, 831–838.

19. Zhou,J. and Troyanskaya,O.G. (2015) Predicting effects of noncoding
variants with deep learning-based sequence model. Nat. Methods, 12,
931–934.

20. Yuan,H., Kshirsagar,M., Zamparo,L., Lu,Y. and Leslie,C.S. (2019)
BindSpace decodes transcription factor binding signals by large-scale
sequence embedding. Nat. Methods, 16, 858–861.

21. Setty,M. and Leslie,C. (2015) SeqGL identifies context-dependent
binding signals in genome-wide regulatory element maps. PLoS
Comput. Biol., 11, e1004271.

22. Goldshtein,M., Mellul,M., Deutch,G., Imashimizu,M., Takeuchi,K.,
Meshorer,E., Ram,O. and Lukatsky,D.B. (2020) Transcription factor
binding in embryonic stem cells is constrained by DNA sequence
repeat symmetry. Biophys. J., 118, 2015–2026.

23. Quach,B. and Furey,T.S. (2016) DeFCoM: analysis and modeling of
transcription factor binding sites using a motif-centric genomic
footprinter. Bioinformatics, 33, 956–963.

24. Keilwagen,J., Posch,S. and Grau,J. (2019) Accurate prediction of cell
type-specific transcription factor binding. Genome Biol., 20, 9.
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52. Avsec,Ž., Kreuzhuber,R., Israeli,J., Xu,N., Cheng,J., Shrikumar,A.,
Banerjee,A., Kim,D.S., Beier,T., Urban,L. et al. (2019) The Kipoi
repository accelerates community exchange and reuse of predictive
models for genomics. Nat. Biotechnol., 37, 592–600.

53. Waskom,M.L. (2021) seaborn: statistical data visualization. J. of
Open Source Software, 6, 3021.

54. Inoue,F., Kreimer,A., Ashuach,T., Ahituv,N. and Yosef,N. (2019)
Identification and massively parallel characterization of regulatory
elements driving neural induction. Cell Stem Cell, 25, 713–727.

55. Hinrichs,A.S., Karolchik,D., Baertsch,R., Barber,G.P., Bejerano,G.,
Clawson,H., Diekhans,M., Furey,T.S., Harte,R.A., Hsu,F. et al.
(2006) The UCSC genome browser database: update 2006. Nucleic
Acids Res., 34, D590–D598.

56. Ma,H., Bandos,A.I., Rockette,H.E. and Gur,D. (2013) On use of
partial area under the ROC curve for evaluation of diagnostic
performance. Stat. Med., 32, 3449–3458.

57. Shu,W., Chen,H., Bo,X. and Wang,S. (2011) Genome-wide analysis
of the relationships between DNaseI HS, histone modifications and
gene expression reveals distinct modes of chromatin domains. Nucleic
Acids Res., 39, 7428–7443.

58. Hart,S. (1989) Shapley Value. In: Game Theory Palgrave Macmillan.
London, Reading, Massachusetts.

59. Yin,Q., Wu,M., Liu,Q., Lv,H. and Jiang,R. (2019) DeepHistone: a
deep learning approach to predicting histone modifications. BMC
Genomics, 20, 193.

60. Abascal,F., Acosta,R., Addleman,N.J., Adrian,J., Afzal,V., Aken,B.,
Akiyama,J.A., Jammal,O.A., Amrhein,H., Anderson,S.M. et al.
(2020) Perspectives on ENCODE. Nature, 583, 693–698.

61. Stovner,E.B. and Sætrom,P. (2019) PyRanges: efficient comparison of
genomic intervals in Python. Bioinformatics, 36, 918–919.

62. Hunter,J.D. (2007) Matplotlib: a 2D graphics environment. Comput.
Sci. Eng., 9, 90–95.


