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Background
The gene ontology (GO) is a framework used to uniformly describe gene function and 
support the representation of biological systems, based on a set of hierarchical con-
trolled vocabularies [1, 2]. GO annotation of genes involves two major components: the 
GO information, which includes GO terms and their definitions or descriptions, and 
supportive evidence, which includes the coding regions on a genomic sequence, or a ref-
erence to a document describing experimental findings relating to gene product func-
tion. Sequence-based GO annotations are produced by comparing different sequences 
drawn from coding regions; this process can transfer GO terms from an old sequence to 
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a new sequence because two genomic sequences with structurally similar coding regions 
tend to produce gene products with similar functions [3, 4]. Literature-based GO anno-
tations (GOA) are produced by reviewing the description of experiments in research 
papers, selecting appropriate GO terms for the experimental findings, and labelling the 
annotation with a GO evidence code1 [5–8] indicating the nature of the evidence. While 
the majority of sequence-based and literature-based GO annotations are automatically 
produced, the most reliable are manually annotated by expert curators. There is a press-
ing need to implement reliable tools for automatic curation of GOA as the volume of 
biological data is constantly increasing.

There are currently around eight million GOA across 4743 species recorded in the GO 
Consortium Database.2 However, fewer than 2% of these are manually curated; these are 
linked to 162,459 publications [9]. Automatic GO curation is efficient but the existing 
benchmarks are unreliable [9–11]. Furthermore, annotation tools that target a fixed set 
of terms cannot satisfy the open-world assumption, which requires that the collection of 
GO terms be updated with the discovery of new gene functions [11]. For example, the 
GO categoriser (GOCat) is based on a closed world assumption, which is that all rele-
vant terms have been previously observed. It relies on a K-Nearest Neighbour algorithm 
to compare the semantic similarity of an existing GO annotated evidence text and a new 
text describing a gene function [10]. GOCat uses several strategies to select GO terms 
from the old evidence text and rank by relevancy to annotate the new text. However, if 
the new text describes a gene function that has large semantic distance from any exist-
ing evidence text, GOCat will fail to shortlist GO terms and thus will skip this functional 
annotation. Also, tools based on the closed-world assumption may be biased towards 
frequently selected GO terms [11, 12], such as assigning “protein binding (GO:0005515)” 
to a large proportion of genes [13]. Another tool called ConceptMapper [14] utilises 
dictionary-based concept recognition to achieve competitive performance in annotat-
ing GO concepts on the Colorado Richly Annotated Full Text (CRAFT) corpus [15, 16]. 
However, this tool cannot recognise GO concepts that do not explicitly occur as phrases 
within evidence texts. For example, “positive regulation of vesicle fusion (GO:0031340)” 
cannot be recognised from “Rat SYT1 gave rise to efficient Ca2+-promoted fusion 
activity”.

GO annotation is not a one-time process [11]. After a GO term has been assigned to a 
gene product and linked to evidence, database curators need to continue to monitor the 
consistency of this annotation against new findings. For example, if a gene product was 
previously published as having negatively regulated behaviour but is later reported as 
being uncertain, then this GO annotation should be removed from the database. Poor-
quality records within databases can cause cascading errors [17] that in turn may lead to 
significant negative impact to many down-stream tasks such as gene expression analysis. 
However, existing studies largely focus on methods for efficient GO annotation enrich-
ment, with less emphasis on maintaining the quality of annotations that have already 
been recorded within databases.

1  http://​geneo​ntolo​gy.​org/​docs/​guide-​go-​evide​nce-​codes/.
2  http://​geneo​ntolo​gy.​org/​stats.​html.

http://geneontology.org/docs/guide-go-evidence-codes/
http://geneontology.org/stats.html
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There are many challenges to assess the quality of GOA [18]. Some researchers have 
estimated a relatively high error rate of GO-curated sequence annotations [19]. A 
series of quality issues in literature-based GO annotations have also been identified. 
Some GOA are reported as being assigned to unsupportive evidence texts [20]. Some 
curators find difficulties in selecting informative GO terms at the proper level of spec-
ificity [9]. These quality issues can be seen as reflecting inconsistencies between GO 
information and evidence information. No tools have been proposed for automatic 
evaluation of the correctness of evidence code selection. The current solution is to 
create comprehensive curation guidelines and manually ensure annotation consist-
ency. However, this is unscaleable [7, 21, 22].

To the best of our knowledge, there is no study focusing on the scale or the char-
acteristics of literature-based GOA grounded at per-annotation level. There is no 
dataset specifically created for promoting automatic GOA inconsistency detection 
research. The feasibility of implementing automatic GOA inconsistency detection 
method is unknown. Therefore, a systematic exploratory study of building automatic 
tools for assisting real-world GOA inconsistency detection is needed. To address 
these concerns, we propose a novel method that uses text mining for the maintenance 
of literature-based GOA consistency. The method can automatically distinguish con-
sistent GOA and four major types of inconsistencies as well as satisfying the GO 
open-world assumption. At current stage, the simulation experiment based on the 
proposed framework is applied on GOA instances grounded at evidence level but can 
be extended to process GOA in real-world format in future.

We model GOA (in)consistency as typed pairwise relationships between GO infor-
mation/evidence code and associated evidence text. We formalise four primary types 
of GOA inconsistencies that violate curation guidelines [7, 21] or have been reported 
by previous researchers (Table 1):

•	 Type A: Contradictory description of gene regulation function
•	 Type B: Over-specific (or over-informative [9]) selection of gene ontology terms
•	 Type C: Unsupportive texts inappropriately selected as evidence [20]
•	 Type D: Erroneous selection of experimental type evidence code

Types A–C involve inconsistencies related to GO term selection while Type D relates 
to the broader nature of the evidence for the annotation; we model these groups sepa-
rately. Type B and Type D inconsistencies are misleading to both human and auto-
matic tools based on text mining. This is because the selection of GO term at proper 
specificity and selection of correct evidence code often requires strong background 
knowledge. Type A and Type C inconsistencies are misleading to automatic tools. The 
semantics of context in these inconsistencies are close to a consistent instance. For 
example, for the sampled Type C instance in Table 1, automated tools may incorrectly 
link this evidence sentence with the GO term “cytosol” as it explicitly appears as a 
keyword in the text, even though that term is not directly associated with any gene 
product in the evidence text. The formalisation of four types of GOA inconsistencies 
can help curators address detailed exploratory analysis of database consistency issues.
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To evaluate our method, we generate a collection of GOA instances that fall into each 
(in)consistency category by directed manipulation of instances in the evidence-based 
BC4GO corpus [23], created using real-world GOA records in model organism data-
bases. We fine-tune two BioPubMedBERT models [24] to distinguish consistent GOA 
from the three kinds of term inconsistency (Model-Term) and from evidence-code 
inconsistency (Model-Code). We propose a simple strategy to extend BioPubMedBERT 
with additional layer to encode section information marked by the location of evidence 
text in the article during fine-tuning. The performance of Model-Term and Model-Code 
are evaluated using Precision, Recall and F1 metrics grounded at each evidence text on a 
test set that is independently generated from 49 full-text articles. Model-Term achieved 
0.69 and Model-Code achieved 0.52 micro-Precision overall. We optimise training data 
using a term-overlap similarity measure and improve the ability to distinguish consistent 
GOA from other types of inconsistencies. We find a significant improvement in preci-
sion among each type of (in)consistency when the uncertainty (Shannon’s entropy) of 
predicted outcomes decrease.

To identify the typical linguistic features that are influencing the models’ perfor-
mances, we undertake error analysis based on a linguistic test suite approach [25, 26] 

Table 1  Examples of four types of inconsistent Gene Ontology Annotations; 3 term-related and 1 
related to evidence codes

Term inconsistency Type A—Contradictory description of gene regulation function
Evidence: As expected, rat SYT1 gave rise to efficient Ca2+-promoted fusion activity

GO term: negative regulation of vesicle fusion (GO:0031339)

Inconsistency: The evidence describes that SYT1 has a positive regulation of vesicle fusion 
which is contradictory to the negative expression in the selected GO term

Type B—Over-specific GO term selection
Evidence: Recent studies from this laboratory have provided strong evidence that endog-
enous GRK2 and GRK6 can regulate the responsiveness of M1 mACh receptor signalling in 
cultured rat hippocampal neurons

GO term: negative regulation of G-protein coupled receptor protein signaling pathway 
(GO:0045744)

Inconsistency: The provided evidence only support the regulation of G-protein coupled 
receptor protein singling pathway while its negativity is unknown. Thus, the annotated GO 
term is over-specific

Type C—Unsupportive evidence text
Evidence: In order to characterise the most prominent protein changes that arise in livers 
from rats fed control or ethanol-containing diets with or without betaine supplementation, 
cytosolic liver proteins were resolved by 1D PAGE.

GO term: cytosol (GO:0005829)

Inconsistency: The evidence text has the mention of a GO concept “cytosol” but does not 
express the cellular component information of any gene product thus the evidence text 
does not correctly support the selected GO term

Code inconsistency Type D—Erroneous selection of experiment type GO evidence code
Evidence: At 22h after pollination, we found pollen tubes in 37.5% of the ovaries follow-
ing pollinations by EXPB1 pollen. In contrast, we found no pollen tubes in the ovaries at 
22h after pollination when the silks were pollinated by expb1 pollen. Together these data 
indicate that the expb1 pollen grows more slowly in vivo than the EXPB1 pollen.

Evidence code: IGI

GO term: pollen tube growth (GO:0009860)

Inconsistency: The evidence indicate the annotation is based on allelic variation and the 
experiment is conducted by comparing the single gene to the alleles of the same gene. 
Thus, the correct evidence code should be IMP instead of IGI
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and find the length or typical composition structure of GO terms, the occurrence of dig-
its or Roman numerals in the GO term, the length of evidence text versus the length 
of the GO definition text, and overlaps between a GO term and evidence text may all 
influence the model’s prediction uncertainty and have overall consequences for model 
performance. Together these outcomes demonstrate the value of our methods as an 
organising framework, and for improving the efficiency and accuracy of human-in-the-
loop GOA curation.

To provide context for our methods, we introduce the Gene Ontology and describe the 
existing evidence-based corpus that we exploit in our method and experiments. We also 
introduce different methods for measuring the semantic similarity between naturally 
written texts within documents, or different GO terms, modelled on a Directed Acyclic 
Graph (DAG); some of these are used in our methods. Finally, we discuss the design of 
linguistic test suite and measurement of prediction uncertainty for post-hoc error anal-
ysis. There are no prior methods for automatic maintenance of literature-based GOA 
consistency, to the best of our knowledge, but as we discuss there are several relevant 
resources.

The GO is a controlled vocabulary developed to uniformly describe the molecular 
activity of a gene product (molecular function) in a specific location of cell (cellular com-
ponent) and how it contributes to a broad biological objective (biological process) [22]. 
The GO has a hierarchical structure and is modelled as a DAG with terms as nodes and 
relations between the terms as edges.3 Parent terms are broad while child terms express 
more specific information; for example, “suckling behavior (GO:0001967)” is a child 
term of “feeding behavior (GO:0007631)”, which indicates a more specific form of food 
intake via nourishment from the breast. Curators need to make sophisticated inferences 
in order to select the proper specific level of GO term from the hierarchical graph, bal-
ancing the need to specify the gene function as precisely as possible against the risk of 
exceeding the level supported by the evidence.

The BC4GO corpus was created by eight expert curators from five different model 
organism databases for the GO annotation task in BioCreative IV [23]. In contrast to 
a mention-based GO corpus such as CRAFT [15], BC4GO mirrors the real-world GO 
curation scenario, providing each GO annotation with traceable evidence grounded at 
sentence level within literature. For example, the GO term “growth (GO:0040007)” com-
monly appears within articles but not every sentence that mentions “growth” is truly 
supportive gene function evidence. The CRAFT corpus includes annotations of every 
appearance of “growth” as a GO concept but these are largely not directly relevant for 
GO curation. The BC4GO corpus categorises evidence sentences into either experiment 
type or summary type. The experiment-type sentences describe details of how an experi-
ment was conducted and can be used to produce a complete GO annotation by referring 
to the GO definition and the decision tree for evidence code selection.4 The summary-
type sentences only describe the results of experiments and are used only to infer the 
selection of GO terms while the evidence code is labelled with “NONE”. Evidence that 
spans multiple sentences is extracted and concatenated as a single long sentence. The 

3  http://​geneo​ntolo​gy.​org/​docs/​ontol​ogy-​relat​ions.
4  ftp://​ftp.​geneo​ntolo​gy.​org/​go/​www/​images/​diag-​evCod​eFlow​Chart.​pdf.

http://geneontology.org/docs/ontology-relations
ftp://ftp.geneontology.org/go/www/images/diag-evCodeFlowChart.pdf
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inter-annotator-agreement of BC4GO is 42.7% in evidence sentence selection and 62.9% 
in GO term selection.

BioSentVec [27] is a sentence semantics representation model pre-trained on a vast 
volume of PubMed articles and clinical notes [28]. It can transform naturally written 
sentences into a lower-dimensional vector representation called sentence embeddings. 
Their model, utilising vectors of dimension 700, achieved competitive results in several 
biomedical sentence pair similarity prediction tasks [29, 30]. However, the performance 
of applying BioSentVec for the consistency estimation of two sentences in different level 
of biomedical information specificity is unknown.

BioPubMedBERT [24] is a contextual representation benchmark pre-trained on 
domain-specific full-text PubMed articles. It achieved competitive performance in many 
relation prediction tasks, such as the extraction of drug-drug interactions [31], gene-
disease associations [32], and sentence-pair similarity estimation [29]. It uses special 
tokens “[CLS]” and “[SEP]” to mark the boundary of an entity pair and predict their rela-
tion type by mapping the last layer of “[CLS]” encoding into a linear layer for multi-type 
relation classification. However, the suitability of applying BioPubMedBERT model for 
open-world consistency inference of sentence pairs is unknown.

Previous work proposed a linguistic test suite for assessing the performance of auto-
matic ontology concept recognition systems [25, 26]. The test suite is designed to extract 
a set of linguistic features of ontology terms such as the number of English words in the 
ontology term, the occurrence of digits or Roman numerals, or the length of associated 
evidence text. These linguistic features may impact the model’s prediction uncertainty, 
which is a metric broadly used in the active learning field [33]. The uncertainties can be 
represented by the model’s probability or entropy [34] for each prediction, with a lower 
probability or higher entropy indicating greater uncertainty. In principle, a robust model 
should perform best on more certain predictions, while flagging of various degrees of 
quality warnings to humans in real-world curation settings. The estimates of uncertainty 
also provides possibilities to quantify the model’s performance during error analysis.

Method
Our approach combines a specific data source with modelling methods. We now intro-
duce each of these components.

Data

There are no existing GOA resources with labelling of different types of (in)consistencies 
grounded at evidence level. Thus, to obtain suitable data, we transform consistent GOA 
available in the BC4GO corpus, generating instances of the four types of inconsisten-
cies we have identified. We use 100 full-text articles from BC4GO to generate a train-
ing set and 49 articles to generate a test set. We randomly sample 20% of the generated 
instances from the training set to form a development set. By doing so, the generated 
test set is assured to be independent for post-modelling evaluation. We ensure that over 
75% of the selected GO terms in the test set do not occur in the training or development 
set, enable the evaluation of the GO open-world assumption.

To simplify our study, we focus on detecting the main single type of inconsistency 
in each individual record. Thus, we assume that a GOA can only be in one type of (in)
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consistency, and further that they are independent of each other. We assume the gene 
product (usually represented by unique GeneID) and the organism described by the evi-
dence text are consistent with that annotated by the GO term and only focus on detect-
ing the (in)consistencies in gene function descriptions (Eq. 1, where y* denotes a specific 
type of (in)consistency, ε denotes evidence information, θ denotes GO information, and 
γ denotes evidence code).

Each GOA instance contains two major components: GO information including the GO 
term ID, the GO term string and the term definition; and evidence information including 
evidence texts and spans, evidence codes, section information marked by the location of 
the evidence text in the article, gene name, gene identification, and gene synonyms. All 
information is directly extracted from BC4GO annotations or retrieved from the data-
base using QuickGO [35]. The process for preparing each type of (in)consistent instance 
is described below. We also discuss potential bias in generating different types of incon-
sistencies under each bullet point.

•	 Consistent GOA from BC4GO: We extract GO annotations from full-text articles 
within BC4GO and transform them to produce instances of consistent GOA.

	 We concatenate evidence text that spans more than one sentence in any GO annota-
tion into a single sentence. We use QuickGO [35] to retrieve any information that 
was not originally provided in BC4GO annotations such as the GO definition. We 
remove any GOA in which the GO term is indicated as being obsolete on QuickGO.

	 The quality of consistent GOA is provisioned by expert curators. We assume annota-
tion of consistent instances in BC4GO is gold-standard.

•	 Type A—Contradictory description of gene regulation function: We apply keyword 
matching on GO terms in the transformed consistent GOA instances and swap the 
mention of any “positive regulation” with “negative regulation” and vice versa. We 
use the manipulated GO term to retrieve associated information such as GO identi-
fication, GO definition, and GO synonyms using QuickGO.

	 Potentially incorrect generation of Type A inconsistencies can be caused by mis-
annotations of original consistent instances in BC4GO corpus. For example, if cura-
tors incorrectly labelled a Type A instance as a consistent instance. This automatic 
synthetic strategy will modify it as a consistent instance indeed while incorrectly 
label it as Type A.

•	 Type B—Over-specific GO term: We retrieve a list of direct descendants with either 
“is_a” or “part_of” relationship to each GO term in every consistent GOA instances 
using QuickGO and manually assure these descendants are over-specific against the 
evidence texts. If a GO term in the consistent GOA is the leaf on the GO DAG, we 
will skip synthesising its over-specific inconsistencies.

	 We use two alternative strategies to select an over-specific GO term from the 
retrieved descendants and use it to manipulate the consistent GOA into Type B 

(1)
P(yj|yi, ǫ,< θ; γ >) = 0, if P(yi) = 1 and i �= j

P(yj|yi, ǫ,< θ; γ >) = P(yj|ǫ,< θ; γ >), if P(yi) �= 1
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GOA. (1) We replace the GO term in a consistent GOA with a randomly selected 
over-specific descendant; (2) We replace the GO term in a consistent GOA with the 
direct descendant of that term that has the greatest word overlap [36]. For example, 
“feeding behavior (GO:0007631)” has one overlapping word with descendant “suck-
ling behavior (GO:0001967)” and two overlapping words with descendant “regula-
tion of feeding behavior (GO:0060259)”. Thus, the second descendant will be selected 
for the replacement.

	 Two sets of Type B instances are generated individually based on the two strategies 
and were used to build different inconsistency detection models for comparative 
study. The second strategy may be biased by the word overlap similarity measure. 
For example, “feeding behavior (GO:0007631)” entirely overlap with “larva feeding 
behavior (GO:0030536)” but partially overlap with “drinking behavior (GO:0042756)”. 
The second strategy will exclude the partially overlapping terms as candidate for 
replacement although it is also semantically similar to “feeding behavior”.

•	 Type C—Unsupportive evidence text: We produce unsupportive variants of each 
consistent GOA by replacing the evidence sentence with another piece of seman-
tically similar but unsupportive text from the same article. The GO term string in 
the original consistent GOA occurs as keywords within the chosen text but does not 
express meaningful gene function information.

	 To find these texts, we refer to the task description of BioCreative IV [20] which 
states that text that is not annotated with a GO term can be treated as unsupportive. 
We extract unsupportive texts from the BC4GO corpus by article and segment them 
into sentences using TextBlob [37]. Each segment is considered as a piece of unsup-
portive evidence. Then, we start to iterate through every consistent GOA. To find 
certain pieces of texts that may be confused with valid evidence texts in each con-
sistent GOA, we first apply GO concept recognition as implemented by [16] in the 
CCP-NLP-Pipelines to recognise any mention of a GO term in these unsupportive 
evidence sentences. We then pair each GO concept recognised unsupportive sen-
tence with Consistent GOA instance in the same article that share the same GO con-
cept. If there is no GO concept being recognised in the evidence sentence, we will 
skip synthesizing its unsupportive inconsistencies.

	 In order to select an unsupportive sentence that is most similar to the evidence 
sentence in the consistent GOA, we represent the sentences as embeddings using 
BioSentVec [27] and calculate the cosine similarity between each pair of matched 
evidence sentence and unsupportive sentence. We produce the final instance by 
replacing the evidence sentence in the consistent GOA with the unsupportive sen-
tence that is most similar. We update information in manipulated GOA such as evi-
dence section information and formalise it into Type C GOA instance.

	 This strategy may be biased in three aspects. Firstly, the sentence segmentation in 
TextBlob may incorrectly split a single sentence into two pieces and lead to gram-
matically ill-formed evidence sentence. Secondly, the CCP-NLP-Pipelines may 
fail to recognise an explicitly appearing GO concept and exclude it’s associated 
sentence as a candidate for modification. Thirdly, the measurement of semantic 
similarity between two sentences using BioSentVec and cosine similarity do not 
guarantee a perfect quantification of semantic expression in gene function infor-
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mation. Thus, replacing the tools with other alternatives in the three aspects can 
lead to the generation of different Type C inconsistencies.

•	 Type D—Erroneous evidence code: We select consistent GOA instances where 
evidence sentences are experiment type, based on an experimental type evidence 
code label. Those are “IDA”, “IMP”, “IPI”, “IGI”, “IEP”. We exclude the selection 
of summary-type evidence sentences as they do not support the selection of an 
evidence code. We iterative through the left GOA instances and replace the evi-
dence code of each with another code randomly selected from the decision tree 
mentioned in “Background” section. For example, we replace “IMP” with “IGI” in 
Table 1 (Type D inconsistency example).

After generating GOA instances, we manually confirmed the true (in)consistency of 
each automatically generated instance and the associated information. While we did 
not have a formal manual annotation process, our approach of targeted manipulation 
of annotated examples leads to reliable labels. The statistics of the generated dataset 
is shown in Table 2.

Modelling and data generation strategy

Baseline

We set up two baselines using a prior-biased classifier and section information rule-
based model work for each modelling task.

The prior-biased classifier will make predictions according to the distribution of 
labels in the training set (Table 2). For example, the probability for prior-biased clas-
sifier to predict a new instance as consistent in the first task is 0.46, and second task is 
0.60.

The section information rule-based model exploits different distributions of section 
information among instances shown in Table 3. This model will predict any instance 
as unsupportive if its evidence section information belongs to either Background, 
Supporting Information, Supplementary, or Other. Otherwise, the instance will be 
predicted as consistent. Specifically, only 4 out of 3480 instances appear in the Con-
clusion section in the test set. Thus, predicting them as either consistent or inconsist-
ent will not statistically impact the overall performance of the baseline. However, this 
rule-based model will not predict any instance as contradictory, over-specific, or erro-
neous code. To overcome this issue, we apply another prior-biased classifier to process 

Table 2  The number of generated instances in each (in)consistency category

100 Articles 49 Articles

Train set Dev set Test set

* Consistent 1466 367 1579

Term inconsistency (A) Contradictory 160 40 128

(B) Over-specific 1172 294 1231

(C) Unsupportive 403 101 1579

Evidence code inconsistency (D) Error-code 958 239 897
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rule-based model outputs from the consistent type into these three types. For exam-
ple, the probability of an instance that belongs to over-specific under the prior-biased 
rule-based model in the first modelling task is 0.42.

We explored the lexical distance between evidence text and the concatenation of GO 
term and GO definition using the Jaccard Index measure to gauge whether such a meas-
ure could provide a viable strategy for distinguishing consistent and inconsistent cases, 
or between inconsistency types. However, we found that different types of (in)consisten-
cies have very similar similarity distributions. Thus, we abandoned the implementation 
of a baseline using a simple lexical distance measure; its performance would be close to 
a random guess and worse than the prior-biased classifier and section information rules 
we utilise.

Basic system

We model each generated instance as a paired sequence of “[CLS] evidence text [SEP] 
GO term + GO definition [SEP]” or “[CLS] evidence text [SEP] evidence code [SEP]” 
as input to BioPubMedBERT. We model the different types of (in)consistencies in two 
ways: (1) in a multi-class setting (Model-Term) that aims to distinguish between con-
sistent, Type A, Type B and Type C inconsistencies by comparing evidence informa-
tion with GO information; (2) and in a binary setting (Model-Code) for distinguishing 
between consistent and Type D inconsistencies by comparing evidence information with 
evidence code. In the basic system, two models are fine-tuned on training and develop-
ment sets generated using random GO descendant selection based on the strategy men-
tioned in “Data” for Type B instances.

Optimization of training set

In the system with training set optimization, alternative Model-Term and Model-Code 
variants are fine-tuned on a collection of training and development set using the term 
overlap weighting strategy introduced in “Data” for Type B instances within 20 articles. 
The generation of Type B instances from the remaining 80 articles follows the original 
strategy for preventing the model biases towards greater overlapping GO terms. The 
test set is retained unmodified. This optimisation aims to boost the model’s perfor-
mance in distinguishing different types of instance where the semantics of GO terms 
is very similar, such as when “feeding behavior (GO:0007631)” and “suckling behavior 
(GO:0001967)” are associated with the same piece of evidence.

Addition of evidence section information

The evidence section information is first marked by the document section title in 
BC4GO corpus where the evidence text located and further normalised into 10 catego-
ries. The distribution of normalised section information in consistent and unsupportive 
instances is illustrated in Table  3. The distribution of evidence section information is 
consistent with a previous statistical report on BC4GO corpus [23] where a majority of 
GO annotations are supported by evidence text within the results and discussion sec-
tion. The contradictory, over-specific, and erroneous-code instances are generated with-
out manipulating the evidence text from the original consistent GOA instances. Thus, 
they retain the canonical distribution of evidence section information with Consistent 
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GOA. The unsupportive instances are generated by replacing the original evidence text 
with unsupportive evidence sentences and therefore have different distribution of sec-
tion information from consistent GOA. We concatenate the 1-dimension section encod-
ing with 768-dimension [CLS] encoding in BioPubMedBERT’s last hidden layer and 
forward to a linear layer in Pytorch (Fig. 1).

Experiment design

We develop models to recognise the five types of (in)consistent GOA using the baseline 
setting and basic system. We then run additional experiments using training set optimi-
sation and evaluate the impact of the addition of evidence section information using F1 
measure and Precision. We use BioPubMedBERT-uncased with 768 hidden states and 

[CLS] Tok1 TokN [SEP] Tok1 TokM [SEP]

Evidence Text GO Term GO Definition
or Evidence Code

E[CLS] E1 EN E[SEP] E[SEP]'E1' EM'

BioPubMedBERT

CLS T1 TN T[SEP] T1' TM' T[SEP]
'

CLS

... ...

... ...

... ...

Linear Layer

Section

Fig. 1  Concatenation of evidence section encoding with [CLS] encoding in classical BioPubMedBERT 
model. (Tok* denotes a naturally written token, E* and T* denote a token embedding, Section denotes section 
encoding, [CLS] and [SEP] are special tokens that mark the boundary of a sequence pair.)

Table 3  Distribution of evidence section information across Consistent type and (C) Unsupportive 
type instances within training set

Section information Consistent (%) (C) (%)

Title 1.2 1.8

Abstract 11.4 3.4

Introduction 2.7 13.4

Background – 1.2

Materials and method 3.9 12.6

Results and discussion 80.6 53.3

Conclusion 0.2 0.6

Supporting information – 2.8

Supplementary – 10.5

Other – 0.6
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the BERT-base architecture. We use the AdamW [38] optimiser with 0.01 weight decay 
and 300 warmup steps. We fine-tune model with 3 epochs, batch size 16 for the training 
set and batch size 64 for the development set. We use the huggingface AutoModelForSe-
quenceClassification [39] framework for the fine-tuning implementation.

Evaluation metrics

In contrast to the existing literature-based GOA resources in GO consortium database 
where GO annotation is linked to evidence at the article level, we grounded annotation 
evidence to sentences via the BC4GO corpus. This strategy can better reflect the model’s 
ability to detect (in)consistent GOA. Considering an article that has two evidence sen-
tences supporting the annotation of the same GO term, where the first evidence sen-
tence is correctly identified as being consistent to the GO term and the second evidence 
sentence is not, the Precision for consistent GOA recognition is 1 at the article level but 
0.5 at the evidence level. Precision is appropriate for interpreting model’s performance 
because the same GO term may be assigned to multiple evidence sentences in the same 
article. Once a single inconsistent GOA is detected in an article, all GOA that are linked 
to that article will be forwarded to curators for further inspection. Although there may 
be other inconsistent GOA linked to that article that were not detected by the system, 
they will still be manually reviewed. Thus, the detection of only one inconsistent GOA 
effectively achieves a perfect Recall at article level. A low volume of false negatives—
missed (in)consistent GOA within a single article—can be tolerated in a real-world 
human-in-the-loop curation scenario.

We also use Recall and F1 as evaluation metrics for the model’s performance grounded 
at evidence level for each (in)consistency type. The evaluation is of the predictions over 
the test set, which is independent from any data point used in the previous fine-tuning 
stage.

To support further analysis of Model-Term’s performance, we calculate the uncertainty 
(H) of each predicted label (i) using Shannon entropy; see Eq. 2, in which pi denotes the 
probability that a GOA instance is of ith (in)consistency type.

We cluster test set instances into 15 collections using an uncertainty sampling strat-
egy derived from [33]. We use two hyper-parameters τ (0.2 ≤ τ ≤ 1.7, step = 0.1) and 
α = 0.1 to represent the boundary of each sample in which the uncertainty of any pre-
diction is between τ − α and τ . This strategy can sample the same instance into more 
than one consecutive collection where τ represents the aggregated uncertainty of that 
collection.

We draw on the linguistic test suite of [25, 26] to define several metrics that character-
ise various linguistic aspects of GOA or GOA-evidence text pairs.

The Pearson correlation coefficient between the scores on these metrics and predic-
tion uncertainty can then be investigated to provide insight into how uncertainty varies 
with linguistic characteristics. This analysis can be done either by taking the sum of all 
the instances metric scores and divided by the number of instances within a collection 

(2)H = −

3∑

i=0

Pi log2 Pi,H ∈ (0, 2)
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(Per-Instance), or in aggregate across a collection (Per-Collection). Some metrics only 
support (Per-Collection) analysis as the aggregated uncertainty value of each sampled 
collection equals to the value of hyper-parameter τ being set during the uncertainty 
sampling process.

Either per-instance or per-collection

GOLen: The count of tokens in a GO term split by the blank sign.

#GOLen-2 | feeding behavior (GO:0007631)

AlignRatio: The count of tokens in evidence text divided by the count of tokens in GO 
definition text.

#AlignRatio-0.32 | Evidence: CeCDC-14 and ZEN-4 are interdependent in their localiza-
tion | GO definition: Any process that modulates the frequency, rate or extent of any pro-
cess in which a protein is transported to, or maintained in, a specific location.

GEORatio: The count of word overlaps between GO term and evidence text divided by 
the GOLen.

#GEORatio-0.25 | GO term: regulation of protein localization | Evidence: CeCDC-14 and 
ZEN-4 are interdependent in their localization 

Per-Collection

%ContainRoman: The percentage of instances that has the occurrence of Roman 
numerals in the GO term in each sampled collection.

#%ContainRoman-0.5 | feeding behavior (GO:0007631) | photosynthesis, light harvesting 
in photosystem II  (GO:0009769)

%ContainDigit: The percentage of instances that has the occurrence of digital numbers 
09 in the GO term in each sampled collection.

#%ContainDigit-0.5 | cellular response to interleukin-1 (GO:0071347) | cellular 
response to peptide (GO:1901653)

%ContainStop-OF: The percentage of instances that has the occurrence of stopword 
“of” in the GO term in each sampled collection.5

5  Note that GO terms are drawn from strictly controlled vocabularies where the stopword “of” expresses a composi-
tional structure, with a parent GO term often appearing within a child term. Thus, this trick of counting the occurrence 
of such typical compositional structure via the stopword “of” is only feasible for GO terms but not GO definitions or 
naturally written evidence text.
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#%ContainStop-OF-0.5 | feeding behavior (GO:0007631) | regulation of  feeding behavior 
(GO:0060259) 

Results
Table 4 shows that the model is competitive in distinguishing consistent GOA from all 
other types of inconsistencies compared to the baseline, with the best performance of 
0.74 Precision for Model-Term and 0.82 Precision for Model-Code. The training set opti-
misation and the addition of evidence section information further contribute to improv-
ing the Precision ( + 0.2 & + 0.15 ) in recognising consistent GOA. However, these two 
strategies do not demonstrate positive impact in distinguishing inconsistent GOA other 
than Contradictory (Type A). The performance of Model-Code on Type D inconsist-
ency recognition is low, indicating that evidence code errors are difficult for the model 
to accurately identify.

Analysis of the uncertainty of predictions from Model-Term demonstrates a signifi-
cant negative correlation between Precision and the aggregated uncertainty of predic-
tions among Consistent, Type B and Type C (Fig. 2). Specifically, the model achieved 
above 0.9 Precision in recognising Type C GOA and above 0.8 Precision in recognis-
ing Consistent GOA among instances with prediction uncertainty lower than 0.2. 
The radius of scattered dots on the trending line represent the size of each sampled 

Table 4  The performance of model-term and model-code in different modelling tasks, and in 
comparison with two baselines using Precision (P), Recall (R), F1 measures grounded at evidence level 
in each (in)consistency type and Micro-Precision ( P∗ ), Micro-Recall ( R∗ ) averaged over every predicted 
instances in the test set

The highest metric scores for the identification of each type of (in)consistency is bolded

Model-term

Consistent (A) (B) (C)

P R F1 P R F1 P R F1 P R F1

Basic system 0.54 0.70 0.61 0.48 0.29 0.36 0.79 0.48 0.60 0.65 0.96 0.78
+Training Opt 0.74 0.71 0.72 0.54 0.33 0.41 0.76 0.57 0.65 0.61 0.93 0.73

+SectionInfo 0.69 0.65 0.67 0.46 0.35 0.40 0.77 0.52 0.62 0.52 0.96 0.68

+Opt & SectionInfo 0.69 0.64 0.66 0.45 0.31 0.37 0.75 0.51 0.61 0.50 0.96 0.66

Baselines First modelling task
prior-biased classifier 0.48 0.35 0.41 0.05 0.02 0.03 0.36 0.28 0.31 0.10 0.33 0.15

rule-based model 0.53 0.38 0.44 0.09 0.04 0.06 0.41 0.29 0.34 0.18 0.99 0.30

Model-term Model-code

Overall Consistent (D) Overall

P* R* F1 P R F1 P R F1 P* R* F1

Basic system 0.64 0.64 0.64 0.75 0.50 0.60 0.31 0.58 0.41 0.52 0.52 0.52

+Training Opt 0.69 0.69 0.69 – – – – – – – – –

+SectionInfo 0.65 0.65 0.65 0.82 0.48 0.61 0.21 0.56 0.31 0.50 0.50 0.50

+Opt & SectionInfo 0.63 0.63 0.63 – – – – – – – – –

Baselines First modelling task Second modelling task
prior-biased classifier 0.30 0.30 0.30 0.6 0.64 0.62 0.41 0.37 0.39 0.53 0.53 0.53
rule-based model 0.36 0.36 0.36 0.6 0.64 0.62 0.41 0.37 0.39 0.53 0.53 0.53
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collection (Table   5), indicating that most of the predictions have low uncertainty. 
The Type A predictions do not correlate with prediction uncertainty due to the small 
collection size when τ > 0.4 is limited (less than 50 instances in each). There is an 
uptrend of precision for Unsupportive typed instances when τ range between 1.2 and 
1.4. This increase may be due to either the small collection size as well (less than 40 
instances in each) or the occurrence of linguistic features (illustrated in the test suite 
in “Evaluation metrics”) in the GO term, GO definition, or evidence text.

Fig. 2  The change in Precision with respect to different samples under an uncertainty sampling strategy 
with 0.2 ≤ τ ≤ 1.7 , α = 0.1 and step = 0.1 . The radius of dots represent the size of sampled predictions that 
support the calculation of metric score. (The detailed Pearson correlation coefficient values can be found in 
Table 6 and the size of each sampled collection by (in)consistency type can be found in Table 5)

Table 5  The size of each sampled collection using uncertainty sampling strategy by (in)consistency 
type

τ Size of sampled collection

Consistent Contradictory Over-specific Unsupportive

0.2 1022 90 1069 758

0.3 430 150 366 162

0.4 192 72 205 84

0.5 132 22 122 63

0.6 120 18 87 42

0.7 103 10 78 31

0.8 87 3 89 36

0.9 92 2 83 46

1.0 96 6 71 43

1.1 102 10 92 42

1.2 79 9 90 43

1.3 39 12 51 30

1.4 29 10 19 18

1.5 14 3 8 10

1.6 9 1 8 8
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Figure 3 and Table 6 demonstrate the metrics in the test suite all have significant cor-
relation with either model’s aggregated or per-instance prediction uncertainty. The high-
lighted correlation trend lines indicate the correlation is significant ( p < 0.05 ) using a 
Pearson correlation coefficient measure. A detailed discussion is provided in Discussion.

Discussion
We explored the effectiveness of distinguishing Consistent GOA and the four kinds of 
inconsistencies. The basic setting achieves good results in identifying Type B (over-spe-
cific) and Type C (evidence unsupportive) GOA (Table 4). However, the models failed to 
generalise to extreme cases where one component of the input sequence pair is highly 
similar to components in other instances.

For example, if two pieces of semantically similar GO information (such as “regula-
tion of feeding behavior: Any process that modulates the rate, frequency or extent of the 

Fig. 3  The correlation trends between each metric in the linguistic test suite and aggregated uncertainty 
( τ ) of sampled collections. The highlighted correlation trend lines have a significant Pearson correlation 
coefficient ( p < 0.05 ). (A list of Pearson values either by instance or by aggregated collection of sample can 
be found in Appendix, Table 6)
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behavior associated with the intake of food” and “positive regulation of feeding behavior: 
Any process that activates or increases the frequency, rate or extent of feeding behav-
ior”) are paired with the same piece of evidence text, the model has difficulty discrimi-
nating between them. This is reflected in the fact that most of the error cases are caused 
by mis-categorisation between consistent and over-specific GOA during evaluation on 
the test set (Table 7).

The training set optimisation contributes significant F1 gain in distinguishing consist-
ent GOA from inconsistent GOA (Table 4). This improvement results from the correct 
recognition of consistent instances that were previously falsely predicted as Type B 
inconsistencies in the baseline setting (Table 7). However, the training set optimisation 
strategy does not improve the ability to distinguish different types of inconsistencies, 
and performance at identifying Type C inconsistencies worsened. This is because Type 
B and Type C inconsistencies do not strictly follow the inconsistency independence 
assumption (Eq 1). The Type C instances can also be seen as a Type B scenario where 
the associated GO term is over-specific, which makes the evidence text not supportive 
enough. However, the training set optimisation strategy reinforces the categorisation of 
such instances into either consistent or Type B only, which leads to the mis-categori-
sation of some Type C instances as Type B. A potential solution may be to group Type 

Table 6  * Pearson correlation and associated p value between each score and aggregated 
uncertainty (the aggregated uncertainty value of each sampled collection equals to the value 
of hyper-parameter τ being set during the uncertainty sampling process, the test suite scores are 
averaged by taking the sum of all the instances scores and divided by the number of instances 
within each collection); ∧ The Pearson correlation and associated p value between each evaluation 
metric and per-instance prediction uncertainty

Predictions Pearson R p value

Precision ∗ Consistent − 0.95 9e−08

Type A − 0.06 0.82

Type B − 0.85 7e−05

Type C − 0.70 3e−03

GOLen∧ Consistent 0.27 6e−28

Type B − 0.04 0.14

Type C 0.16 3e−07

AlignRatio∧ Consistent 0.05 0.03

Type B − 0.09 9e−05

Type C 0.16 2e−07

GEORatio∧ Consistent − 0.13 4e−08

Type B − 0.04 0.09

Type C 0.1 9e−04

%ContainRoman∗ Consistent 0.79 5e−04

Type B − 0.26 0.35

Type C − 0.46 0.08

%ContainDigit∗ Consistent 0.81 3e−04

Type B − 0.44 0.10

Type C − 0.65 9e−03

%ContainStop-OF∗ Consistent 0.81 2e−04

Type B 0.80 3e−04

Type C 0.58 0.02
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B and Type C inconsistencies into one category or relax the independence assumption 
between the two classes via a multi-label classifier.

The evidence section information is a strong indicator for discriminating Consist-
ent GOA from other types of inconsistencies. It outperforms the basic system but 
can also cause biases as the mixture of Opt&SectionInfo under-performs the Training 
Opt method (Table 4). This is because the distribution across section segments varies 
between Consistent and Type C inconsistencies (Table  3). The consistent GOA only 
appear in the sections of Title, Abstract, Introduction, Materials & Method and Results 
& Conclusion, while Unsupportive (Type C) inconsistencies can appear anywhere in the 
document.

The model is effective in assisting GOA inconsistency detection although it is not 
effective in distinguishing different types of inconsistencies (Table 4). In real-world cura-
tion settings, the performance of distinguishing consistency and inconsistencies is more 
important than distinguishing between different types of inconsistencies. This is because 
any inconsistent instances flagged by the automatic models will be passed to human 
curators for further review. The model does not need to precisely identify the specific 
type of inconsistency of the instance as human curators will make that judgement. In 
addition, an instance may be categorised into multiple types of inconsistencies at the 
same time. For example, a gene regulation contradictory instance can also be considered 
as an unsupportive instances. However, these issues will not affect the feasibility of the 
model in real-world use case.

Model-Code was not successful at identifying Erroneous Code (Type D) inconsist-
encies. This is because the relationship between an evidence code and evidence text is 
more complex than the relationship between a GO definition and evidence text. For 
example, in Type A inconsistencies, there are many lexical alignments from “nega-
tive regulation” within GO terms to “decrease”, “prevent”, “deactivate” within evidence 
texts. In Type B instances, over-specific GO terms often have large term overlap with 
the correct GO term. The pairwise semantic relation patterns of GO definition and evi-
dence text in Model-Term are restricted. However, the Model-Code input of pairwise 

Table 7  The confusion matrix of model-term on the test set with basic, training set optimisation 
fine-tuning strategy

Predicted labels

Consistent (A) (B) (C)

True Labels
Basic system

 Consistent 850 56 656 17

 (A) Contradictory 15 61 52 0

 (B) Over-specific 186 52 972 21

 (C) Unsupportive 156 42 354 1027

+Training set optimisation

 Consistent 1164 56 309 17

 (A) Contradictory 47 69 12 0

 (B) Over-specific 239 39 933 20

 (C) Unsupportive 199 44 379 957
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relations between evidence code and evidence texts do not have any text alignments or 
term overlaps. The assessment of consistency between the two requires a comprehen-
sive knowledge inference process which relies on both the identified evidence text and 
prior knowledge or other text in the article. For example, the decision of whether an 
evidence text such as “Here we show that a knock-out of the ybeB gene causes a dramatic 
adaptation block during a shift from rich to poor media and seriously deteriorates the 
viability during stationary phase. YbeB of six different species binds to ribosomal protein 
L14. This interaction blocks the association of the two ribosomal subunits and, as a conse-
quence, translation” should be labelled as “IDA” [PubMed Central article PMC3400551] 
is decided based on information such as whether or not there is a genetic mutation or 
allele variation, a 1-on-1 physical interaction, or the expression pattern of gene product. 
It requires that the result be determined through direct assay for the function, process, 
or component of the gene product. This requires a sophisticated process of considering 
the evidence text in relation to several decision rules rather than a direct association 
between the text and the evidence code.

Advanced assessment of Model‑Term

Model-Term demonstrated strong potential for feasibility for real-world GO curation, 
particularly for the more confident predictions, as shown in Fig. 2. The results of linguis-
tic test suite analysis revealed some critical linguistic features that have significant cor-
relation with the model’s prediction uncertainty. Specifically, the overlaps between GO 
term and evidence text (GEORatio) and the typical composition structure signalled by 
the occurrence of stopword “of” correlate well with prediction uncertainty. The correla-
tion with this typical structure confirms that a valuable future research direction may be 
to develop better models of the hierarchical relationships between parent GO terms and 
more specific child GO terms. Additionally, we found that a longer GO term correlates 
with higher uncertainty in predictions of consistent and Type C; the differences of text 
length between GO definition and evidence text potentially influence the model’s uncer-
tainty in recognising Type-C GOA; the occurrence of Roman numerals and digits in the 
GO term demonstrate possibilities in influencing the prediction uncertainty of consist-
ent and Type-C GOA as well.

We found a small number of error cases that were caused by the presence of biolog-
ical or chemical formulas within GO definitions. These are not particular to any type 
of (in)consistency. For example, the definition for “geranyltranstransferase activity 
(GO:0004337)” is “Catalysis of the reaction: geranyl diphosphate + isopentenyl diphos-
phate = 2-trans,6-trans-farnesyl diphosphate + diphosphate.” We found that over 30% of 
formula-containing GOA instances are miscategorised by Model-Term.

Comparison with related work

At present, not every piece of information in the generated GOA instance is exploited by 
our modelling: for example, GO synonyms or larger context (such as the full paragraph) 
from where the evidence text was extracted were not used. Some researchers have devel-
oped methods to identify hypothesis statements or new knowledge from scientific lit-
erature using language meta-knowledge [40]. According to the GO curation guidelines, 
evidence is unsupportive if it only express the author’s assumption of a gene function. 
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Thus, the analysis of evidence meta-knowledge may contribute to the identification of 
Type-C GOA.

Our proposed method uses vertical consistency estimation between the GO definition 
and evidence text as two texts are at different levels of specificity in expressing a gene 
product function. The GO definition describes the gene function more abstractly while 
the evidence expresses more detailed information. A previous related benchmark called 
GOCat [10] uses horizontal sentence pair similarity estimation [29] where two pieces of 
gene function description are on the same language specificity level. It first compares the 
semantic similarity between new evidence text and an old GO annotated evidence text. 
Then it selects relevant GO terms from the old evidence text to annotate the new one. 
This strategy has two shortcomings: it cannot deal with new knowledge, as described 
in the Background; and it can be biased toward frequently selected GO terms [12]. Our 
system can overcome these limitations and still maintain promising performance on a 
test set in which over 75% of GO terms are new (Table 4). Model-Term in the basic sys-
tem achieved 0.68 micro-averaged Precision on the test instances with new GO terms, 
compared to 0.74 micro-averaged Precision on test instances with seen GO terms. The 
results demonstrate that our model is effective at processing new knowledge.

Conclusion
Continual monitoring of the consistency of GO annotation records in modern organ-
ism databases is important to maintain currency and quality of the information in these 
resources. We formally identify five major types of (in)consistent GO annotations that 
reflect the major GO annotation quality concerns for GO curation community. We pro-
pose a novel and efficient method to apply state-of-the-art text mining models to auto-
matically detect these five major types of (in)consistent GO annotations, evaluated using 
an automatically generated data set. Our method satisfies the open-world assumption 
and is therefore robust to changes in the GO terminology.

We have demonstrated a novel method that can be adopted for real-world human-
in-the-loop curation. Our implementation achieved 0.74 Precision for Model-Term and 
0.82 Precision for Model-Code in distinguishing consistent from inconsistent GOA. This 
method can improve the efficiency of human curators by enabling curators to focus their 
efforts on correcting identified inconsistencies and by categorising these inconsistencies, 
therefore reducing the number of records that need to be manually reviewed.

Another strength is that the model has achieved competitive performance among pre-
dicted results with less prediction uncertainty, which can be used by human curators 
to further focus their efforts. We were able to further improve performance through 
training set optimisation and the addition of evidence section information. Through a 
detailed performance analysis using a linguistic test suite, we identified superficial lin-
guistic features that may impact the model’s prediction uncertainty.

In future work, we aim to produce a more comprehensive evidence-based GO annota-
tion corpus focusing on inconsistencies. We will seek assistance from expert curators 
to test and extend the proposed methods on real-world database records with broader 
gene function perspective, and will specifically seek to improve the identification of evi-
dence code inconsistencies. We will also examine the use of meta-knowledge analysis 
to improve the model’s performance in identification of instances that lack supportive 
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evidence. We will refine the modelling of semantic hierarchical relationship between 
parent and children GO terms.
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