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The control of input-to-output mappings, or gain control, is one of the main strategies
used by neural networks for the processing and gating of information. Using a
spiking neural network model, we studied the gain control induced by a form of
inhibitory feedforward circuitry—also known as “open-loop feedback”—, which has been
experimentally observed in a cerebellum-like structure in weakly electric fish. We found,
both analytically and numerically, that this network displays three different regimes
of gain control: subtractive, divisive, and non-monotonic. Subtractive gain control was
obtained when noise is very low in the network. Also, it was possible to change
from divisive to non-monotonic gain control by simply modulating the strength of the
feedforward inhibition, which may be achieved via long-term synaptic plasticity. The
particular case of divisive gain control has been previously observed in vivo in weakly
electric fish. These gain control regimes were robust to the presence of temporal delays
in the inhibitory feedforward pathway, which were found to linearize the input-to-output
mappings (or f-I curves) via a novel variability-increasing mechanism. Our findings highlight
the feedforward-induced gain control analyzed here as a highly versatile mechanism of
information gating in the brain.
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1. INTRODUCTION
The mapping between the input arriving to a neuron and its
evoked firing rate has constituted one of the major interests in
the study of neural systems over the last decades (Perkel et al.,
1964; Segundo, 1970; Salinas and Sejnowski, 2001). In many sit-
uations, neurons are able to perform a scaling operation on their
response to input. For instance, contrast invariance of signal can-
celation (Mejias et al., 2013) and object representation (Serrano
et al., 2013), receptive field properties (Alitto and Usrey, 2004),
and orientation selectivity (Ferster and Miller, 2000) require a
contrast-dependent scaling of responses in sensory areas. Gaze
direction also scales the spiking response rate of neurons in the
primary visual (Trotter and Celebrini, 1999) and posterior pari-
etal (Andersen and Mountcastle, 1983) cortices. Scaling can also
be context-specific, as found in the auditory pathway of crick-
ets (Hildebrandt et al., 2011). Finally, it is known that cortical
circuits are able to modulate their response gain depending on
the input frequency (Abbott et al., 1997; Tsodyks and Markram,
1997; Rothman et al., 2009) by means of short-term synaptic
plasticity.

The scaling and control of input–output behavior of neural
systems is often characterized by the so-called f-I curve, which
displays the output firing rate versus input current to the neuron.
In particular, the slope of such a dependency, or gain, constitutes
a useful indicator of the behavior of the neuron. If the gain of
the f-I curve is high, a small change in the input current will be
mapped by the cell into a large change in the output firing rate,

increasing the sensitivity of the neuron to weak stimuli. On the
other hand, a low gain of the f-I curve translates large changes in
the input current to small changes in the output firing rate, and
this allows the neuron to encode a broad range of stimulus inten-
sities into a physiologically plausible range of firing rates. This
framework is strictly valid only when the stimulus evolves slowly
compared to the integration time scale of the neuron, although
the applicability of this formalism to fast varying stimuli has also
been considered (Ly and Doiron, 2009).

Certain mechanisms allow a neuron to modify its f-I curve,
a phenomenon which is known as gain control. Figure 1 shows
three possible examples of gain control on the behavior of a neu-
ron. A simple gain control effect that one could think of is a
shift-like effect known in the literature as subtractive gain control.
In this case, the f-I curve experiences a subtractive (or additive)
shift toward larger (or smaller) values of the input current with-
out varying its overall shape. A large number of mechanisms, such
as the introduction of some level of shunting inhibition (Holt and
Koch, 1997), are able to produce this form of gain control.

Mechanisms providing the other two types of gain control
shown in Figure 1 have been more elusive. Divisive gain con-
trol is often assumed in rate models of neurons and neural
populations (Carandini and Heeger, 1994; Chance and Abbott,
2000). However, biophysical mechanisms for such a gain modu-
lation have been hard to identify (Holt and Koch, 1997; Doiron
et al., 2001; Chance et al., 2002). On the other hand, non-
monotonic gain control has been reported to be induced by
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FIGURE 1 | Three different gain control effects commonly observed in

real neural systems. The red curve corresponds to the f-I curve before the
gain modulation, and the blue curve shows it after the modulation.

Subtractive gain control implies a shift of the original f-I curve, while divisive
control leads to a change in slope. Non-monotonic gain control usually
reflects more sophisticated input–output properties of neurons and synapses.

short-term depression (de la Rocha and Parga, 2005; Lewis et al.,
2007). However, general biophysical mechanisms which cover all
these gain control strategies have been difficult to identify and
characterize up to date.

In this work, we present a computational model of a neural
circuit which is able to display these three types of gain con-
trol (subtractive, divisive, and non-monotonic). We consider a
generic neural circuit in which neurons receive a given stimu-
lus both directly, i.e., from sensory receptors, and indirectly, via
inhibitory interneurons driven by the same stimulus (a pathway
referred here as feedforward inhibition, but that is also known
in this context as open-loop feedback Litwin-Kumar et al., 2012).
Our results, both numerical and analytical, show that these neu-
rons can exhibit the three different types of gain control described
above (and shown in Figure 1). The particular type of gain con-
trol exhibited by the system depends on (1) the noise level present
on neurons and (2) the strength of the negative input provided
by the inhibitory neurons, which may be easily modulated in real
circuits via long-term synaptic plasticity and therefore provides
a highly versatile gain control mechanism. We also carefully ana-
lyze the conditions under which the f-I curve of the neural system
becomes non-monotonic.

In addition to these results, we also study the above gain con-
trol mechanism in the case in which the feedforward inhibition
introduces a temporal delay in the signal transmission (reflecting
the presence of finite propagation times in the real brain). The
existence of such a delay increases the variability of the effective
current arriving to the neurons, which in turn leads to a lineariza-
tion of the f-I curves. The gain control induced by feedforward
inhibition is also present in this more realistic scenario. Finally, we
use our model to explain the divisive gain control observed in vivo
in the superficial pyramidal (SP) neurons of the electrosensory
lateral-line lobe (ELL), a cerebellum-like structure of the weakly
electric fish Apteronotus leptorhynchus (Bastian, 1986b; see also
Figure 2A).

2. MATERIALS AND METHODS
A simplified scheme of the cerebellum-like circuit that we con-
sider in this study is shown in Figure 2B. This circuit resembles
the electrosensory lateral-line lobe (ELL), a primary sensory area
in the brain of the weakly electric fish Apteronotus leptorhynchus
(Maler et al., 1991), although our results can be easily generalized
to any circuit in the brain presenting a degree of feedforward inhi-
bition comparable to the one present in the circuit of Figure 2B.

FIGURE 2 | (A) In vivo experimental recording of the firing rate (relative to
baseline activity) of SP neurons in the ELL of the weakly electric fish, as a
function of the stimulus intensity. Data from control fish is compared with
data from fish for which synapses providing the feedforward inhibition via
the cerebellar parallel fibers have been removed (lesion). This implies that
the effect caused by the parallel fibers is mainly a divisive gain control. Data
taken from Bastian (1986b). (B) Scheme of the neural circuit considered in
our study. Black arrows show the direction of the input transmission.
Parallel fibers are represented by the black lines drawn from the EGp to the
SP population. Note that both SP and DP cells receive the sensory input.

Briefly, sensory inputs coming from electroreceptors arrive to
two different pools of neurons: the superficial pyramidal (SP) and
the deep pyramidal (DP) neurons (Maler, 2007). Both popula-
tions are mainly feedforward, and neurons within a population do
not connect between themselves (i.e., no recurrent connectivity).
From the population of DP neurons, the stimulus is transmit-
ted to the nucleus praeminentialis (nP) and then to a population
of granule cells called the eminentia granularis (EGp). A subset
of neurons in the nP directly connects to SP cells and provides
an inhibitory feedforward signal. Granule cells of the EGp trans-
mit the signal they receive from a subgroup of nP cells to the
SP cells via a massive set of parallel fibers (Berman and Maler,
1999). Apart from a direct excitatory synaptic connection with SP
cells, the parallel fibers also synapse onto inhibitory interneurons
which then project onto the soma and/or apical dendrites of SP
cells and strongly inhibit them. As a consequence of this strong
inhibition (or, more precisely, disynaptic inhibition), the overall
contribution of parallel fibers to SP neurons is mainly inhibitory
(Bastian, 1986b). Note that another subset of nP neurons is exci-
tatory and connects directly to the SP cells as well as disynaptically
through inhibitory interneurons. A compelling option is to amal-
gamate the latter pathway with the other one going directly from
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the nP to the SP cells. We shall make no further reference to
this third pathway. The pathway followed by the sensory stimu-
lus going from DP neurons to SP neurons via the nP and the EGp
is called open-loop feedback, or feedforward inhibition (note that
both populations receive the stimuli, and thus lie at the same pro-
cessing stage, however, DP cells send signals to SP cells but do not
receive them back). Finally, neurons in the SP population project
onto higher areas of the brain.

We consider a population of N deep pyramidal (DP) neu-
rons receiving sensory input from electroreceptors. The mem-
brane potential VD

i (t) of the DP neuron i follows a simple leaky
integrate-and-fire (LIF) dynamics,

τm
dVD

i (t)

dt
= −VD

i (t) + μ + √
τm σ ξD

i (t), (1)

where τm is the membrane time constant, μ is the sensory
input (that we consider constant for simplicity), and ξD

i (t) is a
Gaussian white noise of zero mean and delta-type autocorrelation〈
ξD

i (t)ξD
j (t + τ)

〉
= δij δ(τ), with δij and δ(t) being the Kronecker

and Dirac delta, respectively. This noise term was included in the
model to reflect the intrinsic stochasticity of the deep neurons
(Bastian and Nguyenkim, 2001). The factor σ reflects the noise
intensity of this stochastic term.

Following the typical dynamics of the LIF model, when the
membrane potential reaches a certain threshold Vth, an action
potential is generated by the neuron and the membrane potential
is reset to Vr , and remains there for a refractory period τr .

In the real neural circuit, the population of DP neurons
projects onto the nP, then some nP cells project directly onto
SP cells while others connect with the EGp, whose granule cells
make synaptic contact with the SP neurons both directly and
through disynaptic inhibition. In our model, we simplify these
intricate feedforward connections by assuming that the activity of
the DP population ultimately drives the dynamics of the SP cells,
so that the input that a SP neuron receives from the feedforward
inhibition pathway is given by

f (t) = τmG
1

N

N∑
i = 1

∑
ti,k

s
(
t − ti,k

)
. (2)

Here, the first sum runs over all DP neurons, and the second sum
runs over the spike times of each presynaptic DP neuron (i.e., ti,k

is the k-th spike time from the i-th presynaptic neuron). The fac-
tor G/N may be identified as the effective strength of synapses
onto the SP cells. Since the net polarity of the DP to SP feedfor-
ward pathway seems mainly inhibitory (Bastian, 1986b; Doiron
et al., 2003), we assume G ≤ 0.

The synaptic filter function, s(τ), describes the effect of a given
presynaptic spike on the postsynaptic potential, and it is given by
a delayed alpha function

s (τ) =
(

τ − τd

τ2
s

)
e− τ−τd

τs �(τ − τd), (3)

where τs is the synaptic transmission time scale, τd is a temporal
delay, and �(x) is the Heaviside step function (i.e., �(x) = 1 if

x > 0, and �(x) = 0 otherwise). Note that s(τ) is normalized so
that integration over a large enough time window yields unity.

Equation (2) can also be written by using a convolution of the
population average for the DP cells and the synaptic filter. The
population average is

YD(t) = 1

N

N∑
i = 1

yD
i (t), (4)

where y D
i (t) = ∑

ti,k
δ(t − ti,k) is the spike train of DP neuron i.

Hence,

f (t) = τmG
(
s ∗ YD) (t), (5)

where (a ∗ b)(t) is the convolution of functions a(t) and b(t).
Since all SP neurons will receive, on average, the same input

from sensory receptors and from the feedforward inhibitory path-
way, we will consider the response of a typical SP cell, and the
output statistics will be valid for all the other SP neurons. The
membrane potential VS(t) of a typical SP neuron is described, as
in the case of DP neurons, by a simple leaky integrate-and-fire
(LIF) dynamics,

τm
dVS(t)

dt
= −VS(t) + μ + f (t) + √

τm σ ξS(t), (6)

where, as for the DP neurons, μ is the sensory input and the
last term considers the intrinsic stochasticity of the neuron (with
ξS(t) being a Gaussian white noise of zero mean and delta-type
autocorrelation). The term f (t) is the input coming from the DP
cells and is already known. Again, when the membrane potential
reaches the threshold Vth, a spike is generated and VS(t) is reset
to Vr during a period τr .

Unless specified otherwise, we choose the following values
for the time constants: τm = 10 ms, τr = 1 ms, τs = 5 ms, and
τd = 10 ms. For parameters related to the membrane potential we
consider, without loss of generality, dimensionless units. We set
Vth = 1 and Vr = 0, and therefore μ, σ, and G will be in “resting-
to-threshold” units. For simulations, we used a DP population of
N = 500 neurons unless another size is specified.

3. RESULTS
In the following sections, we will analyze the gain control per-
formed by the DP population on the SP neuron. Even though the
gain is properly defined as the derivative of a f-I curve, we shall
present f-I curves only since these are the ones usually obtained
experimentally—and therefore conclusions arising from the anal-
ysis of these curves would naturally translate into results for the
derivative of f-I curves. We will compare the f-I curve of a SP
cell with and without the feedforward modulation, for different
parameter regimes. From Equation (5), setting G = 0 makes the
feedforward signal f (t) vanish. But with G = 0, the DP and SP
neurons share the same f-I curve since they share the same prop-
erties (compare Equation 6 with f (t) = 0 and Equation 1). Hence,
the gain control can be fully understood by comparing the SP
cell’s f-I curve with that of a DP neuron. A gain control will be
called subtractive when there is a noticeable shift along the input
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(i.e., μ) axis in the SP f-I curve with respect to the DP f-I curve.
Divisive gain control occurs when the slope (derivative) of the
SP f-I curve is mainly scaled by a constant factor with respect to
that of the DP population. Finally, a non-monotonic gain con-
trol involves the presence of a maximum in the SP f-I curve, so
that the scaling factor connecting the slopes of the SP and DP f-I
curves changes sign with the input (see Figure 1).

3.1. SUBTRACTIVE GAIN CONTROL
We start our analysis by considering the limit case in which neu-
rons in our system are deterministic (i.e., σ = 0). In this case, the
mean firing rate of the DP neurons may be easily obtained by solv-
ing Equation (1) for a given neuron. Since the input is the same
for all DP neurons, their firing rate will also be the same. One
obtains (Tuckwell, 1988)

rD =
[
τr + τm log

(
Vr − μ

Vth − μ

)]−1

�(μ − Vth). (7)

For convenience, we define the effective bias to the SP cell as the
sum of the sensory input plus the feedfoward inhibitory contri-
bution, i.e., μeff = μ + f (t). In the diffusion limit (Brunel, 2000),
and ignoring fluctuation terms, the effective bias can be written as

μeff = μ + τmGrD. (8)

In the case of a deterministic system, it takes the form

μeff = μ + τm G �(μ − Vth)

τr + τm log
(

Vr−μ
Vth−μ

). (9)

Finally, the expression for the SP firing rate is given by

rS =
[
τr + τm log

(
Vr − μeff

Vth − μeff

)]−1

�(μeff − Vth). (10)

The dependence of the effective bias on the sensory input, given
by Equation (9), is depicted in Figure 3A. By careful inspection
of this figure, one can see that the effective bias increases linearly
with μ until μ = Vth. Beyond that point, DP cells start firing and
the effective bias starts decreasing, therefore frustrating the firing
of the SP cells.

More precisely, the SP cells will start to fire as soon as μeff =
μ + τmGrD(μ) becomes greater than Vth. Since we have μeff < μ

for G < 0, the onsets will occur at different μ values for SP and
DP cells, leading to a shift of the gain along the μ axis. This shift
becomes evident when we consider the divergences of the SP and
DP gains at the firing onsets (the divergences are caused by the
derivative of the Heaviside functions appearing in Equations 7,
10). For G < 0, the divergence of the derivative of rS is shifted
to the right on the μ axis with respect to the divergence of
the derivative of rD. Such a shift of the sharp SP firing onset
(with respect to the DP firing onset) constitutes a subtractive
effect. In addition, for large enough values of μ, the denomina-
tor in the second term of the r.h.s. of Equation (9) tends to τr ,
and the effective bias becomes then μeff � μ + Gτm/τr , leading

FIGURE 3 | (A) Effective bias entering the SP neuron as a function of the
sensory input μ, for the deterministic case (σ = 0). Red line (G = 0)
indicates the effective bias for the case in which no feedforward inhibition
is considered. (B) Response of the SP neuron to sensory input (i.e., the f-I
curve of the SP cell), for the deterministic case. Numerical simulations of a
network of N = 100 DP neurons (symbols) show a very good agreement
with our theoretical estimations (lines). Circles denote the G = −0.6 case
for a network of N = 500 DP neurons, indicating that the small
discrepancies between simulations and theory in the firing onset are due to
finite-size effects of the simulation.

again to a shift of the SP f-I curve for G < 0. It is worth not-
ing that, due to the ratio of time scales τm/τr ∼ 10 obtained
for realistic values of the parameters, μeff will be significantly
smaller than μ even for moderate values of G, which means
that SP cells would saturate much later than DP cells along the
μ axis.

Based on the above reasoning, one should therefore expect
to observe a subtractive effect of the feedforward inhibition on
the f-I curve of the SP neuron at zero noise. This is indeed
what we observe in Figure 3B, where the results of numer-
ical simulations of the model for σ = 0 show a very good
agreement with our theoretical expression given by Equation
(10). We can observe that the displacement of the firing onset
depends on G as theoretically predicted, with more negative
values of G leading to larger shifts of the onset of firing.
Therefore, the modulation of the strength G leads to a subtrac-
tive gain control in the f-I curve of the deterministic (σ = 0)
system.

3.2. DIVISIVE GAIN CONTROL
After analyzing the deterministic case, we can now study the more
general case in which neurons in the circuit present some level of
stochasticity (i.e., σ > 0) in their dynamics. Such a stochasticity
may be due, for instance, to the noisy dynamics of ion channels
(White et al., 2000), or to synaptic bombardment from other sur-
rounding neurons (Hô and Destexhe, 2000), for instance (see also
Longtin, 2013 for a review).
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For the stochastic case σ > 0, the mean firing rate of the DP
neurons may be obtained by solving Equation (1), and it is given
by (Tuckwell, 1989)

rD =
[
τr + τm

∫ zD
th

zD
r

√
πez2

(1 + erf(z)) dz

]−1

, (11)

where zD
th ≡ Vth−μ

σ
, zD

r ≡ Vr−μ
σ

, and erf(z) is the error func-
tion. The effective bias is again μeff = μ + τmGrD, although the
explicit form is more complex now. Finally, we can write the mean
firing rate of SP neurons as

rS =
[
τr + τm

∫ zS
th

zS
r

√
πez2

(1 + erf(z)) dz

]−1

, (12)

where zS
th ≡ Vth−μeff

σ
and zS

r ≡ Vr−μeff
σ

.
The main effect of the addition of noise to the DP neuron

model is the appearance of a smooth linearization around the
onset of the f-I curve for these neurons (Doiron et al., 2001). This
is due to noise-induced firing, which is especially important when
the neuron is slightly below the firing threshold.

As a consequence of this linearization, the effective bias μeff

may be approximately described, for values of μ close to the DP
firing onset, as

μeff = μ + τm GrD � μ + τmG (C1μ + C2), (13)

where C1 and C2 are constants, with C1 � C2 for realistic values
of the parameters. The effective bias, therefore, would be approx-
imately linear, with a slope that depends on G. Such a linear
dependence is shown in Figure 4A, where we can see that μeff

is indeed well approximated by a linear relationship with μ, and
that the slope depends on G. In particular, as G goes to more neg-
ative values the slope of the μeff − μ relationship decreases. We
will restrict ourselves here to the case of G having relatively small
absolute values, so that μeff will be an increasing function of μ in
all cases. Large negative values of G, which could compromise this
tendency, will be addressed in the next section.

Interestingly, since the f-I curve of an isolated SP neuron is also
linearized by the presence of stochasticity, the above approxima-
tion can be applied again: the multiplicative effect that G has on
the slope of μeff will also affect the slope of the SP f-I curve in the
same way. Indeed, by comparison of Equations (11, 12), we can
see that the response of a SP cell to μeff is identical to the response
of a DP cell to μ, so we can assume the same linear dependence
rS � C1μeff + C2 and arrive at the following divisive relationship

rS = (1 + C1τm G) rD. (14)

This relationship also holds, in an approximate way, when one
solves Equation (12) analytically, without considering any explicit
linearization of the firing rates. This is shown in Figure 4B, where
one can observe that increasing the strength of the feedforward
inhibition has a divisive effect on the f-I curve of the SP neu-
ron, as predicted. The figure also shows the good agreement

FIGURE 4 | (A) DP firing rate (red line) and effective bias (solid green line)
as a function of the sensory input μ. One can see that both curves can be
considered as approximately linear with μ (this is valid as long as |G| is not
very large). Parameters are σ = √

3, G = −1. The green dotted curve is the
same as the solid green line, but for G = −0.5. (B) SP firing rate as a
function of the sensory input, for different values of G and σ = 1. The
divisive gain control occurs as G takes larger negative values. (C) Average
gain of the SP f-I curve as a function of G, for σ = 1. The average gain is
obtained by fitting the f-I curve with a linear function over a range of μ

values for which the curve is approximately linear. The displayed results
differ by the origin of the f-I curves used. For the solid black line, the rates
are computed from the analytical formula (Equation 12). For the red
symbols, the f-I curves are extracted from simulations of network. The
error bars come from the fitting procedure, and serve to illustrate how
linear the f-I curves are for the chosen μ ranges. (D) Comparison between
the divisive gain control in our model (open-loop feedback) and the one
studied in Sutherland et al. (2009) (closed-loop feedback), for σ = 1. As the
panel shows, the open-loop feedback mechanism studied here provides a
stronger divisive effect than the one studied by Sutherland et al. for the
same feedback strength and conditions. Both the open-loop and
closed-loop cases correspond to the same strength, G = −1. For all panels,
solid or dotted lines come from theoretical (analytical) expressions,
whereas symbols come from simulations.

between numerical simulations of the model and the theoreti-
cal expression, given by Equation (12). Figure 4C shows more
clearly the relation between G and the SP gain, and we observe
that larger negative values of G produce a smaller slope on the
SP f-I curve. Consequently, the modulation of the feedforward
inhibitory strength (in the range of small |G|) provides a divisive
gain control to the system when stochasticity is considered.

In the mechanistic description presented above, the divisive
gain modulation strongly depends on the fact that DP neurons
drive the response of SP neurons without any restrictions (such
as feedback from other cells to the DP neurons). This approach
differs from previous attempts to explain the divisive gain con-
trol found in vivo (Bastian, 1986b), such as the one presented in
Sutherland et al. (2009). In this previous approach, Sutherland
et al. considered a unique population of ELL pyramidal cells,
without distinguishing between DP and SP neurons. The system
was then assumed to display a closed-loop feedback circuit, in
which the population of pyramidal neurons projected their out-
put to a feedback kernel, which in turn inhibited the activity of
the population. Because the negative feedback was affecting all
neurons in this case, a high firing rate would be prevented by the
closed-loop inhibition. In the approach we present here, on the
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other hand, DP neurons (which drive the gain control of SP cells)
do not receive inhibitory feedback, and therefore they are able to
raise their firing rate higher and produce a stronger and more
effective modulation of the SP firing rate than in the closed-loop
scenario. This can be seen in Figure 4D, where our open-loop
model is compared with a closed-loop version of the same model
for the same values of the parameters (the case G = 0 is also
shown for comparison). In the closed-loop model, the firing rate
of the unique pyramidal cell population ν is given by

ν =
[
τr + τm

∫ zth

zr

√
πez2

(1 + erf(z)) dz

]−1

, (15)

where zth = Vth−μ−τmGν
σ

and zr = Vr−μ−τmGν
σ

. It is worth noting
that both zth and zr depend on the population firing rate ν, and
therefore Equation (15) has to be solved recursively. As Figure 4D
shows, the open-loop model proposed here allows for a stronger
modulation than the closed-loop model for the same parameter
values and, in particular, for the same value of G in both cases.

3.3. NON-MONOTONIC GAIN CONTROL
In the previous section, we assumed small absolute values of G
to simplify our treatment. This allowed us to understand, from
a qualitative point of view, the origin of the divisive gain control
in our feedforward inhibitory pathway system, and our findings
were supported by both our numerical simulations and our the-
oretical description. However, these results could be different for
larger values of G, as a strong feedforward inhibition driven by
sensory input could overcome the excitatory effects of this same
sensory input on SP cells. If that were the case, μeff would no
longer increase with μ (or, at least, not for all values of μ), and
the effect of G on the f-I curve might change. In order to explore
such a possibility, we need to consider a more careful analysis of
the stochastic case (i.e., σ > 0) for large values of G.

We start by identifying potential extrema in the f-I curve of
the SP neuron, which would be an expected effect of feedforward
inhibition overcoming excitation in SP cells for a given value of μ.
Since the SP firing rate is a monotonically increasing function of
μeff (see Equation 12), finding the extrema of the effective bias as a
function of μ would be equivalent to finding the extrema of the f-
I curve for SP cells. The condition for extrema of the effective bias
μeff = μ + τmGrD can be obtained from dμeff

dμ
= 0, and it gives

drD

dμ
= − 1

τmG
, (16)

or, in a more explicit form,

σ + √
πτ2

mGr2
D

[
ez2

th (1 + erf (zth)) − ez2
r (1 + erf(zr))

]
= 0.(17)

We will consider the condition of extrema in its simplified version
(i.e., Equation 16) for clarity. The relationship rD versus μ, given
by Equation (11), takes a sigmoidal-like shape: rD tends to zero for
large negative μ, and to 1/τr for large positive μ. The maximum
slope reached by rD (which we will denote as γ) would be located
somewhere between these two limits. Therefore, drD

dμ
would follow

approximately a bell shape: it is zero at both ends of the μ axis,
and it has a maximum (of value γ) for a moderate value of μ.

With this information, and together with Equation (16), it is
easy to see that extrema will exist only when γ > 1

τm|G| , which

typically occurs for large enough absolute values of the feedfor-
ward inhibitory strength. In this case, we will have two extrema
(since drD

dμ
is bell-shaped and will cross the constant level 1

τm |G|
twice). Figure 5A shows drD

dμ
as a function of μ, in a situation in

which the two extrema exist.
The concrete shape of the effective bias with μ is shown in

Figure 5B. The two extrema correspond to a maximum (at small
μ) and a minimum (at larger μ). This yields a bell-shape depen-
dence of the effective bias on μ (at low values), followed by an
increase with μ (for high values). The cause for this behavior
is the following: at very small values of μ, the firing rate of the
DP neurons is not high enough, and the main contribution to
the effective bias is the sensory stimulus μ, with the feedfor-
ward inhibition playing a minor role. As μ makes the DP firing
rate increase, the feedforward inhibition term becomes dominant
(since G is negative and large) and the effective bias starts to
decrease, completing the bell-shape profile observed in Figure 5B.
After that, and for very large values of μ, the DP firing rate
approaches its saturation value 1/τr . At this point the sensory
stimulus μ becomes the dominant term and μeff begins to rise
again. It is worth noting that this second rising of μeff occurs at
input levels where the firing rate of DP neurons saturates, and
such sensory input levels are beyond the range in which biologi-
cally relevant information can be linearly processed in the system,
according to electroreceptor input–output characteristics (Gussin
et al., 2007). The attainment of the maximum rate, however,
occurs for biologically sound biases, as exemplified in Figure 5C.

FIGURE 5 | (A) Graphical representation of the condition for the existence
of extrema (Equation 16). We can see that solutions for this equation exist
only when γ (the peak value of the curve) is larger that 1

τm |G| (dashed line).
Parameters are σ = 1 and G = −2. (B) Effective bias as a function of μ,
showing the existence of a maximum and a minimum. Parameters are
σ = 1 and G = −2. (C) SP firing rate as a function of the input μ, for
different values of G, displaying non-monotonic gain control. We chose
σ = √

2. (D) Position of the SP firing rate peak (shown in panel C) as a
function of G, for different values of σ. In all panels, solid lines come from
theoretical (analytical) expressions, whereas symbols come from
simulations.
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Since the firing rate of SP cells monotonically increases with
the effective bias, the maximum and minimum found in μeff

are also observed for the SP firing rate, as shown in Figure 5C.
This implies that, for a stochastic system, enhancing the nega-
tive feedforward strength may drive the system from a divisive
to a non-monotonic gain control regime. The figure also shows
that the location and height of the peak of the SP firing rate is
also modulated by G. This is to be expected, since the stronger
the inhibition, the sooner the DP firing rate will start decreasing
the effective bias. Large negative values of G will shift the loca-
tion of the SP firing rate peak toward lower values of μ, as can
be observed in Figure 5C and, with more detail, in Figure 5D.
The level of stochasticity has also an impact on the position of
the peak: larger values of σ will increase the overall firing rate
of DP neurons, and the resulting increment in the feedforward
inhibition will shift the peak toward even lower values of μ, as
Figure 5D also shows.

Our neural circuit, therefore, is able to display three
different regimes, corresponding to subtractive, divisive, and
non-monotonic gain control. As the theory and numerical simu-
lations show, both the level of stochasticity σ and the feedforward
strength G play an important role in the behavior of the system.
Figure 6 shows a phase diagram of the system as a function of
these two parameters. The subtractive gain control is observed
only for deterministic systems (σ = 0), since the introduction of
some level of noise would smooth the DP firing onset and we
would go into other regimes. For σ > 0 the system can be in the
divisive or non-monotonic regime, depending on the value of G.
As discussed in the previous section, small absolute values of G
would linearize the DP rate, effective bias and SP rate with respect
to μ, leading to the appearance of divisive gain control. For large
negative G, the feedforward inhibition can eventually overcome
the input μ to the SP neuron and the circuit will display non-
monotonic gain control. The critical line separating the divisive
and non-monotonic regimes is given by

γ = 1

τm |G| . (18)

To obtain the critical line in Figure 6, we varied G—from within
the divisive region—for each value of σ until the condition for
extrema (Equation 17) at finite values of μ was first met (and
actualizing Equation 18).

We emphasize that, in order to get a non-monotonicity in the
SP firing rate, the derivative of the effective bias must vanish for
a certain μ value, and the SP cell must have a non-zero firing
rate around that value. Because of these two conditions, a non-
monotonic behavior cannot be obtained for zero noise. Indeed, in
the absence of noise, the DP firing rate is not differentiable at the
μ value for which the maximum should occur, and furthermore
the SP firing rate would be zero for that μ value.

We simplified the above analysis of the system by assuming that
the SP and DP cells share the same properties, namely the same
bias (μ) and the same level of noise (σ). We argue that this analysis
can be extended to more general contexts. In real systems, neural
attributes are not uniform. For instance, in the cortex, inhibitory
interneurons fire irregularly in response to constant inputs in vitro

FIGURE 6 | Phase diagram of the neural system studied. The subtractive
gain control regime corresponds to the σ = 0 axis, and the critical line
separating the divisive and the non-monotonic gain control regimes is given
by Equation (18).

(Stiefel et al., 2013), whereas pyramidal neurons are relatively reg-
ular (Mainen and Sejnowski, 1995). In the ELL, even though both
the SP and the DP cells receive a common external input, they do
not possess the same variability (Bastian and Nguyenkim, 2001),
which may translate into different biases and noise intensities.
Furthermore, even a weak neuron-to-neuron variability among
the neural populations could induce non-trivial effects in infor-
mation processing (Mejias and Longtin, 2012; Nicola et al., 2013).
Above, we amalgamated the intrinsic bias and the applied cur-
rent (Iapp, say) under the umbrella variable μ. To accommodate
different neural properties, we could use two separate intrin-
sic biases (μS and μD) and noise intensities (σS and σD), and
study the SP firing rate as a function of Iapp. This could produce
slightly different results than above. As an example, for the noise-
less case (σS = σD = 0), the SP cells could start to fire before the
DP neurons—provided that μS is large enough—, stay active for
a limited range of Iapp values, become silent when the DP cells
attain a sufficient rate, and then fire again for higher Iapp. This
would constitute a mixed regime showing both non-monotonic
and subtractive gain controls. Note that this mixed regime is also
observable for uniform neural properties when the noise is low.
In the latter case, the isolated blob of non-zero firing rate is due
to noise.

3.4. TIME-DEPENDENT STIMULI AND SYNAPTIC DELAYS
Real neural systems deal with time-dependent stimuli. In sen-
sory networks, neurons are responsible for encoding the temporal
features of information coming from the environment. When
dealing with time-dependent signals, a number of factors have
to be considered in addition to the ones included up to now in
our study. For instance, the existence of temporal delays in the
transmission of information, due to the finite transmission speed
of action potentials along the axons, becomes important. In the
particular case of the ELL, signals from the DP cells have to travel
through different neural populations before arriving to SP cells.
Traveling such a distance causes a temporal delay in the transmis-
sion that, in some cases, may reach tens of milliseconds (Maler
et al., 1991; Bol et al., 2011). Although this temporal delay did
not have an effect in our previous results, with μ being constant
in time (data not shown), it might have a significant impact in
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more realistic situations, when the sensory input presents tem-
poral fluctuations and some level of autocorrelation. Different
synaptic filter functions s(τ) might have an effect in these realistic
situations as well.

To test our model for these conditions we use, as sensory input,
a time-varying quantity μ̂(t) of the form

μ̂(t) = μ + ζ(t), (19)

where μ is the constant bias, and ζ(t) is a gaussian low-pass fil-
tered noise of zero mean and standard deviation σc. This noise
term is generated using a Butterworth fourth-order digital fil-
ter with cut-off frequency of 100 Hz. In the following, to explore
the behavior of our model for other synaptic filter functions, we
consider a delta-type synaptic function s(τ) = δ(τ − τd).

When the temporal delay τd is set to zero, the main effect of
considering this slowly fluctuating input is a slight increase in the
SP firing rate along the f-I curve, as Figure 7A shows. The black
line in the figure shows the f-I curve for σc = 0, and the red line
shows the same f-I curve for σc = 1. This firing rate increase is
simply due to the presence of the extra fluctuating term ζ(t).

The figure also shows, interestingly, that considering temporal
delays τd larger than zero leads to a significant increment in the SP
firing rate, especially around the firing onset. To understand this
phenomenon, it is useful to consider a slow (with respect to τm)
positive fluctuation in μ̂(t), arriving at DP and SP neurons simul-
taneously. If the temporal delay τd of our circuit from DP cells

FIGURE 7 | (A) Simulation results of the effect of the temporal delay on the
f-I curve of the system at G = −0.6. The black line corresponds to the case
in which the sensory input is just a constant bias and only the white noise
is present. For other curves, the fluctuating term ζ(t) is also present, and
the effect of varying τd is shown. Inset: Theoretical dependence of the
covariance of f (t) and ζ(t) on the temporal delay. (B) Simulation results of
the SP firing rate versus constant bias for different values of G, a white
noise term, and a slow fluctuating term ζ(t), for a temporal delay
τd = 20 ms. In both panels, we have σ = 0.1, σc = 0.3, and τm = 15 ms.

to SP cells is zero, the transient increment in the sensory input
received by the SP neuron will be compensated almost simultane-
ously (apart from the response time) by the transient increment
of the DP firing rate, which will have an inhibitory effect on the SP
neuron since G < 0. The effective bias received by the SP neuron,
therefore, will be mainly unaffected by such a fluctuation.

In the presence of some level of temporal delay, however,
this “compensation” from the DP cells may arrive late, maybe
once the transient increment in SP firing due to the fluctua-
tion is over. Even more, this late compensation from DP cells
could cause a transient decrement in the effective bias that the
SP neuron receives. As a consequence, the effective bias arriv-
ing at the SP cells will be highly fluctuating, and these input
fluctuations will cause an increment in the SP firing rate. This
novel variability-increasing effect would be especially important
around the SP firing onset, and our simulation results confirm
this point (Figure 7A). The effect of the temporal delay on the
level of fluctuations in the effective bias can also be mathemati-
cally derived (see Appendix). Indeed, our calculations show (inset
in Figure 7A) that the covariance of f (t) and ζ(t), and therefore
the fluctuations of the effective bias, increases from negative val-
ues toward zero with the temporal delay τd (with some minor
oscillatory component), supporting these findings on the delay-
induced effects on SP firing rate. Time-dependent stimuli would
also induce correlations between DP and SP cells, which would
depend on the temporal delays along with a number of other
factors (Ostojic et al., 2009).

In Figure 7B, one can see an example of the divisive gain
control for this more realistic situation with delay. In this case,
the sensory input has a fluctuating part ζ(t) and a temporal
delay of 20 ms. The behavior of the system is qualitatively simi-
lar to the one observed previously (i.e., large negative values of
G induce a divisive effect on the gain of the f-I curve). The non-
monotonic behavior also holds for this more realistic model (data
not shown).

In our treatment of the effect of delay on the f-I curve, we
assumed that the feedforward inhibitory strength G is a constant.
That is, G had the same magnitude for all frequencies contained in
the signal. This may not be the case for real systems. For instance,
in the weakly electric fish, the EGp parallel fibers are known to be
inactive when sinusoidal signals of higher frequency than about
20 Hz are applied to the network (Bol et al., 2011). On the other
hand, the direct inhibition coming from the nP seems to be active
for an extended frequency range (Doiron et al., 2004). So, G may
generally depend on frequency in a non-trivial way. This fact can
easily be included into the result for the covariance of f (t) and ζ(t)
appearing in the Appendix, provided that one knows—at least
approximately—how G changes with frequency. If, for example,
G is zero above a given frequency, then, obviously, signals only
containing frequencies above that cutoff should have no effect on
the f-I curve.

3.5. COMPARISON WITH EXPERIMENTAL DATA
We now apply our model to in vivo data showing gain control
in SP cells of weakly electric fish (Bastian, 1986b). In Figure 2A,
reproduced from Bastian (1986b), the firing rates of SP cells in
control fish is compared with those in fish for which the EGp has
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been lesioned. The result of this procedure is to eliminate the sig-
nal coming from the parallel fibers. Bastian’s results show that the
EGp contribution modulates the f-I curve of SP neurons, produc-
ing a divisive gain control. Since this form of gain control has been
identified as one of the behaviors displayed by our model, it might
be interesting to test whether the model is able to quantitatively
explain the experimental data. Here, we shall restrict ourselves to
analytical f-I curves (Equation 12) since they have been shown to
be in good agreement with those extracted from numerical sim-
ulations of Equations (1, 6). The experimental results are given
as relative firing rates versus the stimulus intensity in decibels. To
apply our model, we first need to convert these relative firing rates
to absolute ones and relate the experimental stimuli to our μ.

The stimuli are amplitude modulations (AMs, in mV/cm)
of the fish’s electric field. In mathematical expressions we shall
denote the intensity of these AMs by the symbol EAM. The zero-
decibel reference is Eref

AM = 2 mV/cm (Bastian, 1986b), so that the
number of decibels is given by 20 log10(EAM/Eref

AM). Relative fir-
ing rates for the lesion and control cases are given by the rates for
given AMs from which is subtracted the rate in the spontaneous
regime (i.e., when EAM = 0). More precisely, absolute firing rates
are given by

rC(L)
S (EAM) = rC(L)

S (0) + �rC(L)
S (EAM), (20)

where �rC(L)
S (EAM) represents relative firing rates in the con-

trol (lesion) case. From Bastian (1986a), it appears that rC
S (0) −

r L
S (0) ∼ 10 Hz, which means that the net effect of the EGp parallel

fibers is actually excitatory in the spontaneous regime. On the
other hand, it is clear from Figure 2A that the EGp contribution
is inhibitory for larger EAM. Therefore, this contribution changes
sign somewhere between 0 and 2 mV/cm. From inspection of
Figure 8A, in which absolute firing rates are plotted, this tran-
sition occurs for a small AM value (where the lesion and control
curves intersect).

We now relate the AMs to our μ. The SP and DP cells receive
input from electrosensory afferents, which encode the AMs of the
electric field. We consider that μ encompasses an intrinsic bias
μ0 and a simple summation of these afferent inputs. The average
input to a ELL pyramidal cell is then

μ = μ0 + τmGaffraff (EAM) ≡ μ0 + γ (EAM), (21)

where Gaff is the afferent synaptic strength times the number of
afferents (compare with Equation 8). The afferents’ firing rate,
raff(EAM), is a sigmoid taking the form of a Boltzmann function
(Benda et al., 2005):

raff (EAM) = rmax

1 + e−k(EAM−h)
, (22)

where rmax is the maximum firing rate. The slope of the linear
part of this curve is given by rmaxk/4, whereas h is the AM value at
which raff = rmax/2. Replacing Equation (22) into (21) provides
the required relationship between μ and EAM. We further define
the constant A ≡ τmGaffrmax.

To fit the data corresponding to a lesioned fish, i.e., which
lacks the set of parallel fibers connecting the EGp with the

FIGURE 8 | Divisive gain control measured in SP cells in vivo and the

theoretical predictions of our model. (A) Absolute firing rates (in contrast
to Figure 2A where rate changes relative to baseline were plotted) as a
function of the stimulus amplitude in decibels. Experimental absolute rates
(symbols) are obtained from the relative rates appearing in Figure 2A by
adding the baseline rates for the lesion and control cases (see text for
details, especially Equation 20). To simulate the lesion (i.e., absence of
parallel fibers) in the model, we set G = 0 (red line). The theoretical control
curves (solid and dashed blue lines) differ by the assumptions on G. For the
dashed blue line, G = −0.65 for all amplitude modulations; for the solid
one, G is given by the curve illustrated in panel (B)

(G(EAM) = G0 + B/[1 + exp(−κEAM)], with G0 = 0.75, B = −1.4, and
κ = 5). Panel (C) contains the same information as panel (A), but with a
linear scale for the x axis.

SP cells, we set G = 0. This is not rigorously true since, from
Figure 2B, the direct inhibitory signal from the nP could still be
active, and hence G should not be strictly zero. However, given
the overall large effect that the parallel fibers have on the SP
cells’ f-I curve (Figure 2A), it seems plausible to neglect the nP
component of the total feedforward inhibitory pathway in first
approximation. Heuristically, we could write G = GEGp + GnP,
where GEGp (respectively GnP) is the strength of the feedfor-
ward inhibition coming from the EGp (respectively nP). Then
the effective bias would be expressed as μeff = μ0,S + γ(EAM) +
τm(GEGp + GnP)rD, with μ0,S the AM-independent bias of the SP
cell, which is assumed to be different than that of the DP cells. Our
approximation consists in setting μ0,S + τmGnPrD ≈ μ0,D ≡ μ0

and identifying GEGp with G.
All parameters other than G are assumed identical for the

lesion and control cases. These parameters were determined by
inspection of the lesion data and by comparison with other stud-
ies of the ELL pyramidal neurons (Doiron et al., 2003, 2004; Bol
et al., 2011; Mejias et al., 2013). The time constants are τm = 6 ms
and τr = 0.8 ms. The noise intensity σ is set to 0.01. Such a
small value is prescribed by the overall aspect of the lesion firing
rate when plotted against a linear scale for the AMs (Figure 8C).
To model the input μ, we set μ0 = −0.16, A = 2.31, and k =
3 cm/mV. A range of plausible values for k has been established
from an inspection of Figure 6D in Benda et al. (2005). The
parameters μ0 and A are then set in such a way that the theoretical
f-I curve for the lesion case adequately fits with the corresponding
experimental results. Also, h is set to 0 mV/cm to simplify. From
Figure 8A (or C), one sees that the red line (lesion) is a good fit to
the experimental curve.
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For the control case, making G a constant for the whole range
of AMs is incompatible with the experimental results for low
AMs. The dotted blue curves in Figures 8A,C illustrate this point.
For instance, fixing G = −0.65 makes the theoretical f-I curve
agree with the experimental results for large AMs, but it fails
to model what happens for smaller AMs. The agreement for
large AMs is mainly due to the saturation of the afferents’ activ-
ity, i.e., μ does not vary appreciably under strong stimulations.
Consequently, the divisiveness of the gain control at large ampli-
tudes results from a different mechanism than the one presented
up to now in the paper. For small AMs, given the very low noise
intensity, a moderately high negative feedforward strength natu-
rally yields a subtractive gain control. To get a divisive gain control
for small AMs, we have to take into account the variation of G
with the stimulus amplitude EAM.

As discussed above, the feedforward strength G changes from
negative to positive values as EAM decreases from 2 to 0 mV. The
theoretical firing rate for the control case fits with the experimen-
tal one for EAM = 2 mV if we set G = −0.65. It is reasonable to
assume that G saturates for large positive and negative AM values.
A simple function comprising these characteristics is a sigmoid
akin to that given in Equation (22), but with a negative “rmax.” It is
displayed in Figure 8B for positive AMs. The solid blue curves in
Figures 8A,C show a good agreement between theory and exper-
iment when this function is used. We stress, however, that this
function has been determined in a purely ad hoc way to illustrate
that a varying G is necessary.

Our simple model is able to explain the divisive gain con-
trol obtained in vivo for the SP cells as long as the feedforward
strength is allowed to change with the stimulus amplitude. As
stated in section 2, the SP cells receive direct excitation and
disynaptic inhibition from the parallel fibers. These contribu-
tions have different respective weights depending on the stimulus
intensity, yielding a variable net feedforward strength (Lewis et al.,
2007). Also, SP cells possess receptive fields of the ON center-
OFF surround type (Maler, 2007). Center and surround have
different activation thresholds (Bastian et al., 2002), so the pro-
portion of inhibition and excitation depends on the intensity of
AMs. Such a differential activation might have an impact on phe-
nomena depending on a neuron’s activity, namely the synaptic
plasticity.

4. DISCUSSION
The modulation of input–output characteristics is a major strat-
egy used by neural systems for the processing and gating of
information. Neurons able to change their f-I (firing rate versus
input) curve stand as a prominent example of this. While very
general mechanisms are known to produce subtractive gain con-
trol, mechanisms providing other forms of modulation, such as
divisive or non-monotonic gain control (see Figure 1), have been
harder to identify (Holt and Koch, 1997; Chance and Abbott,
2000; Doiron et al., 2001; Chance et al., 2002; Longtin et al.,
2002; Sutherland et al., 2009). In this work, we presented a bio-
logically plausible mechanism which yields subtractive, divisive
and non-monotonic gain control. We analyzed, both with theo-
retical approaches and numerical simulations, the conditions for
which each behavior may appear. The mechanism is based on the

interaction between noise and some level of input-driven feedfor-
ward inhibition, and constitutes an example of a generic neural
strategy which can produce different types of computationally-
desirable modulations of f-I curves.

The concrete neural circuit considered in the study is very gen-
eral: a feedforward neural assembly inhibits target neurons, and
both populations receive a common external input. Such a circuit
has already been used to study the role of feedforward inhibition
in decorrelating neural activity in the somatosensory cortex of
rats (Middleton et al., 2012). In the present work, it is used to
model the ELL of the weakly electric fish. The feedforward pop-
ulation is composed of so-called deep pyramidal (DP) neurons,
whose targets are neurons that inhibit superficial pyramidal (SP)
cells. It is the modulation of the SP cells’ firing activity that is
studied here. However, the simplicity of the network and neuron
models suggests that our results could apply to other systems with
a similar structure.

As stated before, the f-I behavior of the neural network
depends on the level of neural noise and the strength of the feed-
forward inhibition. In most situations, when neurons present
some level of stochasticity, the feedforward inhibitory strength
will determine whether the gain control is divisive or non-
monotonic. This makes the system highly versatile, since the
feedforward inhibitory strength, which can be seen as efficacies of
the synaptic connections involved, could be modulated by long-
term synaptic plasticity. This might be the case in the ELL of
the weakly electric fish, as different types of long-term plastic-
ity have been identified in the parallel fiber synapses with SP
neurons in this and other species of electric fish (Han et al.,
2000; Harvey-Girard et al., 2010). If that were the case, then
as the inhibitory feedforward contribution becomes stronger,
the divisive gain control observed experimentally in SP cells
would turn into a non-monotonic gain control. Indeed, non-
monotonic f-I curves for SP neurons have been recently observed
in vitro under direct parallel fiber stimulation (Figure 3C in Lewis
et al., 2007), supporting this hypothesis. Further experimental
work, however, is needed to adequately test our prediction of
non-monotonic gain control emerging for strong feedforward
inhibition.

The existence of a non-monotonic gain control regime, as
hypothesized by our modeling study and suggested by recent
experimental findings (Lewis et al., 2007), would have interesting
functional advantages with respect to monotonic relationships.
For instance, a non-monotonic dependence in the f-I curve of
a neural circuit would allow for having a high gain (i.e., high
sensitivity) for low and moderate input levels while ensuring,
by decreasing firing rates, that the energy constraints of the cir-
cuit are met for large inputs (something that a monotonic f-I
curve cannot provide). Interestingly, it has been proposed that the
non-monotonic input–output relationship caused by a combina-
tion of short-term synaptic depression and facilitation could be
important for detection of coincident spikes (Mejias and Torres,
2008) and burst transmission (Izhikevich et al., 2003). Similar
features might be present in our system as well, since the non-
monotonic input–output profiles that we obtained via feedfor-
ward inhibition are similar to those given by short-term synaptic
plasticity.
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The gain control mechanism presented here holds for more
realistic situations, such as when considering a time-dependent
sensory stimulus. In the presence of complex input signals, the
presence of temporal delays in the systems becomes an impor-
tant factor, and we have considered it in our study as well. The
introduction of a temporal delay in our feedforward inhibitory
term revealed a novel effect in the dynamics of the system: as the
delay increases, an excitatory input fluctuation arriving to a SP
cell from the senses does not coincide in time with its inhibitory
counterpart arriving from the inhibitory feedforward pathway.
As a consequence, the level of fluctuations arriving at SP cells
increases, which in turn increases the SP firing rate, especially
near the firing onset. Our theoretical approach is able to explain
this effect as well (see Appendix). In spite of these new effects
in the dynamics of SP cells, the feedforward-driven gain control
remains the same as in the original model, indicating that the
mechanism can work as well for time-dependent stimuli.

Finally, we found that the basic model used to obtain the afore-
mentioned gain control regimes is able to describe the divisive
gain control observed in vivo in the SP cells of the ELL (Bastian,
1986b) for moderate to large stimuli. For low amplitude stim-
uli, the control has a significant subtractive component. Once the
model is augmented with a feedforward inhibitory strength that
depends on stimulus intensity, it exhibits divisive behavior at all
amplitudes (i.e., even for low amplitude stimuli). This illustrates
the versatility of our model, and shows how it can be modified to
depict more subtle gain control phenomena in real systems.
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A. APPENDIX
In this Appendix, we consider the situation where the SP cell
receives the external input μ + ζ(t) (cf. Equation 19), together
with the delayed synaptic inputs from the DP cells, f (t). Since ζ(t)
is zero-mean, the SP cell receives on average a signal μ + τmGrD.
The goal here is to determine the intensity of the fluctuations of
the total input with respect to that average. These fluctuations
play the role of an effective noise which alters the f-I curve of the
SP cell. In particular, we determine the effect of the delay on the
magnitude of the fluctuations.

We shall compute the auto-covariance function of
f (t) + ζ(t)—we discard the constant μ—, defined by

Cf +ζ (τ) ≡ 〈[
f (t) + ζ(t)

] [
f (t + τ) + ζ (t + τ)

]〉− τ2
mG2r2

D

= Cf (τ) + Rf ζ (τ) + Rf ζ (−τ) + Rζ (τ), (23)

where Cf (t) ≡ 〈f (t)f (t + τ)〉 − τ2
mG2r2

D is the auto-covariance
function of f (t), Rf ζ(τ) ≡ 〈f (t)ζ(t + τ)〉 is the cross-correlation
function of f (t) and ζ(t), and Rζ(τ) ≡ 〈ζ(t)ζ(t + τ)〉 is the auto-
correlation function of ζ(t). The brackets 〈·〉 signify averages
over realizations of the internal (ξD

i ) and external (ζ) noises. We
compute these quantities separately below.

A.1 AUTO-COVARIANCE OF F (T)
We consider both delta and alpha synapses. We first get the power
spectrum of f (t) and then Fourier transform it to get the auto-
correlation function, from which we subtract τ2

mG2r2
D to get the

auto-covariance function. Consider first the following restriction
of all yD

i to the interval [0, T], i.e.,

y D
i,T ≡

{
y D

i (t) for t ∈ [0, T]
0 elsewhere

.

We define the Fourier operator, F , as

x̃ (ω) = F {x} (ω) =
∫ ∞

−∞
x(t)eiωtdt

and its inverse, F−1, as

x(t) = F−1{x̃}(t) =
∫ ∞

−∞
x̃ (ω) e−iωt dω

2π
.

With fT(t) ≡ τm
G
N

∑
i(s ∗ y D

i,T)(t), we have

f̃T (ω) = F {fT} (ω) = τm
G

N
s̃ (ω)

∑
i

ỹ D
i,T (ω). (24)

The power spectrum of f (t) is defined as

Sf (ω) = lim
T→∞

〈|f̃T (ω) |2〉
T

. (25)

Using Equation (24), we get

Sf (ω) = τ2
m

G2

N2
|s̃ (ω) |2

∑
i,j

lim
T→∞

〈ỹ D
i,T (ω) ỹ D∗

j,T (ω)〉
T

.

Analogously to Equation (25), we define the cross-spectrum of
two DP cells as

S cross
D (ω) = lim

T→∞
〈ỹ D

i,T (ω) ỹ D∗
j,T (ω)〉

T

(
i �= j

)
. (26)

Given the homogeneity of the deep cell layer, all DP cells share the
same power spectrum, SD(ω), and all cross-spectra are the same
for any neuron pairs. Hence,

Sf (ω) = τ2
m

G2

N
|s̃(ω)|2 [SD(ω) + (N − 1)Scross

D (ω)
]
. (27)

One may interpret |s̃(ω)|2 as the energy spectrum of the synaptic
filter. For N = 1, we get the usual output power spectrum of a
linear system with impulse response function τmGs(t).

If we assume that DP cells’ spike trains are wide-sense station-
ary random processes, it should be the case for f (t) as well. By
the Wiener–Khintchin theorem, the auto-correlation function of
f (t) is then

Rf (τ) = F−1{Sf }(τ)

= τ2
m

G2

N

{
F−1{|s̃|2} ∗ [RD + (N − 1)Rcross

D

] }
(τ).

Since

F−1{|s̃(ω)|2}(τ) = (
s ∗ s

)
(τ),

where s(t) ≡ s(−t), we get

Rf (τ) = τ2
m

G2

N

{ (
s ∗ s

) ∗ [RD + (N − 1)Rcross
D

] }
(τ).

On the one hand, for α synapses,

∫ ∞

−∞
(
s ∗ s

)
(t)dt =

(∫ ∞

−∞
s(t)dt

)2

= 1.

On the other hand, for δ synapses, |s̃(ω)|2 = 1, so that

F−1{|s̃(ω)|2}(τ) = δ(τ) ⇒
∫ ∞

−∞
(
s ∗ s

)
(t)dt = 1. (28)

Therefore, we can write
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Cf (τ) = τ2
m

G2

N

{ (
s ∗ s

) ∗ [RD + (N − 1)Rcross
D − Nr2

D

] }
(τ),

or

Cf (τ) = τ2
mG2

{(
s ∗ s

) ∗
[

RD − R cross
D

N
+ C cross

D

]}
(τ). (29)

For α synapses,

(
s ∗ s

)
(t) = 1

4τs

[(
1 + t

τs

)
e− t

τs �(t)+
(

1 − t

τs

)
e

t
τs �(−t)

]
. (30)

For δ synapses, (s ∗ s)(t) = δ(t) from Equation (28), hence

Cf (τ) = τ2
mG2

[
RD(τ) − Rcross

D (τ)

N
+ Ccross

D (τ)

]
. (31)

Since RD(τ) contains a Dirac delta function, δ(τ), there is a white
noise component due to the synaptic bombardment in the case of
δ synapses. This component is low-pass filtered in the case of α

synapses.

A.2 AUTOCORRELATION OF ζ

Given that ζ is a zero-mean, low-pass filtered Gaussian white noise
of standard deviation σc, its auto-correlation function is

Rζ(τ) = σ2
c

sin (ωcτ)

ωcτ
, (32)

where ωc = 2πfc, with fc being the cutoff frequency.

A.3 CROSS-CORRELATION FUNCTION (RF ζ(τ) + RF ζ(−τ))
We now compute Rf ζ(τ) + Rf ζ(−τ) in Equation (23). We will
conclude that this term only depends on the delay τd. We will
then obtain an expression for the covariance Rf ζ(0), which repre-
sents the intensity of the effective noise caused by the interaction
of f and ζ. This noise is responsible for the linearization of the f-I
curve observed in Figure 7A.

Since Sf ζ(−ω) = S∗
f ζ(ω), we have

Rf ζ(τ) + Rf ζ(−τ) = 2F−1{Re
[
Sf ζ (ω)

]}(τ), (33)

where

Sf ζ(ω) = lim
T→∞

〈f̃T (ω) ζ̃∗T (ω)〉
T

. (34)

Using Equation (24), we get

Sf ζ(ω) = τm
G

N
s̃(ω)

∑
i

lim
T→∞

〈ỹ D
i,T(ω)ζ̃∗T(ω)〉

T

= τmGs̃(ω)SDζ(ω), (35)

where again we have used the homogeneity of the DP cells. SDζ(ω)

is the cross-spectrum of any DP cell with the external input.
Provided that the variance of ζ is not too large, we can write

〈ỹ D
i,T (ω)〉|ζT = ÃD

μ,σ(ω)ζ̃T(ω) + 2πrDδ(ω), (36)

where the notation 〈x〉|ζT means the average of x for a given
sample function restricted to [0, T] of the process ζ (“frozen
noise”), taken over realizations of the internal noise. In the
above equation, rD is the rate evaluated with Equation (11)
without the time-dependent external input ζ(t). The suscepti-
bility (or transfer function) ÃD

μ,σ(ω) depends on μ, σ, and τr

(Lindner et al., 2005):

ÃD
μ,σ (ω) =

(
iωrD

√
2

σ (iω − 1)

)
×

⎡
⎣Diω−1

(
μ−Vth

σ/
√

2

)
− e�Diω−1

(
μ−Vr

σ/
√

2

)
Diω

(
μ−Vth

σ/
√

2

)
− e�+iωτrDiω

(
μ−Vr

σ/
√

2

)
⎤
⎦,

with � = [
V2

r − V2
th + 2μ(Vth − Vr)

]
/2σ2, and Dα(z) are

parabolic cylinder functions. Multiplying both sides of Equation
(36) by ζ̃∗T(ω), averaging over realizations of ζT , dividing by T
and taking the limit T → ∞ gives

SDζ(ω) = ÃD
μ,σ(ω)Sζ(ω), (37)

where Sζ(ω) is the power spectrum of ζ. Substituting this into
Equation (35) and using Equation (33) yields

Rf ζ(τ) + Rf ζ(−τ) = 2τmGF−1{Re
[
s̃(ω)ÃD

μ,σ(ω)Sζ(ω)
]}(τ). (38)

Since Sζ(ω) = (σ2
c /2fc) [�(ω + ωc) − �(ω − ωc)], we obtain

Rf ζ(τ) + Rf ζ(−τ) = τmGσ2
c

fc

∫ ωc

−ωc

Re
[
s̃(ω)ÃD

μ,σ(ω)
]×

e−iωτ dω

2π
. (39)

Of all the contributions to Cf +ζ(τ), only Rf ζ(τ) + Rf ζ(−τ)

depends on the delay τd (through the Fourier transform of s(t),
which makes eiωτd appear). In the inset of Figure 7A we dis-
play the covariance of f and ζ, Rf ζ(0), for delta synapses. Writing

ÃD
μ,σ(ω) = |ÃD

μ,σ(ω)|eiφA(ω) and s̃(ω) = eiφs , with φs = ωτd, we
get, from Equation (39),

Rf ζ(0) = τmGσ2
c

2ωc

∫ ωc

−ωc

|ÃD
μ,σ(ω)| cos [φA(ω) + φs(ω)]dω. (40)

The expression above can be calculated with MAPLE. A LIF neu-
ron model can be seen as a low-pass filter. Precisely, |ÃD

μ,σ(ω)| is
an even function which decreases to zero for large ω values. For a
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small ωc, φA ≈ βω on [−ωc,ωc], with β a positive proportional-
ity constant, so that

Rf ζ(0) ≈ τmGσ2
c

2ωc

∫ ωc

−ωc

|ÃD
μ,σ(ω)| cos [(β + τd) ω] dω. (41)

For τd < −β + π/2ωc, the first zero-crossing of cos[(β + τd) ω]
lies outside the interval [−ωc,ωc]. When τd increases from
0 to −β + π/2ωc, Rf ζ(0) increases monotonically with τd

(because G < 0) This increase continues until the second zero-
crossing of cos[(β + τd)ω] reaches ±ωc. Hence, a maximum
occurs at τd = −β + 3π/(2ωc). Beyond that value, Rf ζ(0) oscil-
lates as more and more of the function cos[(β + τd)ω] gets
compressed into [−ωc,ωc]. For very large delays, the integral
tends to zero. In summary, this calculation shows that the noise
component coming from the delayed interaction of the feedfor-
ward function f (t) with the time-varying input ζ(t) increases
monotonically for small delays. For larger delays, it starts to show
damped oscillations around zero (see inset of Figure 7A).
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