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Abstract: Accurate morphological information on aortic valve cusps is critical in treatment planning.
Image segmentation is necessary to acquire this information, but manual segmentation is tedious and
time consuming. In this paper, we propose a fully automatic aortic valve cusps segmentation method
from CT images by combining two deep neural networks, spatial configuration-Net for detecting
anatomical landmarks and U-Net for segmentation of aortic valve components. A total of 258 CT
volumes of end systolic and end diastolic phases, which include cases with and without severe
calcifications, were collected and manually annotated for each aortic valve component. The collected
CT volumes were split 6:2:2 for the training, validation and test steps, and our method was evaluated
by five-fold cross validation. The segmentation was successful for all CT volumes with 69.26 s as
mean processing time. For the segmentation results of the aortic root, the right-coronary cusp, the
left-coronary cusp and the non-coronary cusp, mean Dice Coefficient were 0.95, 0.70, 0.69, and 0.67,
respectively. There were strong correlations between measurement values automatically calculated
based on the annotations and those based on the segmentation results. The results suggest that our
method can be used to automatically obtain measurement values for aortic valve morphology.

Keywords: segmentation; seep learning; computed tomography; aortic valve

1. Introduction

Heart valve disease is one of the most common causes of heart failure, which affects ap-
proximately 13.2% of people over the age of 75 [1], and the number of patients with valvular
disease is increasing due to the global population aging. More than 250,000 heart valve
operations are performed each year in the world [2]. In order to make an operative plan
containing procedure and device selections, it is important to obtain accurate information
about the valve morphology. In particular, the acquisition of valve morphology based on
CT images, which has high spatial resolution and provides information on the relationship
with surrounding structures, is one of the most important clinical workflows in current
clinical situations for treatment planning in aortic valve disease [3]. However, acquiring
information on valve morphology from CT images is a difficult and time consuming task
for physicians and radiological technologists.
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There are several products available to support the acquisition of valve morphology,
however most require multiple manual operations by the user, resulting in increased work
for the user and variability among users. In order to eliminate these manual operations,
it is necessary to have a technique to appropriately segment the target anatomical struc-
tures from medical images. Many methods have been reported for segmenting anatomical
structures from medical images [4–9]. In addition, there have been many reports on segmen-
tation methods using machine learning [10,11]. However, since the aortic valve is a very
thin and fluttering structure, it is expected that simply applying segmentation methods pro-
posed for other structures to the aortic valve cusps will not provide accurate segmentation.
There are previous studies that have proposed segmentation algorithms for aortic valves,
however most do not perform segmentation for valve cusps [12–14]. Pouch et al. proposed
an algorithm for valve cusps segmentation from 3D transesophageal echocardiographic
images, however this algorithm is a semi-automatic method that requires user input [15].
Fan et al. proposed a deep learning-based algorithm to segment each cusp from CT im-
ages, although it required input images accurately cropped around the valve. In addition,
the accuracy verification for cases with severe calcification is insufficient [16]. Pak et al.
proposed a deep learning-based automatic segmentation method for aortic valve cusps
from CT images [17]. They transform the original CT image into a sub-region containing
the aortic valve using Spatial Transformer Network (STN) before segmentation process-
ing for computational efficiency. However, the transformed sub-region may sometimes
omit parts of the aortic root and affect the performance. In addition, the impact of their
automatic segmentation on measurements that are important for surgical planning, have
not been verified.

The contributions of this work are summarized as follows.

1. To the best of our knowledge, this is the second study to build a fully automatic
method for segmenting aortic valve cusps. Our method constructs a computational
flow of cascaded multiple networks for landmark detection and segmentation without
transforming the original images. This is expected to improve performance as the
input size for the networks is reduced step by step and sub-regions are more accurately
located. Each network is based on methods presented in previous studies [18,19],
however the method of combining them is reported for the first time.

2. We proposed an evaluation method for the impact of segmentation results on measure-
ment values for each measurement item, and evaluated our proposed segmentation
method using this evaluation method. Many papers on segmentation methods focus
on segmentation accuracy and do not investigate the impact on measurements. To the
best of our knowledge, this paper is the first work to investigate the impact of aortic
valve cusps segmentation results on various measurements.

This paper is organized into five sections. In Section 2, which is the Materials and
Methods section, Section 2.1 describes the datasets we used in detail. Section 2.2 explains
our proposed segmentation method in detail, and Section 2.3 describes the evaluation
method for the proposed segmentation method. Evaluation results are presented in Sec-
tion 3, showing the segmentation accuracy of the proposed method and its impact on each
measurement item. In Section 4, we discuss the evaluation results. Section 5 presents a
conclusion for our work.

2. Materials and Methods
2.1. Data and Annotation

ECG gated cardiac 3D- or 4D- CT imaging data from 138 patients were retrospectively
collected at multiple clinical institution with the approval of the institutional review boards.
These patients presented with various cardiac diseases including stenotic aortic valve,
regurgitant aortic valve and other heart diseases with normal aortic valve, however not
containing bicuspid valves. The CT images were acquired with contrast using Aquilion
ONE (Canon Medical Systems Corporation, Otawara, Tochigi, Japan) or SOMATOM Forc
(SIEMENS, Munich, Germany). The ECG gated cardiac CT sequences include 1–20 volumes
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per cardiac cycle, where each volume contains 172–667 slices with 512 × 512 pixels. The
in-slice resolution is isotropic with 0.311–0.625 mm and the slice thickness is 0.5 to 0.75 mm.

The eight ground-truth landmarks and the four ground-truth labels (GT) were an-
notated. The eight ground-truth landmarks are 3D coordinates of the three Nadir points,
which are defined as points on the cusp that are on the most left ventricular outflow tract
side for each of the right-, left- and non-coronary cusps (RCC, LCC and NCC), the three
commissure points and the two coronary ostium points, which are defined as the proximal
edge of the ostium, for the left and right coronary ostium. The four ground-truth labels are
a set of pixels corresponding to each region of the aortic root and each cusp.

The annotation process was performed manually or semi-automatically according
to the following four steps by physicians, radiological technologists or general technolo-
gists under the instruction of an expert physician, and all annotations were checked and
approved by the expert physician using in-house software.

1. Volume data in end systolic (ES) and/or end diastolic (ED) phases suitable for acquir-
ing morphological information of the aortic valve were selected for each CT imaging
data based on the information available from CT images, which included ECG gating
timing, LV volume size, aortic valve motion and blurring. A total of 258 volume data
were selected in this step, and the following annotation work was performed only on
these volume data.

2. The Vitrea workstation (Canon Medical Informatics, inc., Otawara, Tochigi, Japan)
was used to semi-automatically generate an initial label of the aortic root by providing
seed points within the aortic root region. The initial label was manually modified
as needed.

3. Each of the eight landmarks were manually annotated one point on CT image.
4. The labels for each cusp were separately manually annotated on the internal regions

of the aortic root. Each cusp did not have an overlapping area.

2.2. Aortic Valve Cusps Segmentation Method

Our segmentation method contains five primary steps (Figure 1): (1) detect eight
landmarks coarsely; (2) segment the aortic root within the cropped regions based on coarse
landmarks; (3) detect eight landmarks accurately within the cropped region based on the
aortic root region; (4) segment aortic cusps within the cropped region based on the aortic
root region; and (5) post-process for aortic cusps labels.

Figure 1. Flow chart of segmentation method.
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2.2.1. Landmark Detection Processing

Resampling for original CT images was performed as preprocessing for input images
of landmark detection processing by using SimpleITK (version 1.2.4). In the resampling,
original CT images were cropped with fixed pixel spacing and matrix size. If the cropped
region included the outer region of original CT images, the pixel values of the outer
region were padded with −3024. For the coarse landmark detection, original CT images
were resampled into isotropy-based images with pixel spacing of 1.5 mm and matrix
and size 128 × 128 × 128 around the center of the original CT images. For the accurate
landmark detection, original CT images were resampled into isotropy-based images with
pixel spacing 0.5 mm and matrix size 128 × 128 × 128 around the center of the bounding
rectangular region of the segmented aortic root region.

3D Spatial Configuration-Net (SCN) [18] with updated parameters was used as our
network architecture for both coarse and accurate landmark detection (Figure 2). The loss
function (1) proposed by Payer et al. [18] was used with parameter α = 50 and λ = 0.0005,

min
w,b,σ

N

∑
i=1

∑
x
||hi(x; w, b)− gi(x; σi)||22 + α||σ||22 + λ||w||22 (1)

minimized using the Adam optimizer with a learning rate 5 × 10−5, β1 = 0.9 and β2 = 0.999
empirically. We used the mini-batch size of 1. The number of training iterations was 200,000.
Tensorflow (version 1.13.1) was used for training and testing of the network.

Figure 2. SCN architecture for landmark detection.

We introduced on-the-fly data augmentation using SimpleITK (version 1.2.4). Intensity
values are randomly multiplied by [0.75, 1.25] and shifted by [−0.25, 0.25]. The image is
randomly translated, rotated, and scaled. In addition, elastic deformation is employed by
randomly shifting points on a regular grid of 15 × 15 pixels by 5 pixels and interpolating
with a cubic B-spline. All scaling operations are randomly sampled from a uniform
distribution within a specified interval.

2.2.2. Segmentation Processing

The aortic root segmentation classifies voxels into two classes: background and aortic
root. The aortic cusps segmentation classifies voxels into four classes: background, LCC,
RCC, and NCC. Pytorch (version 1.6.0) was used for training and testing of the network.
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Resampling and normalizing for the original CT images were performed as prepro-
cessing for input images of segmentation processing by using interpolation method from
Pytorch (version 1.6.0). For the aortic root segmentation, the original CT images were
cropped with the rescaled region 1.5 times larger than the bounding rectangular region
of the detected coarse landmarks, resampled into isotropy-based images with the pixel
spacing 0.4 mm and same physical matrix size as the cropped CT images, and normalized
by z-score based on the mean and standard deviation of all intensity values collected from
the training datasets. For the aortic cusps segmentation, original CT images were cropped
with the bounding rectangular region of the segmented aortic root region, resampled into
isotropy-based images with the pixel spacing 0.4 mm and same physical matrix size, and
normalized as in the aortic root segmentation.

3D full resolution U-Net [19] containing five sampling layers and five up sampling
layers were used as the network architecture for both aortic root and aortic cusps segmen-
tation processing (Figure 3). Patch size was 128 × 128 × 128. To handle varying volume
sizes from preprocessed images, a sliding window algorithm was used. The full volume
was split into blocks based on the patch size, and the neural network predicted on each
block. Default loss function, which combines cross entropy loss and soft dice loss, were
used for training U-Net. The training epoch was 1000, and batch size was 2. Stochastic
gradient descent with nesterov momentum (µ = 0.99) and an initial learning rate of 10−2

was used for earning network weights. Other parameters of 3D full resolution U-Net were
the same as in Isensee et al. [19].

Figure 3. U-Net architecture for segmentation.

We use the default method to perform on-the-fly data augmentation. The images are
randomly rotated by (−30◦, 30◦). The intensity values are randomly multiplied with (0.7,
1.4). Other data augmentation is same as in [19].

2.2.3. Post-Processing

All regions except for the region with largest volume were removed if the segmentation
process resulted in multiple independent regions for a single component. If there were
any holes in the segmentation results, the holes were filled based on the method of Aktouf
et al. [20]. The insertion line of the cusp was extended to always connect with the vessel
wall inside the Sinus of Valsalva if it was not connected to the vessel wall.
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2.3. Evaluation
2.3.1. Evaluation Setup

The 258 CT volume data were split approximately 6:2:2 for the training, validation and
test steps, respectively, taking into account data collection site, cardiac phase (ED or ES)
and calcium condition (with severe calcification or without severe calcification). Stratified
five-fold cross validation was performed to evaluate the accuracy of the landmark detection
and segmentation processes.

2.3.2. Automation and Processing Time

The segmentation results of the test steps for all cases were visually checked by both
Multiplanar Reconstruction (MPR) images overlaid with the segmentation results and the
Volume Rendering (VR) images created based on the segmentation results. VR images were
overlaid with regions of CT values above the user selected threshold (500–1000 HU) within
the aortic root as the calcium region. In addition, the total-processing times on a PC with
an Intel Xeon Sliver4214 processor and an NVIDIA GeForce RTX 2080 SUPER were also
recorded.

2.3.3. Landmark Evaluation

The accuracy of the landmark detection processing was evaluated by the Euclidean
distance between the ground-truth landmarks and the landmark detection results for each
of the eight landmarks. For each coarse and accurate landmark detection processing, this
evaluation was performed on each of the CT volumes with four different valve conditions
including ES phase with severe calcification, ED phase with severe calcification, ES phase
without severe calcification and ED phase without severe calcification.

2.3.4. Segmentation Evaluation

The accuracy of the segmentation processing was evaluated by comparing the ground-
truth label (G) with the segmentation result (S) using the following three evaluation mea-
sures for each of the four valve components (aortic root and each cusp). These evaluations
also were performed on each of four different CT volumes. The aorta root segmentation
was evaluated only for the area between the Nadir plane, which is defined as the plane
passing through the three Nadir points, and the sinotublar junction plane defined by the
expert, in order to make an accurate assessment for the Sinus of Valsalva region.

1. Volumetric overlap: Dice Coefficient (DC) [21] was calculated as volumetric overlap
between two sets of voxels G and S, which was defined as follows:

DC(G, S) = 2|G ∩ S|/(|G|+ |S|) (2)

2. Surface Distance: The Mean symmetric Surface Distance (MSD) is defined as follows:

MSD(G, S) =
1

|S(G)|+ |S(S)|

 ∑
sG∈S(G)

dm(sG, S(S)) + ∑
sS∈S(S)

dm(sS, S(G))

 (3)

where dm(,) denotes the minimum Euclidean distance between an arbitrary voxel to an
arbitrary set of surface voxels, S(G) denotes the set of surface voxels of G, sG denotes each
voxel of S(G), S(S) denotes the set of surface voxels of S, sS denotes each voxel of S(S).

In addition, Hausdorff Distance (HD) was also calculated as follows:

HD(G , S) = max
sS∈S(S)

{dm(sS, S(G))} (4)

3. Impact on measurements: For the eight measurement items, the differences between
the values measured based on G and measured based on S were calculated using the
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same measurement algorithm, as the impacts for each measurement item (Figure 4).
Each measurement item was defined in this paper as follows:

Figure 4. Schematic diagram illustrating the measurement position. (a) Cross-section, (b) Cusp,
(c) Three Dimensional.

• effective Height (eH): Straight line distance from Arantius body to Nadir plane;
• geometric Height (gH): Shortest curved line distance along the surface of the cusp,

from Arantius body to Hinge point;
• cusp insertion Length (ciL): Curved line distance between commissure points on the

contour of the cusp in contact with the Sinus of Valsalva;
• Free Margin Length (FML): Curved line distance between commissure points on the

contour of the cusp not in contact with the Sinus of Valsalva;
• commissural Distance (comD): Straight line distance between commissure points;
• Nadir Ring Perimeter (NRP): Perimeter of the contour of the Aortic root region on the

Nadir plane;
• Commissure Ring Perimeter (CRP): Perimeter of the contour of the Aortic root region

on the Commissure plane;
• coronary Height (corH): Straight line distance from coronary ostium point to Nadir plane.

Arantius body is defined as the middle point on FML. Hinge point is defined as points
on ciL that is most on the left ventricular outflow tract side for each cusp. In many cases,
Hinge point is the same position as Nadir point.

2.3.5. Statistical Analysis

Continuous data was given as mean and standard deviation (± SD) for cases. The relation
between measurement vales based on G and S was analyzed by Pearson’s product–moment
correlation coefficient (r), scatterplot and the Bland–Altman difference plot with 1.96 SD
intervals. For each measurement value error, the absolute error and error rate were also
presented as mean and standard error (SE). The fixed errors between the measurement values
based on G and S were analyzed by the paired-t test. The proportional errors were analyzed by
Pearson’s product–moment correlation coefficient (rp) between the difference and the mean
between measurement values based on G and S. IBM SPSS Statistics (version 26.0, IBM, New
York, NY, USA) was used for all statistical analysis. In this study, Bonferroni correction was
used to adjust for multiple validation endpoint in the 19 measurement items, and significant
differences were considered if p < 0.0026.

3. Results

A total of 258 volume data were selected from 138 CT imaging data, containing 87 ED
without severe calcification data, 42 ED with severe calcification data, 87 ES without severe
calcification data and 42 ES with severe calcification data. For all volume data, the ground
truth data was created, and our proposed aortic valve cusps segmentation was performed.
The segmentation was successful for all volume data with 69.26 ± 7.42 s as mean total-
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processing time. The morphology conditions of the cusps are different depending on the
cardiac phase and amount and distribution of calcium, however our algorithm was able
to generally segment all cusps in each condition (Figures 5 and 6). These MPR and VR
images provide visual information about the aortic valve morphology and the distribution
of calcification on each cusp.

Figure 5. Visualization of CT images (WW/WL: 650/300) only, overlaid with each ground-truth
label and overlaid with each segmentation result in the test step for 2 cases: (a,b) a case without
calcification; (c,d) a case with severe calcification. Translucent purple: aortic root labels, Green: RCC
labels, Blue: LCC labels and Red: NCC labels.
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Figure 6. Visualization from five directions of VR images of segmentation results for two of the same
cases as Figure 4: (a,b) a case without calcification; (c,d) a case with severe calcification. Translucent
purple: aortic root labels, Green: RCC labels, Blue: LCC labels, Red: NCC labels and White: Calcium.

Table 1 shows the results of five-fold cross validation for each coarse and accurate
landmark detection for each of the valve conditions. Coarse and accurate landmark detec-
tion showed an error of around 1.0 to 2.0 mm for each landmark in each image condition.
Accuracies were improved overall with accurate landmark detection over coarse landmark
detection. The accuracy tended to be higher in cases with severe calcifications than in cases
without severe calcifications, except for Nadir in LCC in the ED phase and Nadir in NCC
in the ES phase. There was no overall trend in the detection accuracy due to the difference
in phase.
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Table 1. Landmark Detection Results.

Coarse
Landmark
Detection

Nadir RCC
[mm]

Nadir LCC
[mm]

Nadir NCC
[mm]

Commissure
RL [mm]

Commissure
RN [mm]

Commissure
LN [mm]

Coronary
Ostium R

[mm]

Coronary
Ostium L

[mm]

ES w/o sCa 2.08 ± 1.12 1.62 ± 0.93 1.68 ± 1.08 2.08 ± 1.14 2.15 ± 1.47 1.98 ± 1.23 1.61 ± 1.51 1.54 ± 1.32
ED w/o sCa 1.72 ± 0.91 1.68 ± 0.77 1.72 ± 1.11 1.84 ± 1.24 2.17 ± 1.27 1.74 ± 1.21 1.46 ± 1.41 1.37 ± 0.98

ES w/sCa 1.57 ± 0.87 1.46 ± 0.83 2.18 ± 1.43 1.34 ± 0.62 1.76 ± 1.11 1.73 ± 1.53 1.53 ± 1.16 1.31 ± 0.81
ED w/sCa 1.37 ± 0.74 2.13 ± 3.29 1.54 ± 0.99 1.34 ± 0.90 1.63 ± 1.04 1.41 ± 1.08 1.29 ± 0.84 1.33 ± 0.73

Total 1.76 ± 0.99 1.70 ± 1.54 1.75 ± 1.15 1.76 ± 1.11 2.01 ± 1.30 1.77 ± 1.26 1.49 ± 1.33 1.41 ± 1.05

Accurate
Landmark
Detection

Nadir RCC
[mm]

Nadir LCC
[mm]

Nadir NCC
[mm]

Commissure
RL [mm]

Commissure
RN [mm]

Commissure
LN [mm]

Coronary
Ostium R

[mm]

Coronary
Ostium L

[mm]

ES w/o sCa 1.62 ± 1.05 1.46 ± 0.72 1.50 ± 0.96 1.96 ± 1.26 1.92 ± 1.47 1.69 ± 1.22 1.72 ± 3.42 1.35 ± 0.91
ED w/o sCa 1.18 ± 0.60 1.38 ± 0.74 1.51 ± 1.00 1.73 ± 1.25 2.16 ± 2.86 1.51 ± 1.09 1.36 ± 2.37 0.99 ± 0.56

ES w/sCa 1.42 ± 0.86 1.36 ± 0.84 1.92 ± 1.42 1.09 ± 0.62 1.71 ± 1.04 1.47 ± 1.35 1.47 ± 1.60 1.06 ± 0.69
ED w/sCa 1.07 ± 0.60 1.91 ± 3.34 1.42 ± 0.91 1.16 ± 0.79 1.49 ± 1.13 1.29 ± 1.12 1.12 ± 1.04 0.99 ± 0.57

Total 1.35 ± 0.84 1.49 ± 1.51 1.56 ± 1.06 1.61 ± 1.16 1.90 ± 1.97 1.53 ± 1.19 1.46 ± 2.54 1.12 ± 0.74

Note: sCa: severe Calcifications, RL mean the commissure point of RCC and LCC, RN mean the commissure
point of RCC and NCC LN mean the commissure point of LCC and NCC. Data are mean ± standard deviation
for cases.

Table 2 shows the results of five-fold cross validation for Dice Coefficient (DC), Mean
symmetric Surface Distance (MSD) and Hausdorff Distance (HD) for each valve conditions.
In the accuracy of each cusps, DC was around 0.7, MSD was 0.34 to 0.45 mm, and HD was
around 1 mm. DC tended to be lower in NCC in cases with severe calcifications. The MSD
and HD tended to be smaller overall in ED phase than in ES phase. There was no overall
trend in the segmentation accuracy with or without severe calcifications.

Table 2. Segmentation Results by Dice Coefficient, Mean symmetric Surface Distance and Haus-
dorff Distance.

Aortic Root RCC LCC NCC

DC MSD
[mm]

HD
[mm] DC MSD

[mm]
HD

[mm] DC MSD
[mm]

HD
[mm] DC MSD

[mm]
HD

[mm]

ES w/o sCa 0.96 ± 0.05 0.43 ± 0.93 1.46 ± 3.81 0.70 ± 0.07 0.36 ± 0.13 1.43 ± 1.09 0.67 ± 0.10 0.43 ± 0.17 1.46 ± 1.13 0.69 ± 0.07 0.37 ± 0.12 1.38 ± 1.19
ED w/o sCa 0.95 ± 0.11 0.39 ± 0.49 1.88 ± 4.76 0.71 ± 0.05 0.34 ± 0.12 0.93 ± 0.27 0.70 ± 0.04 0.34 ± 0.07 0.96 ± 0.33 0.69 ± 0.05 0.34 ± 0.08 0.99 ± 0.34

ES w/sCa 0.94 ± 0.09 0.63 ± 1.70 1.80 ± 5.10 0.69 ± 0.06 0.40 ± 0.11 1.00 ± 0.25 0.68 ± 0.08 0.41 ± 0.10 1.01 ± 0.29 0.62 ± 0.08 0.45 ± 0.13 1.25 ± 0.52
ED w/sCa 0.96 ± 0.03 0.52 ± 1.40 1.40 ± 3.88 0.71 ± 0.05 0.36 ± 0.08 0.87 ± 0.16 0.69 ± 0.05 0.37 ± 0.08 0.92 ± 0.19 0.63 ± 0.08 0.43 ± 0.11 1.10 ± 0.27

Total 0.95 ± 0.08 0.46 ± 1.02 1.64 ± 4.36 0.70 ± 0.06 0.36 ± 0.12 1.10 ± 0.70 0.69 ± 0.07 0.38 ± 0.13 1.13 ± 0.85 0.67 ± 0.07 0.39 ± 0.11 1.18 ± 0.77

Note: sCa: severe Calcifications. Data are mean ± standard deviation for cases.

Table 3 shows the results of five-fold cross validation for the difference of measure-
ment values, and Figure A1 shows scatterplots for correlation and Figure A2 shows
Bland–Altman plots. Significant correlations were shown between the ground truth based-
measurement values and the segmentation result based-measurement values for all mea-
sured items. The correlation coefficients were above 0.7 except for geometric Heights,
indicating a strong correlation. The absolute errors were less than 5 mm, and the error rates
were less than 10% for all the measured value items. Significant fixed errors were shown
only for effective Heights, geometric Heights and the Nadir Ring Perimeter. Proportional
errors were none or only weak relationships were observed.
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Table 3. Segmentation Results by difference of measurements.

Measurement Items
Ground

Truth Label
Based [mm]

Segmentation
Result

Based [mm]

Difference
[mm]

Absolute
Error

[mm] (SE)

Error Rate
[%] (SE)

CC b/w G
and S

r

Fixed
Errorp-
Value

Proportional
Error rp

effective
Height

RCC 10.97 ± 2.43 10.54 ± 2.14 −0.43 ± 1.41 1.04 (0.07) 9.47 (0.55) 0.82 * <0.001 * −0.22 *
LCC 11.12 ± 2.44 10.78 ± 2.25 −0.34 ± 1.42 1.05 (0.06) 9.53 (0.63) 0.82 * <0.001 * −0.14
NCC 11.06 ± 2.39 10.56 ± 2.27 −0.50 ± 1.41 1.04 (0.07) 9.17 (0.50) 0.82 * <0.001 * −0.09

geometric
Height

RCC 14.42 ± 2.40 13.95 ± 2.21 −0.47 ± 1.93 1.40 (0.09) 9.58 (0.55) 0.65 * <0.001 * −0.11
LCC 15.73 ± 2.56 15.24 ± 2.05 −0.49 ± 1.87 1.38 (0.08) 8.99 (0.67) 0.69 * <0.001 * −0.30 *
NCC 16.05 ± 2.47 15.71 ± 2.16 −0.34 ± 1.94 1.39 (0.09) 8.57 (0.48) 0.65 * 0.006 −0.20 *

cusp
insertion
Length

RCC 42.82 ± 7.13 42.49 ± 6.87 −0.34 ± 4.94 3.80 (0.20) 8.86 (0.42) 0.75 * 0.276 −0.06
LCC 41.55 ± 6.14 42.05 ± 5.61 0.49 ± 3.92 2.94 (0.16) 7.03 (0.37) 0.78 * 0.044 −0.14
NCC 42.59 ± 6.53 42.88 ± 6.45 0.29 ± 4.39 3.19 (0.19) 7.41 (0.41) 0.77 * 0.290 −0.02

Free Margin
Length

RCC 27.47 ± 5.09 27.62 ± 5.18 0.16 ± 3.19 2.37 (0.13) 8.60 (0.45) 0.81 * 0.431 0.03
LCC 24.30 ± 4.68 24.46 ± 4.16 0.17 ± 3.19 2.21 (0.14) 9.06 (0.48) 0.75 * 0.394 −0.17
NCC 25.96 ± 5.20 25.83 ± 4.95 −0.13 ± 3.34 2.42 (0.14) 9.18 (0.50) 0.79 * 0.522 −0.08

commissural
Distance

RL-RN 25.62 ± 3.20 25.78 ± 3.23 0.15 ± 1.07 0.84 (0.04) 3.30 (0.16) 0.94 * 0.023 0.02
RL-LN 23.32 ± 3.12 23.42 ± 3.00 0.10 ± 0.80 0.63 (0.03) 2.76 (0.14) 0.97 * 0.043 −0.16
LN-RN 23.86 ± 3.26 23.89 ± 3.20 0.04 ± 1.00 0.78 (0.04) 3.33 (0.16) 0.95 * 0.562 −0.05

Nadir Ring
Perimeter

89.44 ±
11.59

87.16 ±
11.61 −2.28 ± 8.78 4.39 (0.49) 4.73 (0.59) 0.71 * <0.001 * 0.002

Commissure Ring Perimeter 114.84 ±
15.56

114.54 ±
17.83 −0.30 ± 8.44 3.31 (0.48) 2.77 (0.37) 0.88 * 0.569 0.28 *

Coronary
Height

right 16.62 ± 3.69 16.73 ± 3.58 0.11 ± 1.71 1.22 (0.07) 7.80 (0.53) 0.89 * 0.306 −0.07
left 14.55 ± 3.05 14.51 ± 2.88 −0.04 ± 1.03 0.77 (0.04) 5.69 (0.35) 0.94 * 0.512 −0.17

Note: RL mean the commissure point of RCC and LCC, RN mean the commissure point of RCC and NCC, LN
mean the commissure point of LCC and NCC, CC mean Correlation Coefficient. Data are mean ± standard
deviation for cases. * showed p < 0.0026.

4. Discussion

We proposed an automatic segmentation method for aortic valve cusps that cascades
networks for landmark detection and networks for segmentation. Our proposed method was
able to fully automate segmentation of the aortic valve cusps for ES and ED phases with or
without severe calcifications. Segmentations can provide more visual information about the
morphology of the aortic valve and the distribution of calcification. In Figures 5 and 6, we
can visually assess that the cusps without severe calcification (RCC, LCC and NCC in the case
without severe calcification, and NCC in the case with severe calcification) are open in ES
phase and closed in ED phase, while the cusps with severe calcification (RCC and LCC in the
case with severe calcification) demonstrate minimal change in their position between ES and
ED phases. Such visual information would be useful for treatment planning for surgical and
interventional procedures.

Our method was able to detect eight landmarks with an error of about 1 to 2 mm.
Considering that the absolute error of each measurement item is around 0.5 to 4.5 mm
as shown in Table 3, the accuracy of landmark detection has a significant impact on the
measurement accuracy, and therefore it is assumed that landmark detections are important
steps in this method. The fact that the accuracy of landmark detection tended to be higher
in cases with severe calcification than in cases without severe calcification may be due to
the distribution of pixels with high HU values in cases with severe calcification showing
the morphological characteristics of the aortic valve.

Although the segmentation accuracy cannot be directly compared with previous
studies due to the different validation cases, the accuracy of our method was comparable
or higher than previous studies in Dice coefficient [16,17]. We did not find a clear reason
why the NCC in cases with severe calcifications showed low DC. This may perhaps be
due to the fact that the image data sets used in this study included many cases with
severe calcification in the NCC. The relationship between the amount and distribution of
calcification and segmentation accuracy needs to be further investigated. For MSD and
HD, the higher accuracy of the ED phase compared to the ES phase can be explained by
the lower visualization ability for the tip of the aortic valve on CT images in the ES phase.
In the ES phase, the aortic valve is in an open position and the valve tip is fluttering due
to the blood flow, so it often appears as double or triple valve leaflets or blurred images
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on CT images. This increases the difficulty of segmentation and leads to low accuracy. As
the temporal resolution of CT scanners will be improved in the future, the difference in
accuracy between different phases will be insignificant.

For all measurement items, when the same measurement algorithms were used, there
was a strong correlation between the measurement values calculated based on the ground
truth labels and those calculated based on the segmentation results and the error rates were
less than 10%. On the other hand, there were significant fixed errors for effective Heights,
geometric Heights and the Nadir Ring Perimeter. Both effective Heights and geometric
Heights are measurement items that depend on the location of the Arantius body, so there
may be some bias in the segmentation accuracy around the Arantius body. The Nadir Ring
Perimeter is a measurement item dependent on the location of nadirs and the contour of
the LVOT region. There may be some bias in the segmentation accuracy of the LVOT region,
as fixed errors were not found in the other measurement items dependent on the location
of nadirs.

The mean absolute errors for the Nadir Ring Perimeter and Commissure Ring Perime-
ter were 4.39 mm and 3.31 mm, respectively. The most frequently used device in Tran-
scatheter Aortic Valve Implantation (TAVI) currently, SAPIEN 3(Edwards Lifesciences,
Irvine, CA, USA) has four different diameter sizes: 20, 23, 26, and 29 mm [22], while the
EvolutTM R (Medtronic plc, Minneapolis, MN, USA) also has four different sizes: 23, 26,
29 and 34 mm [23]. This means that the closest size devices differ by is 3 mm in diameter,
which means a difference of about 9.42 mm in perimeter. The facts that the mean absolute
errors between the ground truth based- and segmentation result based- measurement
values for the Nadir Ring Perimeter and for Commissure Ring Perimeter were less than
9.42 mm may suggest that our proposed method is clinically usable.

The development of an automatic aortic valve measurement application based on
our method will allow users to obtain aortic valve morphology information more quickly
without inter-user variability for treatment planning. In addition, segmentation results
of each valve component can also be used as input data for other techniques to assist in
treatment planning, such as the creation of 3D heart valve models by a 3D printer [24,25]
and simulation of valve structure and fluid flow [26].

This paper contains the following limitations.
Our method does not support cases with bicuspid valves, which occur with a frequency

of about 0.8% [27], as our method always outputs three labels as cusp components. There
was difficulty in collecting a sufficient number of CT images with bicuspid valves to develop
the learning model that would support bicuspid valve cases. In addition, in order to support
both bicuspid and tricuspid valve cases, it is necessary to develop a new algorithm that can
dynamically change the number of components to be outputted depending on the target
organ conditions.

Our method does not support cases with holes or cases in which the insertion line is
disconnected from the vessel wall, as our post-processing modifies them. If a more accurate
learning model can be developed, this problem can be solved by removing post-processing
from the algorithm.

Our method is only supported for the ES and ED phases as our learning model does
not learn the morphology of phases other than the ES and ED. This is the result of us
not being able to create accurate GTs for these phases due to motion artifacts caused by
valve movement. Segmentations for the ES and ED phases may be sufficient if only the
valve morphology information is needed for treatment planning. On the other hand, it is
not sufficient to obtain accurate valve movement information. If the CT scanner can be
developed to take CT images without valve motion artifacts for all phases, our method will
be able to support all phases by learning the valve morphology information of other phases.

The use of our method in a real clinical situation requires a manual task to identify the
ES and ED phases with low valve motion artifacts. It may be possible to identify this auto-
matically by estimating the cardiac phase using information from the DICOM header and
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LV volumes calculated based on previous studies [28,29], and obtaining information about
valve motion artifacts using simple image processing techniques such as Hessian filter.

All GTs were approved by one physician only. There may be value in creating the GTs
from multiple physicians to test whether our segmentation results fall within the range of
physician variability. On the other hand, it may not be a major problem that the GT is based
on only a single physician, since several studies have shown that the measurement of valve
morphology on CT images before TAVI has a small interobserver variability [30,31].

The performance of our method has not been directly compared to the performance
reported in previous studies using the same CT datasets. In addition, although U-Net has
been used as the segmentation network in the proposed method, we have not compared its
performance with other networks.

5. Conclusions

We developed an automatic segmentation method for aortic valve cusps from CT
images using the deep learning-based algorithm that is cascaded multiple networks. Our
method will provide more visual information regarding the morphology of the aortic valve,
so it will support the development of a more accurate and detailed surgical plan. We also
investigated the impact of segmentation results on various measurement values, which
suggest that our method can be used to obtain measurement values automatically. The
automatic measurement of aortic valve morphology is expected to reduce the labor required
by physicians and radiological technologists for aortic valve treatment planning, and to
enable more accurate and consistent treatment planning by acquiring information without
user variation.

In future work, we will consider solutions to the above-mentioned limitations and
conduct clinical studies, such as comparing the intraoperative direct observation and
the manual measurements by physicians with the automatic measurements by our pro-
posed method, in order to more concretely verify the clinical effectiveness and risks of the
proposed method.
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Appendix A

Figure A1 shows scatterplots for correlation between the G-based values and S-based
values, for each measurement item. The G-based values were plotted on the x-axis, and
S-based values were plotted on the y-axis.

Figure A1. Cont.



J. Imaging 2022, 8, 11 15 of 18

Figure A1. Scatterplots for correlation for each measurement item: (a) effective Height in RCC,
(b) effective Height in LCC, (c) effective Height in NCC, (d) geometric Height in RCC, (e) geometric
Height in LCC, (f) geometric Height in NCC, (g) cusp insertion Length in RCC, (h) cusp insertion
Length in LCC, (i) cusp insertion Length in NCC, (j) Free Margin Length in RCC, (k) Free Margin
Length in LCC, (l) Free Margin Length in NCC, (m) commissural Distance in RL-RN, (n) commissural
Distance in RL-LN, (o) commissural Distance in LN-RN, (p) Nadir Ring Perimeter, (q) Commissure
Ring Perimeter, (r) Coronary Height right, (s) Coronary Height right left.

Figure A2 shows Bland–Altman plots for each measurement item. Mean of the G-
based and S-based values were plotted on the x-axis, and the differences between their
values were plotted on the y-axis.
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Figure A2. Cont.
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Figure A2. Bland–Altman plots for each measurement item: (a) effective Height in RCC, (b) effective
Height in LCC, (c) effective Height in NCC, (d) geometric Height in RCC, (e) geometric Height in
LCC, (f) geometric Height in NCC, (g) cusp insertion Length in RCC, (h) cusp insertion Length in
LCC, (i) cusp insertion Length in NCC, (j) Free Margin Length in RCC, (k) Free Margin Length in
LCC, (l) Free Margin Length in NCC, (m) commissural Distance in RL-RN, (n) commissural Distance
in RL-LN, (o) commissural Distance in LN-RN, (p) Nadir Ring Perimeter, (q) Commissure Ring
Perimeter, (r) Coronary Height right, (s) Coronary Height right left. Red dashed lines indicate the
mean of the difference, the Green dashed lines indicate the 1.96 SD intervals as the limits of agreement.
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