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Microbial biogeography of 925 geothermal springs
in New Zealand
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Geothermal springs are model ecosystems to investigate microbial biogeography as

they represent discrete, relatively homogenous habitats, are distributed across multiple

geographical scales, span broad geochemical gradients, and have reduced metazoan inter-

actions. Here, we report the largest known consolidated study of geothermal ecosystems to

determine factors that influence biogeographical patterns. We measured bacterial and

archaeal community composition, 46 physicochemical parameters, and metadata from

925 geothermal springs across New Zealand (13.9–100.6 °C and pH < 1–9.7). We determined

that diversity is primarily influenced by pH at temperatures <70 °C; with temperature only

having a significant effect for values >70 °C. Further, community dissimilarity increases with

geographic distance, with niche selection driving assembly at a localised scale. Surprisingly,

two genera (Venenivibrio and Acidithiobacillus) dominated in both average relative abundance

(11.2% and 11.1%, respectively) and prevalence (74.2% and 62.9%, respectively). These

findings provide an unprecedented insight into ecological behaviour in geothermal springs,

and a foundation to improve the characterisation of microbial biogeographical processes.
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B iogeography identifies patterns of diversity across defined
spatial or temporal scales in an attempt to describe the
factors which influence these distributions. Recent studies

have shown that microbial community diversity is shaped across
time and space1,2 via a combination of environmental selection,
stochastic drift, diversification, and dispersal limitation3,4. The
relative impact of these ecological drivers on diversity is the
subject of ongoing debate, with differential findings reported
across terrestrial, marine, and human ecosystems5–8.

Geothermally-heated springs are ideal systems to investigate
microbial biogeography, because, in comparison to terrestrial
environments, they represent discrete, aquatic habitats with broad
geochemical and physical gradients distributed across proximal
and distal geographic distances. The relatively constrained
microbial community structures, typical of geothermal springs
compared to soils and sediments, also allow for the robust
identification of diversity trends. Separate studies have
each implicated temperature9–11, pH12, and seasonality13 as the
primary drivers of bacterial and archaeal communities in these
ecosystems; with niche specialisation observed within both local
and regional populations14,15. Other geochemical variables, par-
ticularly hydrogen16,17 and nitrogen18,19, may also contribute to
community structure. Concurrently, the stochastic action of

microbial dispersal is thought to be a significant driver behind the
distribution of microorganisms20, with endemism and allopatric
speciation reported in intercontinental geothermal springs21,22. It
is important to note that significant differences have been found
between aqueous and soil/sediment samples from the same
springs10,12,23; emphasising that the increased relative homo-
geneity of aqueous samples make geothermal water columns
excellent candidate environments for investigating large-scale
taxa–geochemical associations. Despite these findings, a lack of
sampling quantity/density and physicochemical gradient scales,
uniformity in sampling methodology, and a concurrent assess-
ment of geographic distance, within a single study, has hindered a
holistic view of microbial biogeography from developing.

The Taupō Volcanic Zone (TVZ) is a region rich in geothermal
springs and broad physicochemical gradients spanning 8000 km2

in New Zealand’s North Island (Fig. 1), making it a tractable
model system for studying microbial biogeography. The area is a
rifting arc associated with subduction at the Pacific-Australian
tectonic plate boundary, resulting in a locus of intense magma-
tism24. The variable combination of thick, permeable volcanic
deposits, high heat flux, and an active extensional (crustal
thinning) setting favours the deep convection of groundwater
and exsolved magmatic volatiles that are expressed as
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Fig. 1 Map of the Taupō Volcanic Zone (TVZ), New Zealand. The geothermal fields from which samples were collected are presented in yellow. All
sampled geothermal springs (n= 1019) are marked by red circles. The panel insert highlights the location of the TVZ in the central north island of New
Zealand. The topographic layers for this map were obtained from Land Information New Zealand (LINZ; CC-BY-4.0) and the TVZ boundary defined using
data from Wilson et al.24
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physicochemically-heterogeneous surface features in geo-
graphically distinct geothermal fields25. Previous microbiological
studies across the region have hinted at novel diversity and
function present within some of these features26–30, however
investigations into the biogeographical drivers within the TVZ are
sparse and have focused predominantly on soil/sediments or
individual hotsprings9,11,31.

Here, we report the diversity and biogeography of microbial
communities found in geothermal springs, collected as part of the
1000 Springs Project. This project aimed to catalogue the
microbial biodiversity and physicochemistry of New Zealand
geothermal springs to serve as a conservation, scientific, and
indigenous cultural knowledge repository; a publicly accessible
database of all springs surveyed is available online (http://
1000Springs.org.nz). In order to determine the influence of bio-
geographical processes on bacterial and archaeal diversity and
community structure within geothermal springs, we collected
water-columns and metadata from 1019 spring samples within
the TVZ over a 21-month period using rigorously standardised
methodologies. We then performed community analysis of the
bacterial and archaeal population (16S rRNA gene amplicon
sequencing) and quantified 46 physicochemical parameters for
each sample. This work represents the largest known microbial
ecology study on geothermal aquatic habitats at a regional scale
and complements a parallel study on protist diversity in New
Zealand geothermal springs32. Our results demonstrate both the
relative influence of physicochemical parameters (e.g. pH) and
the effect of geographic isolation on the assemblage of commu-
nities in these extreme ecosystems. Collectively, these findings
expand our knowledge of the constraints that govern universal
microbial biogeographical processes.

Results and Discussion
Geothermal feature sampling. Recent biogeography research has
demonstrated that microbial diversity patterns are detectable and
are influenced by both deterministic6 and stochastic processes7. A
lack of consensus on the relative impact of these factors, however,
has been exacerbated by the absence of data across broad phy-
sicochemical gradients, and sampling scales and density across
both geographic distance and habitat type. The inherent hetero-
geneity of terrestrial soil microbial ecosystems33 further con-
founds attempts to distinguish true taxa–geochemical
associations. To provide greater resolution to the factors driving
microbial biogeography processes, we collected 1019 geothermal
water-column samples from across the TVZ and assessed phy-
sicochemical and microbial community composition (Fig. 1).
Samples included representatives of both extreme pH (< 0–9.7)
and temperature (13.9–100.6 °C) (Supplementary Fig. 1). The
filtering of low-quality and temporal samples yielded a final data
set of 925 individual geothermal springs for spatial-statistical
analysis (details can be found in Supplementary Methods). From
these 925 springs, a total of 28,381 operational taxonomic units
(OTUs; 97% similarity) were generated for diversity studies.

Microbial diversity is principally driven by pH, not tempera-
ture. Reduced microbial diversity in geothermal springs is often
attributed to the extreme environmental conditions common to
these areas. Temperature and pH are reported to be the pre-
dominant drivers of microbial diversity9,34, but their influence
relative to other parameters has not been investigated over large
geographic and physicochemical scales with appropriate sample
density. Our analysis of microbial richness and diversity showed
significant variation spanning pH, temperature, and geographical
gradients within the TVZ (richness: 49–2997 OTUs, diversity:
1.1–7.3 Shannon index; Supplementary Figs. 2 and 3). As

anticipated, average OTU richness (386 OTUs; Supplementary
Fig. 4) was reduced in comparison to studies of non-geothermal
temperate terrestrial35 and aquatic1 environments. Further, OTU
richness was maximal at the geothermally-moderate temperature
of 21.5 °C and at circumneutral pH 6.4. This is consistent with the
hypothesis that polyextreme habitats prohibit the growth of most
microbial taxa, a trend reported in both geothermal and non-
geothermal environments alike5,9. A comparison of 46 individual
physicochemical parameters (Supplementary Table 1) confirmed
pH as the most significant factor influencing diversity (16.4%,
linear regression: P < 0.001; Supplementary Fig. 3), with diversity
increasing from acidic to alkaline pH. Further, multiple regression
analysis showed NO�

3 , turbidity (TURB), oxidation–reduction
potential (ORP), dissolved oxygen (dO), NO�

2 , Si, and Cd also
had meaningful contributions (Supplementary Table 2). Cumu-
latively, along with pH, these factors accounted for 26.6% of the
observed variation in Shannon diversity. Correlation of pH with
Shannon index (Pearson’s coefficient: |r|= 0.41, P < 0.001) and
significance testing between samples binned by pH increments
(Kruskal–Wallis: H= 179.4, P < 0.001; Supplementary Fig. 1)
further confirmed pH as a major driver of variation in alpha
diversity. This finding is consistent with reports of pH as the
primary environmental predictor of microbial diversity in several
ecosystems, both in New Zealand and globally (e.g. soil5,36,
water32,37, alpine38,39).

It has been previously hypothesised that pH has significant
influence on microbial community composition because changes
in proton gradients will drastically alter nutrient availability,
metal solubility, or organic carbon characteristics5. Similarly,
acidic pH will also reduce the number of taxa observed due to the
decreased number that can physiologically tolerate these condi-
tions40 compared to non-acidic habitats. Here, we demonstrate
that pH had the most significant effect on diversity across all
springs measured, but due to our high sampling frequency, we see
this influence diminishes at temperatures > 70 °C (Fig. 2).
Inversely, the effect of temperature on diversity was lessened in
springs where pH was < 4 (Supplementary Fig. 5). There is some
evidence that suggests thermophily predates acid tolerance40,41,
thus it is possible the added stress of an extreme proton gradient
across cell membranes has constrained the diversification of the
thermophilic chemolithoautotrophic organisms common to these
areas42. Indeed, a recent investigation of thermoacidophily in
Archaea suggests hyperacidophily (growth < pH 3.0) may have
only arisen as little as ~0.8 Ga40, thereby limiting the opportunity
for microbial diversification; an observation highlighted by the
paucity of these microorganisms in extremely acidic geothermal
ecosystems11,40. It is also important to note that salinity has
previously been suggested as an important driver of microbial
community diversity43,44. The quantitative data in this study
showed only minimal influence of salinity (proxy as conductivity
(COND)) on diversity (linear regression: R2 = 0.001, P =
0.2720; Supplementary Table 1), bearing in mind that the
majority of the geothermal spring samples in this study had
salinities substantially less than that of seawater.

The relationship between temperature and alpha diversity
reported in this research starkly contrasts a previous interconti-
nental study comparing microbial community diversity in soil/
sediments from 165 geothermal springs9, which showed that a
strong relationship (R2= 0.40–0.44) existed. In contrast, our data
across the entire suite of samples, revealed that temperature had
no significant influence on observed community diversity (R2=
0.002, P= 0.201; Supplementary Fig. 3, Supplementary Table 1).
This result increased marginally for archaeal-only diversity (R2=
0.013, P= 0.0005), suggesting that temperature has a more
profound effect on this domain than it does on bacteria. However,
the primers used in this study are known to be unfavourable
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towards some archaeal clades45, therefore it is likely that
extensive archaeal diversity remains undetected in this study.
The lack of influence of temperature on whole community
diversity was further substantiated via multiple linear modelling
(Supplementary Table 2), and significance and correlation testing
(Kruskal–Wallis: H= 16.2, P= 0.039; Pearson’s coefficient:
|r|= 0.04, P= 0.201). When samples were split into pH
increments, like Sharp et al.9, we observed increasing temperature
only significantly constrained diversity above moderately acidic
conditions (pH > 4; Supplementary Fig. 5). However, the
magnitude of this effect was, in general, far less than previously
reported and is likely a consequence of the sample type (e.g. soil/
sediments versus aqueous) and density of samples processed12.
Many samples from geothermal environments are recalcitrant to
traditional DNA extraction protocols and research in these areas

has therefore focused on those with greater biomass
abundance9,34 (i.e. soils, sediments, streamers, or biomats).
Whereas aqueous samples typically exhibit a more homogenous
chemistry and community structure, the heterogeneity of
terrestrial samples is known to affect microbial population (e.g.
particle size, depth, nutrient composition)33. Our deliberate use of
aqueous samples extends the results of previous small-scale
work10,31 and also permits the robust identification of genuine
taxa–geochemical relationships in these environments.

Microbial communities are influenced by pH, temperature,
and source fluid. Throughout the TVZ, beta diversity correlated
more strongly with pH (Mantel: ρ= 0.54, P < 0.001) than with
temperature (Mantel: ρ= 0.19, P < 0.001; Fig. 2, Supplementary
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Table 3). This trend was consistent in pH- and temperature-
binned samples (ANOSIM: |R|= 0.46 and 0.18, respectively, P
< 0.001; Supplementary Fig. 6); further confirming pH, more so
than temperature, accounted for observed variations in beta
diversity. Congruent with our finding that pH influences alpha
diversity at lower temperatures (< 70 °C), the effect of tem-
perature reducing beta diversity had greater significance above
80 °C (Wilcox: P < 0.001; Supplementary Fig. 6). The extent of
measured physicochemical properties across 925 individual
habitats, however, allowed us to explore the environmental

impact on community structures beyond just pH and tem-
perature. Permutational multivariate analysis of variance in
spring community assemblages showed that pH (12.4%) and
temperature (3.9%) had the greatest contribution towards beta
diversity, followed by ORP (1.4%), SO2�

4 (0.8%), TURB (0.8%),
and As (0.7%) (P < 0.001; Supplementary Table 4). Interest-
ingly, constrained correspondence analysis of the 15 most
significant, non-collinear, and variable parameters (Supple-
mentary Tables 4 and 5; pH, temperature, TURB, ORP, SO2�

4 ,
NO�

3 , As, NHþ
4 , HCO�

3 , H2S, COND, Li, Al, Si, and PO3�
4 ),
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along with geothermal field locations, only explained 10% of
variation in beta diversity (Fig. 3), indicating physicochemistry,
or at least the 46 parameters measured, were not the sole
drivers of community composition.

Geothermal fields are known to express chemical signatures
characteristic of their respective source fluids46, implying
autocorrelation could occur between location and geochemistry.
We therefore investigated whether typical geochemical condi-
tions exist for springs within the same geothermal field and
whether specific microbial community assemblages could be
predicted. Springs are usually classified according to these source
fluids; alkaline-chloride or acid-sulfate. High-chloride features
are typically sourced from magmatic waters and have little
interaction with groundwater aquifers. At depth, water–rock

interactions can result in elevated bicarbonate concentrations
and, consequently, neutral to alkaline pH in surface features.
Acid-sulfate springs (< pH 3), in contrast, form as steam-heated
groundwater couples with the eventual oxidation of hydrogen
sulfide into sulfate (and protons). Rarely, a combination of the
two processes can occur; leading to intermediate pH values47. It
is unknown, however, whether these source fluid characteristics
are predictive of their associated microbial ecosystems.
Bray–Curtis dissimilarities confirmed that, like alpha diversity
(Kruskal–Wallis: H= 240.7, P < 0.001; Fig. 4), community
structures were significantly different between geothermal fields
(ANOSIM: |R|= 0.26, P < 0.001; Supplementary Fig. 7). Gradi-
ent analysis comparing significant geochemical variables and
geography further identified meaningful intra-geothermal field
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clustering of microbial communities (95% CI; Fig. 3 and
Supplementary Fig. 8). Further, characteristic geochemical
signatures from these fields were identified and analysis suggests
they could be predictive of community composition. For
example, the Rotokawa and Waikite geothermal fields (approx.
35 km apart) (Fig. 3 position N and F) display opposing ratios of
HCO�

3 , SO2�
4 , and Cl−, with corresponding microbial

communities for these sites clustering independently in ordina-
tion space. Despite this association, intra-field variation in both
alpha and beta diversity also occurred at other geothermal sites
where geochemical signatures were not uniform across local
springs (e.g. Rotorua, Fig. 3 position D), demonstrating that
correlation does not necessarily always occur between locational
proximity and physicochemistry.
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Aquificae and Proteobacteria are abundant and widespread. To
determine whether individual microbial taxa favoured particular
environmental conditions and locations, we first assessed the
distribution of genera across all individual springs. Within 17
geothermal fields and 925 geothermal features, 21 phyla were
detected with an average relative abundance > 0.1% (Fig. 5). We
found that two phyla and associated genera, Proteobacteria
(Acidithiobacillus spp.) and Aquificae (Venenivibrio, Hydro-
genobaculum, Aquifex spp.), dominated these ecosystems (65.2%
total average relative abundance across all springs), composing
nine of the 15 most abundant genera > 1% average relative
abundance (Table 1). Considering the broad spectrum of geo-
thermal environmental conditions sampled in this study (we
assessed microbial communities in springs across a pH gradient
of nine orders of magnitude and a temperature range of ~87 °C)
and the prevalence of these taxa across the region, this result was
surprising. Proteobacteria was the most abundant phylum across
all samples (34.2% of total average relative abundance; Table 1),
found predominantly at temperatures less than 50 °C (Supple-
mentary Fig. 9). Of the 19 most abundant proteobacterial genera
(average relative abundance > 0.1%), the majority are char-
acterised as aerobic chemolithoautotrophs, utilising either sulfur
species and/or hydrogen for metabolism. Accordingly, the most
abundant (11.1%) and prevalent (62.9%) proteobacterial genus
identified was Acidithiobacillus48, a mesophilic-moderately ther-
mophilic, acidophilic autotroph that utilises reduced sulfur
compounds, iron, and/or hydrogen as energy for growth.

Aquificae (order Aquificales) was the second most abundant
phylum overall (31% average relative abundance across
925 springs) and included three of the four most abundant
genera; Venenivibrio, Hydrogenobaculum, and Aquifex (11.2%,
10.0%, and 8.6%, respectively; Table 1). As Aquificae are
thermophilic (Topt 65–85 °C)49, they were much more abundant
in warmer springs (> 50 °C; Supplementary Fig. 9). The minimal
growth temperature reported for characterised Aquificales species
(Sulfurihydrogenibium subterraneum and Sulfurihydrogenibium
kristjanssonii)49 is 40 °C and may explain the low Aquificae
abundance found in springs less than 50 °C. Terrestrial Aquificae
are predominately microaerophilic chemolithoautotrophs that
oxidise hydrogen or reduced sulfur compounds; heterotrophy is
also observed in a few representatives49. Of the 14 currently
described genera within the Aquificae, six genera were relatively
abundant in our dataset (average relative abundance > 0.1%;
Fig. 5): Aquifex, Hydrogenobacter, Hydrogenobaculum and

Thermocrinis (family Aquificaceae), and Sulfurihydrogenibium
and Venenivibrio (family Hydrogenothermaceae). No signatures
of the Desulfurobacteriaceae were detected and is consistent with
reports that all current representatives from this family are
associated with deep-sea or coastal thermal vents49. Venenivibrio
(OTUs; n= 111) was also the most prevalent and abundant genus
across all communities (Table 1). This taxon, found in 74.2%
(n= 686) of individual springs sampled, has only one cultured
representative, Venenivibrio stagnispumantis (CP.B2T), which
was isolated from the Waiotapu geothermal field in the TVZ29.
The broad distribution of this genus across such a large number
of habitats was surprising, as growth of the type strain is only
supported by a narrow set of conditions (pH 4.8–5.8, 45–75 °C).
Considering this, and the number of Venenivibrio OTUs detected,
we interpret this result as evidence there is substantial
undiscovered phylogenetic and physiological diversity within
the genus. The ubiquity of Venenivibrio suggests that either the
metabolic capabilities of this genus extend substantially beyond
those described for the type strain, and/or that many of the
divergent taxa could be persisting and not growing under
conditions detected in this study30,50.

Geochemical and geographical associations exist at the genus
level. The two most abundant phyla, Proteobacteria and Aquifi-
cae, were found to occupy a characteristic ecological niche (< 50
and > 50 °C, respectively, Supplementary Fig. 9). To investigate
specific taxa–geochemical associations beyond just temperature
and pH, we applied a multivariate linear model to determine
enrichment of taxa in association with geothermal fields and
other environmental data (Fig. 5). The strongest associations
between taxa and chemistry (Z-score > 4) were between
Nitrospira–nitrate NO�

3

� �
and Nitratiruptor–phosphate PO3�

4

� �
.

Nitrospira oxidises nitrite to nitrate and therefore differential high
abundance of this taxon in nitrate-rich environments is expected.
Further, the positive Nitratiruptor–PO3�

4 relationship suggests
phosphate is a preferred nutritional requirement for this che-
molithoautotroph51 and informs future efforts to isolate members
of this genus would benefit from additional phosphate or the
presence of reduced phosphorous compounds in the culture
medium52,53. Thermus and Hydrogenobaculum were the only
bacterial taxa to differentially associate (compared to other taxa)
positively and negatively with pH respectively. This is consistent
with the lack of acidophily phenotype (pH < 4) reported in
Thermus spp.54 and conversely, the preferred acidic ecological

Table 1 Average relative abundance and prevalence of phyla and genera

Phylum Genus Abundance SD Max Prevalence

Aquificae Venenivibrio 0.112 0.231 0.968 0.742
Proteobacteria Acidithiobacillus 0.111 0.242 0.994 0.629
Aquificae Hydrogenobaculum 0.100 0.235 0.999 0.608
Aquificae Aquifex 0.086 0.212 0.971 0.497
Deinococcus-Thermus Thermus 0.025 0.071 0.732 0.552
Proteobacteria Thiomonas 0.024 0.101 0.941 0.396
Proteobacteria Desulfurella 0.022 0.067 0.758 0.497
Crenarchaeota Sulfolobaceae (f) 0.020 0.091 0.951 0.416
Euryarchaeota Thermoplasmatales (o) 0.019 0.059 0.495 0.539
Proteobacteria Thiovirga 0.015 0.077 0.816 0.374
Proteobacteria Hydrogenophilaceae (f) 0.015 0.072 0.704 0.406
Thermodesulfobacteria Caldimicrobium 0.015 0.052 0.651 0.519
Proteobacteria Hydrogenophilus 0.013 0.045 0.432 0.484
Thermotogae Mesoaciditoga 0.011 0.033 0.286 0.410
Parcubacteria Parcubacteria (p) 0.010 0.024 0.193 0.608

Only taxa above a 1% average compositional threshold are shown. Maximum abundance of each taxon within individual features and standard deviation across all 925 springs. Where taxonomy
assignment failed to classify to genus level, the closest assigned taxonomy is shown
SD = standard deviation, f = family, o = order, p = phylum
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niche of Hydrogenobaculum55. Aquifex was the only genus to
display above average association with temperature, confirming
abundance of this genera is significantly enhanced by
hyperthermophily56.

Similar to the chemical–taxa associations discussed above,
differential abundance relationships were calculated with respect
to individual geothermal fields (Fig. 5). A geothermal field, which
contains springs across the pH scale (i.e. Rotorua), was closely
associated with the highly abundant and prevalent Acidithioba-
cillus and Venenivibrio. On the other hand, a predominantly
acidic geothermal system (i.e. Te Kopia), produced the only
positive associations with “Methylacidiphilum” (Verrucomicro-
bia), Acidimicrobium (Actinobacteria), Terrimonas (Bacteroi-
detes), and Halothiobacillus (Proteobacteria). These
relationships are likely describing sub-community requirements
that are otherwise not captured by conventional spatial-statistical
analysis, therefore providing insight into previously unrecognised
microbe–niche interactions.

Distance-decay patterns differ at local and regional scales.
Environmental selection, ecological drift, diversification, and
dispersal limitation all contribute to distance-decay patterns4.
While several studies have shown microbial dispersal limitations
and distance-decay patterns exist in diverse geothermal and non-
geothermal environments (e.g. hotsprings21, freshwater streams1,
salt marshes), the point of inflection between dispersal limitation
and selection, at regional and local geographic scales, remains
under-studied. We identified a positive distance-decay trend with
increasing geographic distance between 925 geothermal spring
communities across the TVZ region (linear regression: m= 0.031,
P < 0.001; Fig. 4). This finding strongly suggests that dispersal
limitation exists between individual geothermal fields. Increasing
the resolution to within individual fields, distance-decay patterns
are negligible compared to the regional scale (Supplementary
Table 6). Interestingly, the greatest pairwise difference (y= 1)
between Bray–Curtis dissimilarities was also observed in springs
classified as geographically-adjacent (< 1.4 m). In the 293 geo-
thermal spring pairs separated by < 1.4 m, temperature had a
greater correlation with beta diversity than pH (Spearman’s
coefficient: ρ= 0.44 and 0.30, respectively, P < 0.001). This result
illustrates the stark spatial heterogeneity and selective processes
that can exist within individual geothermal fields. Congruently,
each OTU was detected in an average of only 13 springs (Sup-
plementary Fig. 4). We propose that physical dispersal within
geothermal fields is therefore not limiting, but the physico-
chemical diversity of geothermal springs acts as a barrier to the
colonisation of immigrating taxa. However, even between some
neighbouring springs with similar (95% CI) geochemical sig-
natures, we did note some dissimilar communities were observed
(for example, Waimangu geothermal field; Fig. 3 position E).
These differing observations can be explained by either one of
three ways: Firstly, the defining parameter driving community
structure was not one of the 46 physicochemical variables mea-
sured in this study (e.g. dissolved organic carbon or hydrogen);
secondly, through the process of dispersal, the differential viabi-
lity of some extremophilic taxa restricts gene flow and contributes
to population genetic drift within geothermal fields57. We often
consider “extremophilic” microorganisms living in these geo-
thermal environments as the epitome of hardy and robust. In
doing so, we overlook that their proximal surroundings (i.e.
immediately outside the host spring) may not be conducive to
growth and survival58 and therefore the divergence of populations
in neighbouring, chemically-homogenous spring ecosystems is
plausible. Thirdly, aeolian immigration20 from the non-
geothermal surrounding environment could alter the perceived

composition of a community, even when immigrants are not
competing to survive. Future work could be undertaken to
understand individual population responses to community-wide
selective pressures and the temporal nature of ecosystem
functioning.

Conclusion
This study presents data on both niche and neutral drivers of
microbial biogeography in 925 geothermal springs at a near-
national scale. Our comprehensive data set, with sufficient sam-
pling density and standardised methodology, is the first of its kind
to enable a robust spatio-chemical statistical analysis of microbial
communities at the regional level across broad physicochemical
gradients. Unequivocally, pH drives diversity and community
complexity structures within geothermal springs. This effect,
however, was only significant at temperatures < 70 °C. We also
identified specific taxa associations and finally demonstrated that
geochemical signatures can be indicative of community compo-
sition. Although a distance-decay pattern across the entire geo-
graphic region indicated dispersal limitation, the finding that 293
adjacent community pairs exhibited up to 100% dissimilarity
suggests niche selection drives microbial community composition
at a localised scale (e.g. within geothermal fields).

This research provides a comprehensive dataset that should be
used as a foundation for future studies (e.g. diversification and
drift elucidation on targeted spring taxa). It complements the
recently published Earth Microbiome Project44 by expanding our
knowledge of the biogeographical constraints on aquatic ecosys-
tems using standardised quantification of broad physicochemical
spectrums. There is also potential to use the two studies to
compare geothermal ecosystems on a global scale. Finally, our
research provides a springboard to assess the cultural, recrea-
tional, and resource development value of the microbial com-
ponent of geothermal springs, both in New Zealand and globally.
Many of the features included in this study occur on culturally-
important and protected land for Māori, therefore this or follow-
on future projects may provide an avenue for exploration of
indigenous knowledge, while assisting in conservation efforts
and/or development.

Methods
Field sampling and processing. Between July 2013 and April 2015, 1019 aqueous
samples were collected from 974 geothermal features within 18 geothermal fields in
the TVZ. A 3 L water column sample was taken (to 1 m depth where possible) from
each geothermal spring, lake, stream, or the catchment pool of geysers for
microbial and chemical analyses. Samples were collected either at the centre of the
feature or at ~3 m from the edge to target well-mixed and/or more representative
samples, depending on safety and size of the spring. Comprehensive physical and
chemical measurements, and field observational metadata were recorded con-
temporaneously with a custom-built application and automatically uploaded to a
database (Supplementary Table 7). All samples were filtered within 2 h of collection
and stored accordingly. Total DNA was extracted using a modified CTAB
method59 with the PowerMag Microbial DNA Isolation Kit using SwiftMag
technology (MoBio Laboratories, Carlsbad, CA, USA). The V4 region of the 16S
rRNA gene was amplified in triplicate using universal Earth Microbiome Project44

primers F515 (5′-GTGCCAGCMGCCGCGGTAA-3′) and R806 (5′-GGACTA
CVSGGGTATCTAAT-3′), details of which can be found in Supplementary
Methods. SPRIselect (Beckman Coulter, Brea, CA, USA) was used to purify DNA
following amplification. Amplicon sequencing was performed using the Ion PGM
System for Next-Generation Sequencing with the Ion 318v2 Chip and Ion PGM
Sequencing 400 Kits (ThermoFisher Scientific, Waltham, MA, USA).

Forty-six separate physicochemical parameters were determined for each
geothermal spring sample collected. Inductively coupled plasma–mass
spectrometry (ICP-MS) was used to determine the concentrations of aqueous
metals and non-metals (31 species; a full list is provided in Supplementary Table 7),
and various UV–vis spectrometry methods were used to determine aqueous
nitrogen species (NHþ

4 , NO
�
3 , NO

�
2 ), Fe

2+, and PO3�
4 , with H2S, HCO�

3 , and Cl−

determined via titration, and SO4
2– concentration measured via ion

chromatography (IC). COND, dO, ORP, pH, and TURB were determined using a
Hanna Instruments (Woonsocket, RI, USA) multiparameter fieldmeter at room
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temperature. Spring temperature (TEMP) was measured in situ immediately after
sampling, using a Fluke 51-II thermocouple (Fluke, Everett, WA, USA).

Expanded details on sampling procedures, sample processing, and protocols for
DNA extraction, DNA amplification, and chemical analyses can be found in
Supplementary Methods and Supplementary Table 7.

DNA sequence processing. DNA sequences were processed through a custom
pipeline utilising components of UPARSE60 and QIIME62. An initial screening step
was performed in mothur63 to remove abnormally short (< 275 bp) and long
(> 345 bp) sequences. Sequences with long homopolymers (> 6) were also removed.
A total of 47,103,077 reads were quality filtered using USEARCH v761 with a
maximum expected error of 1% (fastq_maxee= 2.5) and truncated from the for-
ward primer to 250 bp. Retained sequences (85.4% of initial reads) were derepli-
cated and non-unique sequences removed. Next, reads were clustered to 97%
similarity and chimera checked using the cluster_otus command in USEARCH,
and a de novo database was created of representative OTUs. 93.2% of the original
pre-filtered sequences (truncated to 250 bp) mapped to these OTUs, and taxonomy
was assigned using the Ribosomal Database Project Classifier64 (with a minimum
confidence score of 0.5) against the SILVA 16S rRNA database (123 release, July
2015)65. The final read count was 43,202,089, with a mean of 43,905 reads per
sample. Chloroplasts and mitochondrial reads were removed (1.0% and 0.5%,
respectively of the final read count) and rarefaction was performed to 9500 reads
per sample. As a consequence, 94 samples were then removed from the dataset
(this included a set of samples collected temporally), leaving a final number of 925
individual samples (see Supplementary Methods). This QC screen also resulted in
the removal of one geothermal field from the study (n= 17).

Statistical analyses. All statistical analyses and visualisation were performed in
the R environment66 using phyloseq67, vegan68, and ggplot269 packages. Alpha
diversity was calculated using the estimate_richness function in phyloseq. A series
of filtering criteria were applied to the 46 geochemical parameters measured in this
study to identify metadata that significantly correlated with alpha diversity in these
spring communities. First, collinear variables (Pearson correlation coefficient |r| >
0.7) were detected70. The best-fit linear regression between alpha diversity (using
Shannon’s index) and each variable was used to pick a representative from each
collinear group. This removed variables associated with the same effect in diversity.
Multiple linear regression was then applied to remaining variables, before and after
a stepwise Akaike information criterion (AIC) model selection was run71. Samples
were also binned incrementally by pH (single pH units), temperature (10 °C
increments) and geographic ranges (geothermal field) (Supplementary Fig. 1), with
non-parametric Kruskal–Wallis (H) testing performed to identify any significant
differences between groups. Finally, correlation of pH and temperature against
Shannon diversity was calculated using Pearson’s coefficient |r|.

Bray–Curtis dissimilarity was used for all beta diversity comparisons. For
ordination visualisations, a square-root transformation was applied to OTU relative
abundances prior to non-metric multidimensional scaling (k= 2) using the
metaMDS function in the vegan package. ANOSIM (|R|) was used to compare beta
diversity across the same pH, temperature, and geographic groups (i.e. geothermal
fields) used for alpha diversity analyses, followed by pairwise Wilcox testing with
Bonferroni correction to highlight significance between individual groups. Linear
regression was applied to pairwise geographic distances against spring community
dissimilarities to assess the significance of distance-decay patterns. These
comparisons were similarly performed on spring communities constrained to each
geothermal field. A second series of filtering criteria was applied to geochemical
parameters to identify metadata that significantly correlated with beta diversity.
Mantel tests were performed between beta diversity and all 46 physicochemical
variables using Spearman’s correlation coefficient (ρ) with 999 permutations. In
decreasing order of correlation, metadata were added to a PERMANOVA analysis
using the adonis function in vegan. Metadata significantly correlating with beta
diversity (P < 0.01) was assessed for collinearity using Pearson’s coefficient |r|70. In
each collinear group (|r| > 0.7), the variable with the highest mantel statistic was
chosen as the representative. Low variant geochemical variables (SD < 0.25 ppm)
were then removed to allow a tractable number of explanatory variables for
subsequent modelling. Constrained correspondence analysis (using the cca
function in vegan) was then applied to OTUs, geothermal field locations, and
the reduced set of metadata. OTUs were first agglomerated to their respective
genera (using the tax_glom function in phyloseq) and then low abundant taxa
(< 0.7% of total mean taxon abundance) were removed. Typical geochemical
signatures within each geothermal field were used to produce ternary diagrams of
Cl−, SO2�

4 andHCO�
3 ratios using the ggtern package72.

Finally, to detect significant associations between taxa, geochemistry, and other
metadata (i.e. geothermal field observations), a multivariate linear model was
applied to determine log enrichment of taxa using edgeR73. To simplify the display
of taxonomy in this model, we first agglomerated all OTUs to their respective
genera or closest assigned taxonomy group (using the tax_glom function in
phyloseq), and then only used taxa present in at least 5% of samples and > 0.1%
average relative abundance. Log fold enrichments of taxa were transformed into
Z-scores and retained if absolute values were > 1.96. Results were visualised using
ggtree74. A phylogenetic tree was generated in QIIME by confirming alignment of
representative OTU sequences using PyNAST75, filtering the alignment to remove

positions which were gaps in every sequence and then building an approximately
maximum-likelihood tree using FastTree76 with a midpoint root.

Code availability. All code used for statistics and figures is available through
GitLab (https://gitlab.com/morganlab/collaboration-1000Springs/1000Springs).

Data availability. Raw sequences have been deposited into the European
Nucleotide Archive (ENA) under study accession number PRJEB24353. A query-
able website for the 1000 Springs Project is available at the URL: http://1000springs.
org.nz. Other relevant data supporting the findings of the study are available in this
article and its Supplementary Information files, or from the corresponding authors
upon request.
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