
����������
�������

Citation: Yeh, C.-Y.; Chang, H.-Y.;

Hu, J.-Y.; Lin, C.-C. Contribution of

Different Subbands of ECG in Sleep

Apnea Detection Evaluated Using

Filter Bank Decomposition and a

Convolutional Neural Network.

Sensors 2022, 22, 510. https://

doi.org/10.3390/s22020510

Academic Editors: Caroline

Lustenberger, Maarten De Vos and

Sami Myllymaa

Received: 8 November 2021

Accepted: 8 January 2022

Published: 10 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Contribution of Different Subbands of ECG in Sleep Apnea
Detection Evaluated Using Filter Bank Decomposition and a
Convolutional Neural Network
Cheng-Yu Yeh 1, Hung-Yu Chang 2,3, Jiy-Yao Hu 1 and Chun-Cheng Lin 1,*

1 Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan;
cy.yeh@ncut.edu.tw (C.-Y.Y.); geminipig19970530@gmail.com (J.-Y.H.)

2 Heart Center, Cheng Hsin General Hospital, Taipei 112, Taiwan; amadeus0814@yahoo.com.tw
3 Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
* Correspondence: cclin@ncut.edu.tw

Abstract: A variety of feature extraction and classification approaches have been proposed using
electrocardiogram (ECG) and ECG-derived signals for improving the performance of detecting apnea
events and diagnosing patients with obstructive sleep apnea (OSA). The purpose of this study is to
further evaluate whether the reduction of lower frequency P and T waves can increase the accuracy of
the detection of apnea events. This study proposed filter bank decomposition to decompose the ECG
signal into 15 subband signals, and a one-dimensional (1D) convolutional neural network (CNN)
model independently cooperating with each subband to extract and classify the features of the given
subband signal. One-minute ECG signals obtained from the MIT PhysioNet Apnea-ECG database
were used to train the CNN models and test the accuracy of detecting apnea events for different
subbands. The results show that the use of the newly selected subject-independent datasets can avoid
the overestimation of the accuracy of the apnea event detection and can test the difference in the
accuracy of different subbands. The frequency band of 31.25–37.5 Hz can achieve 100% per-recording
accuracy with 85.8% per-minute accuracy using the newly selected subject-independent datasets and
is recommended as a promising subband of ECG signals that can cooperate with the proposed 1D
CNN model for the diagnosis of OSA.

Keywords: obstructive sleep apnea; single-lead electrocardiogram; filter bank decomposition;
convolutional neural network

1. Introduction

Obstructive sleep apnea (OSA) is characterized by repeated collapse of the upper
airway during sleep. It blocks the airway and then causes shallow and laborious breath-
ing [1]. OSA is very common in patients with cardiovascular disease and is associated
with an increased incidence of stroke, heart failure, atrial fibrillation, and coronary heart
disease. Severe OSA is further associated with increased all-cause and cardiovascular
mortality [2]. OSA affects approximately 9–24% of the general population, but the number
of patients who have been diagnosed is very limited, and about 90% of sufferers are still
undiagnosed [3]. Hence, early diagnosis and treatment of OSA can reduce adverse human
health conditions.

The standard approach for the diagnosis of OSA is based on the respiratory signals
(including nasal airflow, thoracic and abdominal movements) and blood oxygen concentra-
tion measured by polysomnography. The measurements of respiratory irregularities during
sleep include apneas and hypopneas. An apnea is a complete or almost complete cessation
of airflow, lasting ≥10 s, and is usually associated with oxygen desaturation. A hypopnea
is a reduction in airflow (<70% of a baseline level) associated with oxygen desaturation.
The apnea-hypopnea index (AHI) [4], defined as the sum of apneas and hypopneas per
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hour of sleep, is widely used for diagnosing the severity of OSA, and includes normal
(AHI < 5), mild (5 ≤ AHI < 15), moderate (15 ≤ AHI < 30), and severe (AHI ≥ 30) levels.
The most serious limitation of polysomnography is that it is inconvenient, time-consuming
and expensive. It is an overnight test at a sleep center or hospital and requires numerous
electrodes and sensors to monitor various sleep physiological signals.

In recent years, many studies have focused on the development of a more convenient
and less expensive OSA diagnostic system based on the analysis of the single-lead ECG sig-
nals. Most of them extract and classify the features from the ECG signals, RR intervals, heart
rate variability (HRV), or ECG-derived respiration (EDR) signals. It has been shown that
the EDR signal can be used to approximate the respiratory rate, and even the respiratory
wave morphology [5–7]. Hayano et al. [8] further reported that OSA would cause cyclic
variation in the heart rate. Hassan et al. [9] extracted the features of the ECG signals based
on the tunable-Q factor wavelet transform, and classified the data using a machine learning
algorithm, namely random under sampling boosting (RUSBoost). Rachim et al. [10] de-
composed the ECG signals into five levels using wavelet decomposition and then extracted
15 features from the detail coefficients (D3–D5). The principal component analysis and
support vector machine were applied for feature dimension reduction and classification,
respectively. Sharma et al. [11] and Sharma et al. [12] extracted the features from the ECG
signals based on the optimal biorthogonal antisymmetric and orthogonal wavelet filter
banks, respectively, and introduced the least squares and Gaussian support vector machines
(SVM) for classification, respectively. Our previous study [13] proposed a one-dimensional
(1D) convolutional neural network (CNN) model which can automatically learn the features
of the ECG signals and classify the normal and apnea events. Wang et al. [14] and Wang
et al. [15] proposed a modified LeNet-5 CNN model and a deep residual neural network,
respectively, to extract and classify the features from RR intervals. The HRV and EDR
signals were decomposed into different modes using the variational mode decomposition
proposed by Sharma and Sharma [16], and a K-nearest neighbor classifier was designed
for classification. Pinho et al. [17] extracted the features from the HRV and EDR signals
based on the time-domain and spectral-domain measures and designed the artificial neural
networks (ANN) and SVM for classification.

The above-mentioned research has proposed a variety of methods to extract and clas-
sify the features from the ECG and ECG-derived signals. However, when we use the 1D
CNN model [13] to automatically learn the features of RR intervals from ECG signals, they
are easily affected by low-frequency and large amplitude P and T waves. Hence, this study
aims to further evaluate whether the reduction in the low-frequency P and T waves can
improve the accuracy of detecting apnea events. This study proposed filter bank decom-
position with Butterworth bandpass filters to decompose the ECG signal into 15 subband
signals, and a one-dimensional (1D) convolutional neural network (CNN) model inde-
pendently cooperating with each subband to extract and classify the features of the given
subband signal. The original subject-dependent and newly selected subject-independent
training and test datasets using 70 ECG recordings from the MIT PhysioNet Apnea-ECG
database [18,19] were used in this study to evaluate the contribution of different subbands.

The remainder of this paper is organized as follows. Section 2 describes the training
and test datasets of one-minute ECG signals from the MIT PhysioNet Apnea-ECG database
and demonstrates the proposed apnea detection system based on the filter bank decom-
position and 1D CNN model. Results are given in Section 3. A discussion of the study
findings is provided in Section 4. Finally, Section 5 concludes this study.

2. Materials and Methods
2.1. Materials

All of the ECG signals used in this study were obtained from the MIT PhysioNet
Apnea-ECG database [18,19] consisting of a training dataset of 35 recordings numbered
from a01 to a20, b01 to b05, and c01 to c10, and a test dataset of 35 recordings numbered
from x01 to x35. All ECG recordings were measured by polysomnography. The individual
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recordings vary in length from 401 to 587 min. Each recording contains a single-lead ECG
signal digitized at 100 Hz with 12-bit resolution and a set of reference annotations. Each
1-min ECG signal is annotated as A (apnea event) or N (normal event), where A and N
denote the presence or absence of apnea, respectively.

According to the metadata of recordings announced by the database, we compared the
age, sex, height, and weight of each recording, and further compared the ECG waveforms
for the recordings with the same sex, height, and weight to confirm if they belonged to the
same study object. It was found that many ECG recordings in the training and test datasets
came from the same study subjects. Table 1 shows the summary of the ECG recordings for
each study subject in the database. Each subject includes 1 to 4 recordings. These 70 ECG
recordings came from 32 study subjects numbered from p1 to p32, consisting of 25 males
aged 46.9 ± 9.9 years with body mass index (BMI) 29.7 ± 7.0 kg/m2, and 7 females aged
32.4 ± 7.0 years with BMI 22.1 ± 3.5 kg/m2. Of the 32 study subjects, 18 are marked by * in
Table 1 which denotes that they have ECG recordings in both the training and test datasets.
For example, the subject p2 has the recording a02 in the training dataset and the recording
x14 in the test dataset. Furthermore, 23 of the 35 ECG recordings (x01 through x35) in the
test dataset are marked by + in Table 1 which denotes that the ECG recording in the test
dataset corresponds to at least one ECG recording in the training set from the same subject.
For example, the recording x07 in the test dataset corresponds to three ECG recordings (a05,
a10, and a20) in the training set from the same study subject p5. Hence, more than half of
ECG recordings in the training and test dataset are subject-dependent.

Table 1. Summary of the ECG recordings for each study subject in the MIT PhysioNet Apnea-
ECG database.

Subject No. ECG Recording No. Subject No. ECG Recording No.

@p1 a01 a14 @p17 * b05 x11 +

p2 * a02 x14 + p18 * c01 x35 +

@p3 * a03 x19 + @p19 c02 c09

@p4 a04 a12 p20 * c03 x04 +

p5 * a05 a10 a20 x07 + @p21 * c04 x29 +

@p6 * a06 x15+ p22 * c05 x33 +

@p7 * a07 a16 x01 + x30 + @p23 c06

p8 * a08 a13 x20 + @p24 * c07 x34 +

p9 a09 a18 @p25 * c10 x18 +

@p10 a11 p26 x02

@p11 * a15 x27 + x28 + @p27 x06 x24

@p12 * a17 x12 + @p28 x09 x23

p13 * a19 x05 + x08 + x25 + P29 x10

@p14 * b01 x03 + p30 x13 x26

p15* b02 b03 x16 + x21 + p31 x17 x22

p16 b04 c08 p32 x31 x32
* denotes that the study subject has ECG recordings appearing in both the training and test datasets. + denotes
that the ECG recording in the test dataset corresponds to at least one ECG recording in the training dataset from
the same subject. @ denotes that all ECG recordings of the study subject are selected into the subject-independent
training dataset.

In order to allow the proposed CNN model to use ECG signals from different subjects
during training and testing, in this study we selected new subject-independent training
and test datasets from the original 70 ECG recordings in the database. A total of 35 ECG
recordings from 16 study subjects marked by @ in Table 1 were selected into the subject-
independent training dataset, and the remaining 35 ECG recordings from 16 study subjects
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were selected into the subject-independent test dataset. Tables 2 and 3 list the number
of normal and apnea events for the subject-dependent and subject-independent training
and test datasets, respectively. The numbers of normal and apnea events in the subject-
independent datasets are very close to those in the subject-dependent datasets so as to
fairly compare their accuracy in detecting apnea events.

Table 2. Number of normal and apnea events for the subject-dependent training and test datasets.

Dataset No. of Normal Events No. of Apnea Events Total

Training 10,512 6511 17,023

Test 10,736 6520 17,256

Table 3. Number of normal and apnea events for the subject-independent training and test datasets.

Dataset No. of Normal
Events No. of Apnea Events Total

Training 10,662 6350 17,012

Test 10,586 6681 17,267

2.2. The Proposed Sleep Apnea Detection System Based on the Filter Bank Decomposition and the
1D CNN Model

Figure 1 shows the block diagrams of the proposed sleep apnea detection system
including the signal preprocessing and 1D CNN model. The input signal is a 1-min
ECG signal with a length of 6000 samples in the training and test datasets. The signal
preprocessing includes filter bank decomposition and z-score normalization as shown
in Figure 1a. The filter bank decomposition was designed to decompose the input ECG
signal with a bandwidth of 50 Hz into 2, 4, and 8 equal-bandwidth subband signals with
bandwidths of 25 Hz, 12.5 Hz, and 6.25 Hz using the filter banks including 2, 4, and
8 Butterworth band-pass filters with equal-width frequency subbands, respectively. The
Butterworth filter is a popular type of filter with a maximally flat passband. The butter
function from the Matlab signal processing toolbox [20] was used to implement the fourth-
order Butterworth bandpass filters at a sampling rate of 100 Hz. Figure 2a–c depict the
magnitude responses of the filter banks, including 2, 4, and 8 Butterworth bandpass filters,
respectively. The low-frequency signals below 0.5 Hz and high-frequency signals above
49.5 Hz were filtered to reduce the baseline drift and high-frequency interference.
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Figure 2. Magnitude responses of the filter banks including (a) 2, (b) 4, and (c) 8 Butterworth
bandpass filters.

The z-score function was used to further normalize the decomposed signals and is
defined as follows:

z =
x − µ

σ
(1)

where x is the input value from the filtered signal, and µ and σ are the mean and standard
deviation of the filtered signal, respectively. The z-score is measured in terms of standard
deviations from the mean. A z-score of 1.0 indicates an input value that is one standard
deviation from the mean. A positive or negative z-score indicates that the input value
is above or below the mean. Figures 3–5 show examples of the original ECG and the
signals after filtering using the filter banks with 2, 4, and 8 Butterworth bandpass filters
and z-score normalization, respectively. It can be observed that the subbands higher than
25 Hz, 12.5 Hz, and 12.5 Hz using the filter banks with 2, 4, and 8 filters remove most
of the low-frequency P and T waves and reserve the high-frequency components of the
QRS waves.
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Figure 3. Examples of the original ECG and the signals after filtering using the filter bank with
2 Butterworth filters and z-score normalization.

Figure 4. Examples of the original ECG and the signals after filtering using the filter bank with
4 Butterworth filters and z-score normalization.

A total of 15 subband signals were obtained in the signal preprocessing stage. Each
subband further cooperated with a CNN model as shown in Figure 1b to extract and classify
the features of the given subband signal, and to evaluate its accuracy of detecting apnea
events. The input of each 1D CNN model only included one subband signal, not multiple
subband signals. Each subband cooperating with a CNN model is an independent system
for apnea detection.
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Figure 5. Examples of the original ECG and the signals after filtering using the filter bank with
8 Butterworth filters and z-score normalization.

Figure 6 demonstrates the block diagram of the 1D CNN model proposed in our
previous study [13] for feature extraction and classification. There are 10 identical feature
extraction layers designed for extracting features from the given subband signal. Each
feature extraction layer consisted of a 1D CNN layer with 45 feature maps (Conv-45), a
batch normalization layer, an activation layer using the rectified linear unit (ReLU) function,
a 1D max pooling layer with a pool size of 2, and a dropout layer with a fraction of 50%.
A flattened layer connected after 10 feature extraction layers is used to transform the
extracted 2D feature matrix into a 1D feature vector. There are 4 identical classification
layers designed for classifying normal and apnea events based on the 1D feature vector.
Each classification layer consisted of a fully connected layer with 512 neurons (FC-512), a
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batch normalization layer, a ReLU activation layer, and a dropout layer with a fraction of
50%. A fully connected layer with 2 neurons (FC-2) connected after 4 classification layers
adopted a softmax activation function to calculate the probabilities of the two outputs
corresponding to the normal and apnea event, respectively. The classification result is the
event with greater probability.

Figure 6. Block diagram of the 1D deep CNN model for identifying normal and apnea events.

The CNN layers apply the convolution operation to extract the features from the input
data. There are 45 filters in the CNN layer to produce 45 feature maps after the convolution
operation with the input signal. Each FC layer maps the features from the last layer into
the output for final classification. The weights of the CNN and FC layers are initialized by
the He normal initialization method [21]. The batch normalization layers are designed to
normalize the data to improve the speed, performance, and stability of the proposed CNN
model. The max pooling layers are used to reduce the complexity of the network. The use
of the pool size of 2 reduces the number of elements in each feature map to one half the
size by selecting the maximum element from a pooling window with a 1 × 2 shape. The
dropout layers with a dropout rate of 0.5 randomly omit half of the nodes during training
to reduce the overfitting that would cause high training accuracy but low test accuracy.
The Adam optimizer was applied to train the proposed 1D CNN model to minimize cross
entropy [22]. The detailed parameters and output shape can be found in our previous
study [13].

3. Results

The original subject-dependent and the newly selected subject-independent training
and test datasets from the 70 ECG recordings of the MIT PhysioNet Apnea-ECG database
were used to assess the performance of the proposed system for detecting normal and
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apnea events. The performance parameters for per-minute apnea detection, including
accuracy (Acc), sensitivity (Sen), and specificity (Spec), were calculated as follows [23]:

Acc (%) =
TP + TN

TP + TN + FP + FN
× 100% (2)

Sen (%) =
TP

TP + FN
× 100% (3)

Spec (%) =
TN

TN + FP
× 100% (4)

where TP (true positive) and TN (true negative) are the number of events correctly identified
as apnea and normal events, respectively, and FP (false positive) and FN (false negative)
are the number of events incorrectly identified as apnea and normal events, respectively.

The proposed 1D CNN model was trained and tested using the preprocessed subband
signals of the training and test datasets for a given subband, respectively. Each experiment
for training and testing included 50 epochs, and the training and testing accuracies were
recorded in each epoch. Because the weights of the CNN and FC layers were initialized
with random values, only one experiment may obtain underestimated accuracy of the
network. Hence, we repeated the experiment five times and selected the highest test
accuracy to determine the per-minute accuracy of each subband. Each ECG recording can
be further diagnosed as a non-OSA subject or an OSA patient according to AHI based
on the results of per-minute apnea detection. The AHI is defined as the average value of
1-min signals which are identified as apnea events per hour. If the AHI is greater than or
equal to 5, the ECG recording is diagnosed as an OSA patient, otherwise it is a non-OSA
subject [13,14,16,24,25].

Table 4 lists the summary results of the per-minute and per-recording analysis using
the ECG signals in different subbands for the subject-dependent and subject-independent
test datasets. The per-minute accuracy using the subband signals with the frequency
band from 0.5 Hz to 49.5 Hz without z-score normalization can reach 86.1% in the subject-
dependent test dataset but is only 74.4% in the subject-independent test dataset. The use
of the z-score normalization slightly increased the per-minute accuracy of the subject-
dependent test dataset from 86.1% to 86.7% for the frequency band of 0.5–49.5 Hz, but
significantly increased the per-minute accuracy of the subject-independent test dataset
from 74.4% to 80.7%.

Table 4. Summary results of the per-minute and per-recording analysis using the ECG signals in
different subbands for the subject-dependent and subject-independent test datasets.

Frequency
Band

Performance Parameters (%) of Per-Minute and
(Per-Recording) for the Subject-Dependent

Test Dataset

Performance Parameters (%) of Per-Minute and
(Per-Recording) for the Subject-Independent

Test Dataset

Using a filter bank with 1 filter but no z-score normalization
Acc Spec Sen Acc Spec Sen

0.5–49.5 Hz 86.1 (82.9) 89.7 (58.3) 80.1 (95.7) 74.4 (80.0) 91.0 (100.0) 48.2 (72.0)

Using a filter bank with 1 filter and z-score normalization
Acc Spec Sen Acc Spec Sen

0.5–49.5 Hz 86.7 (94.3) 89.8 (100.0) 81.7 (91.3) 80.7 (82.9) 93.9 (100.0) 59.7 (76.0)

Using a filter bank with 2 filters and z-score normalization
Acc Spec Sen Acc Spec Sen

0.5–25 Hz 87.3 (97.1) 90.7 (100.0) 81.8 (95.7) 80.4 (82.9) 90.9 (70.0) 63.8 (88.0)
25–49.5 Hz 87.5 (97.1) 88.6 (91.7) 85.7 (100.0) 86.4 (91.4) 87.7 (90.0) 84.3 (92.0)
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Table 4. Cont.

Frequency
Band

Performance Parameters (%) of Per-Minute and
(Per-Recording) for the Subject-Dependent

Test Dataset

Performance Parameters (%) of Per-Minute and
(Per-Recording) for the Subject-Independent

Test Dataset

Using a filter bank with 4 filters and z-score normalization
Acc Spec Sen Acc Spec Sen

0.5–12.5 Hz 87.4 (100.0) 93.1 (100.) 78.1 (100.0) 81.1 (77.1) 88.3 (50.0) 69.6 (88.0)
12.5–25 Hz 85.9 (88.6) 90.5 (75.0) 78.2 (95.7) 83.4 (94.3) 90.2 (100.0) 72.4 (92.0)
25–37.5 Hz 87.9 (97.1) 89.2 (91.7) 85.6 (100.0) 85.9 (88.6) 87.2 (80.0) 83.7 (92.0)

37.5–49.5 Hz 87.0 (97.1) 88.7 (91.7) 84.2 (100.0) 83.2 (80.0) 89.5 (70.0) 73.3 (84.3)

Using a filter bank with 8 filters and z-score normalization
Acc Spec Sen Acc Spec Sen

0.5–6.25 Hz 86.4 (88.6) 90.9 (83.3) 79.0 (91.3) 79.5 (80.0) 91.9 (90.0) 59.8 (76.0)
6.25–12.5 Hz 85.9 (94.3) 91.2 (91.7) 77.2 (95.7) 80.3 (94.3) 85.8 (80.0) 71.6 (100.0)

12.5–18.75 Hz 86.3 (94.3) 90.0 (83.3) 80.1 (100.0) 83.9 (91.4) 89.6 (100.0) 74.9 (88.0)
18.75–25 Hz 88.6 (94.3) 91.5 (83.3) 83.8 (100.0) 83.5 (82.9) 88.2 (60.0) 76.1 (92.0)
25–31.25 Hz 88.4 (97.1) 90.2 (91.7) 85.5 (100.0) 85.9 (94.3) 90.2 (100.0) 79.0 (92.0)

31.25–37.5 Hz 87.5 (100.0) 90.6 (100.0) 82.4 (100.0) 85.8 (100.0) 89.4 (100.0) 80.1 (100.0)
37.5–43.75 Hz 87.0 (94.3) 89.4 (83.3) 83.1 (100.0) 82.7 (82.9) 87.5 (70.0) 75.2 (88.0)
43.75–49.5 Hz 87.0 (97.1) 90.3 (91.7) 81.6 (100.0) 82.6 (88.6) 90.5 (90.0) 70.2 (88.0)

The per-minute accuracies between different frequency bands do not differ greatly
in the subject-dependent test dataset, but there is a bigger difference in the subject-
independent test dataset. The difference between the per-minute accuracies of 0.5–25 Hz
and 25–49.5 Hz using the filter bank with two filters is only 0.2% (87.3% vs. 87.5%) in
the subject-dependent test dataset but reaches 6.0% (80.4% vs. 86.4%) in the subject-
independent test dataset. The difference between the minimum and maximum per-minute
accuracies using the filter bank with four filters is only 2.0% (85.9% of 12.5–25 Hz vs. 87.9%
of 25–37.5 Hz) in the subject-dependent test dataset but reaches 4.8% (81.1% of 0.5–12.5 Hz
vs. 85.9% of 25–37.5 Hz) in the subject-independent test dataset. The difference between
the minimum and maximum per-minute accuracies using the filter bank with eight filters
is only 2.7% (85.9% of 6.25–12.5 Hz vs. 88.6% of 18.75–25 Hz) in the subject-dependent
test dataset but reaches 6.4% (79.5% of 0.5–6.25 Hz vs. 85.9% of 31.25–37.5 Hz) in the
subject-independent test dataset. The highest per-minute accuracy is 88.6% of 18.75–25 Hz
with a specificity of 91.5% and sensitivity of 83.8% in the subject-dependent test dataset
and is 86.4% of 25–49.5 Hz with a specificity of 87.7% and sensitivity of 84.3% in the
subject-independent test dataset.

A higher per-minute accuracy does not always correspond to a higher per-recording
accuracy. The highest per-recording accuracies in the subject-dependent test dataset are
100% of 0.5–12.5 Hz with per-minute accuracy of 87.4%, specificity of 93.1%, and sensitivity
of 78.1%, and 100% of 31.25–37.5 Hz with per-minute accuracy of 87.5%, specificity of 90.6%,
and sensitivity of 82.4%. The highest per-recording accuracy in the subject-independent test
dataset is 100% of 31.25–37.5 Hz with per-minute accuracy of 85.8%, specificity of 89.4%,
and sensitivity of 80.1%.

4. Discussion

The most obvious effect of OSA on ECG signals is the heart rate or RR interval. A
previous study reported that OSA would cause cyclic variation of heart rate (CVHR)
consisting of bradycardia during apnea followed by abrupt tachycardia on its cessation [8].
In other words, the RR intervals would increase during apnea events, and would decrease
after these events. However, when we use the 1D CNN model to automatically extract
the features of RR intervals from ECG signals, they are easily affected by low-frequency
and large-amplitude P and T waves. Accordingly, in this study it was assumed that if we
can reduce the P and T waves to enhance the high-frequency R wave, it would be easier
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to highlight the characteristics of the RR interval and then improve the accuracy of the
proposed apnea detection system.

In order to evaluate whether the reduction of lower frequency P and T waves can
increase the accuracy of the detection of apnea events, this study proposed the use of
filter banks with two, four, and eight Butterworth bandpass filters to decompose the 1-min
ECG signal with a bandwidth of 50 Hz into two, four, and eight equal-bandwidth subband
signals with bandwidths of 25 Hz, 12.5 Hz, and 6.25 Hz, respectively. A total of 15 subbands
were included in this study. Each subband independently cooperated with a 1D CNN
model to extract and classify the features of the given subband signal for evaluating its
accuracy of apnea detection. The original subject-dependent and newly selected subject-
independent training and test datasets from 70 ECG recordings of the MIT PhysioNet
Apnea-ECG database were used to evaluate the accuracies of detecting apnea events for
ECG signals in different frequency subbands.

The previous studies proposed various apnea detection methods based on features ex-
tracted from ECG and ECG-derived signals. The ECG recordings from the MIT PhysioNet
Apnea-ECG database were most commonly used to train and test their proposed methods.
Table 5 compares the method and performance of the proposed 1D CNN model with the
previous studies for the per-minute apnea detection using subject-dependent datasets
from the MIT PhysioNet Apnea-ECG database. The per-minute accuracy of 88.6% using
the subband of 18.75–25 Hz proposed by this study outperforms several previous stud-
ies [13,14,16,24–26] listed in the first part of Table 5 using the same subject-dependent
datasets (the original 35 ECG recordings for training and 35 ECG recordings for testing) as
this study. This study and the studies of Chang et al. [13], Wang et al. [14], and Li et al. [25]
proposed feature-learning-based methods which can automatically learn the features of
ECG signals or RR intervals using neural networks. The proposed 1D CNN model only
used filtered and normalized 1D ECG signals as input signals and hence did not require
additional signal transformation, R-peaks detection, RR interval or EDR calculation. The
per-minute accuracy could reach 87.9% in the study of Chang et al. [13]. They used But-
terworth bandpass filtering with a preselected frequency band from 0.5 Hz to 15 Hz and
z-score normalization for the preprocessing of ECG signals, and the 1-D CNN model for fea-
ture extraction and classification. In comparison with this study, they did not evaluate the
contribution of different subbands, and only used the original subject-dependent datasets.
Wang et al. [14] reported a per-minute accuracy of 87.6%. They proposed a modified LeNet-
5 convolutional neural network to automatically extract and classify the features of the
input RR intervals. Li et al. [25] achieved 84.7% accuracy for the per-minute apnea detection.
They introduced a sparse auto-encoder to automatically extract features and proposed a
decision fusion method to improve the classification accuracy. The studies of Sharma and
Sharma [16], Song et al. [24] and Surrel et al. [26] focused on feature-engineering-based
methods. Sharma and Sharma [16] achieved an accuracy of 87.5% for per-minute clas-
sification. They decomposed the HRV and EDR signals into different modes using the
variational mode decomposition and used the K-nearest neighbor classifier. Song et al. [24]
reported a per-minute accuracy of 86.2% using a sleep apnea detection approach based on
the hidden Markov model. Surrel et al. [26] computed apnea-scores for RR intervals and
RS amplitudes using a time-domain filtering and power estimation, and classified normal
and apnea events using SVM, which can achieve a per-minute accuracy of 85.7%.
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Table 5. Comparison of the method and performance of the proposed 1D CNN model with the
previous studies for the per-minute apnea detection using subject-dependent datasets from the MIT
PhysioNet Apnea-ECG database.

Reference Methods Subject-Dependent Datasets Acc (%)

This Study ECG (18.75–25 Hz Subband) + 1D CNN

The original 35 ECG recordings for
training and the original 35 ECG

recordings for testing

88.6

Chang et al. [13] ECG (0.5–15 Hz Subband) + 1D CNN 87.9

Wang et al. [14] RR Intervals + LeNet-5 CNN 87.6

Li et al. [25] RR Intervals + Auto-encoder +
Decision Fusion 84.7

Sharma and Sharma [16] HRV + EDR + Feature Engineering +
K-nearest Neighbor Classifier 87.5

Song et al. [24] RR Intervals + EDR + Feature
Engineering + HMM-SVM 86.2

Surrel et al. [26] RR Intervals + RS Amplitudes +
Feature Engineering + SVM 85.7

Sharma et al. [11] ECG + Feature Engineering + LS-SVM
The original 35 ECG recordings for
training and testing using 35-fold

cross-validation
90.1

Sharma et al. [12] ECG + Feature Engineering +SVM
The original 35 ECG recordings for
training and testing using 35-fold

cross-validation
90.87

Wang et al. [15] RR Intervals + Residual Network
The original 35 ECG recordings for
training and testing using 10-fold

cross-validation
94.3

Pinho et al. [17] HRV + EDR + Feature
Engineering + ANN

The original 35 ECG recordings for
training and testing using 10-fold

cross-validation
82.12

Surrel et al. [26] RR Intervals + RS Amplitudes +
Feature Engineering + SVM

Selected 28 ECG recordings for
training and selected 43 ECG

recordings for testing
88

The second part of Table 5 further compares several studies which only used the
original 35 ECG recordings of the training dataset from the MIT PhysioNet Apnea-ECG
database to train and test their models based on the k-fold cross-validation method. Because
these studies did not specify that the ECG signals from the same study subject were
not distributed across different folds, they would appear in both the training and test
datasets, and hence their datasets were also subject-dependent. The accuracy reported
by Wang et al. [15] was 94.3%. They proposed a deep residual network to automatically
learn the features from the RR intervals and to classify normal and apnea events using
the 10-fold cross-validation strategy. The studies of Sharma et al. [11], Sharma et al. [12],
and Pinho et al. [17] developed feature-engineering-based methods. Sharma et al. [11]
and Sharma et al. [12] reported average classification accuracies of 90.1% and 90.87%,
respectively. Both of them extracted features based on the wavelet filter bank and classified
normal and OSA groups using SVM. Pinho et al. [17] obtained an accuracy of 82.12%.
They selected 20 features from the RR intervals and EDR signals and used the artificial
neural network for classification with the 10-fold cross-evaluation method. The study of
Surrel et al. [26] listed in the third part of Table 5 further grouped the recordings by subject
according to the metadata of recordings including the reported age, sex, height and weight.
They reported a patient-specific accuracy of 88%, which used the first ECG recording from
each patient to train the SVM classifier, and the other recordings to test it. Hence, their
datasets were subject-dependent. Although our performance cannot be directly compared
with those of the previous studies listed in the second and third parts of Table 5 due to the
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use of different methods and datasets, it is worth noting that most of the previous studies
adopted the subject-dependent datasets from the MIT PhysioNet Apnea-ECG database.

The main problem with using subject-dependent datasets is that similar ECG signals
from the same subject appeared in both the training and test datasets, which may cause
accuracy overestimation. Our study results using the original subject-dependent datasets
in Table 4 demonstrate that the per-minute accuracies are as high as from 85.9% to 88.6%,
and have a high degree of consistency, such that the difference between the minimum
and maximum per-minute accuracies is only 2.7%. Hence, the use of the original subject-
dependent datasets cannot test the difference in the accuracy of different subbands. This
result is different from what we expected above. We expected that the filtered ECG signals
with a higher frequency band could better highlight the features of RR intervals and would
have a higher accuracy in the detection of apnea events. The possible reason for the highly
consistent accuracies may come from the fact that 23 of the 35 ECG recordings (x01 through
x35) in the test dataset correspond to at least one ECG recording in the training set from
the same subject. That is, the proposed CNN model uses many similar signals from the
test dataset during training. Hence, the use of the original subject-dependent datasets
may overestimate the accuracy of each subband. This important issue has not been paid
attention to by most previous studies.

In order to allow the proposed CNN model to use ECG signals from different subjects
during training and testing, this study further selected new subject-independent training
and test datasets to train and test the proposed CNN model. It is obvious that the results of
the newly selected subject-independent datasets shown in Table 4 can meet our expectations,
and they can demonstrate the difference in the accuracy of different subbands. The per-
minute accuracy of 86.4% of the higher frequency band of 25–49.5 Hz is 6.0% higher than
the 80.4% accuracy of the lower frequency band of 0.5–25 Hz using the filter bank with two
filters. The mid-high frequency band of 25–37.5 Hz has the highest per-minute accuracy of
85.9% among the accuracies using the filter bank with four filters, which is 4.8% higher than
the 81.1% accuracy of the lowest frequency band of 0.5–12.5 Hz. The per-minute accuracy
85.9% of the mid-high frequency band of 25–31.5 Hz is the highest among the accuracies
using the filter bank with eight filters, which is 6.4% higher than the 79.5% accuracy of the
lowest frequency band of 0.5–6.25 Hz. Furthermore, the mid-high frequency subbands
of 25–49.5 Hz, 25–37.5 Hz, and 25–31.5 Hz improve the per-minute accuracies by 5.7%
(86.4% vs. 80.7%), 5.2% (85.9% vs. 80.7%), and 5.2% (85.9% vs. 80.7%), respectively, in
comparison with the full frequency band of 0.5–49.5 Hz. Hence, a mid-high frequency
band that removes the low-amplitude P and T waves does indeed improve per-minute
accuracy of detecting the apnea events in comparison with a low frequency band or a full
frequency band.

Table 6 compares the method and performance of the proposed 1D CNN model
with the study of Surrel et al. [24] for the per-minute apnea detection using the subject-
independent datasets from the MIT PhysioNet Apnea-ECG database. Although both
studies used subject-independent datasets, their methods of selecting datasets were dif-
ferent from ours. To the best of our knowledge, only the study of Surrel et al. [24] among
the previous studies reported the subject-independent method to train and test their apnea
detection system. Their training and test method was similar to the 28-fold cross-validation
method, but the ECG signals from the same study subject were not distributed across dif-
ferent folds. They tested the accuracy of 28 patients one by one. The ECG recordings of one
of 28 patients were used as the test dataset each time, and 35 recordings selected from the
other 27 patients were adopted as the training dataset. Their per-minute accuracy reached
84% using the subject-independent method for training and testing, which is slightly lower
than the accuracy of 86.4% reported by this study using the frequency band of 25–49.5 Hz.
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Table 6. Comparison of the method and performance of the proposed 1D CNN model with the
previous study for the per-minute apnea detection using subject-independent datasets from MIT
PhysioNet Apnea-ECG database.

Reference Methods Subject-Independent Datasets Acc (%)

This Study ECG (25–49.5 Hz Subband) +
1D CNN

Selected 35 ECG recordings for training
and selected 35 ECG recordings for testing 86.4

Surrel et al. [26] RR Intervals + RS Amplitudes
+ Feature Engineering + SVM

Selected 35 ECG recordings for training
and testing using 28-fold cross-validation 84

If we further compare the results of the subject-dependent and subject-independent
methods in the study of Surrel et al. [26], we can find that their subject-independent
accuracy of 84% in Table 6 is lower than the subject-dependent accuracies of 85.7% and
88% in Table 5. This result is consistent with this study. Our results in Table 4 show that
the per-minute accuracies of the newly selected subject-independent test dataset for all
subbands in this study were all lower than those of the original subject-dependent test
dataset. The differences are more obvious in the low-frequency subband. For example,
80.4% vs. 87.3% in the subband of 0.5–25 Hz, 81.1% vs. 87.4% in the subband of 0.5–12.5 Hz,
and 79.5% vs. 86.4% in the subband of 0.5–6.25 Hz. These results can confirm that the use of
the original subject-dependent datasets did overestimate the per-minute accuracy. Hence,
the use of the newly selected subject-independent datasets is recommended to train and
test the apnea detection system so as to avoid accuracy overestimation, instead of using the
original subject-dependent datasets in the MIT PhysioNet Apnea-ECG database.

Although the per-minute accuracy of the subject-independent test dataset in this
study can achieve 86.4% using the frequency band of 25–49.5 Hz, the corresponding per-
recording accuracy is only 91.4%, with one non-OSA subject and two OSA patients being
misdiagnosed. If we consider having better per-minute and per-recording accuracies at the
same time, the use of the mid-high frequency band of 31.25–37.5 Hz has a slightly lower
per-minute accuracy of 85.8%, but it can reach the per-recording accuracy of 100%.

The main limitation of this study is that the MIT PhysioNet Apnea-ECG database
is a relatively small database that only contains 70 ECG recordings. This may affect the
generalizability of the study results in clinical applications. Although our results have
successfully demonstrated the contribution of different subbands, further investigation with
larger clinical populations is required to optimize the proposed apnea detection system.

5. Conclusions

The main contribution of this study is that it proposes filter bank decomposition to
decompose the ECG signal into 15 subband signals, and a 1D CNN model independently
cooperated with each subband to evaluate the accuracies of different subbands for the
detection of apnea events. The proposed 1D CNN model was trained and tested using
the original subject-dependent and newly selected subject-independent training and test
datasets obtained from the MIT PhysioNet Apnea-ECG database. The results indicate that
the original subject-dependent test dataset had a highly consistent per-minute accuracy for
all subbands and hence could not test the difference in the accuracy of different subbands.
Furthermore, the original subject-dependent test dataset overestimated the per-minute
accuracy in comparison with the results of the subject-independent test dataset. Hence,
the use of the newly selected subject-independent datasets is recommended to train and
test the apnea detection system so as to avoid accuracy overestimation. Moreover, the
results of the newly selected subject-independent datasets successfully demonstrate that a
mid-high frequency band can improve the per-minute accuracy in comparison with a low
frequency band or a full frequency band. The use of the frequency band of 31.25–37.5 Hz
can reach 100% per-recording accuracy with 85.8% per-minute accuracy using the newly
selected subject-independent test dataset and is recommended as a promising subband
of ECG signals cooperating with the proposed 1D CNN model for the diagnosis of OSA.
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The proposed system using the frequency band of 31.25–37.5 Hz and the 1D CNN model
can serve as a convenient and advanced diagnosis OSA system. If the AHI estimated
by the average value of 1-min apnea events per hour is greater than or equal to 5, it is
recommended to follow up with a polysomnography test to confirm the severity of the OSA.
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