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Abstract: Background: Human Leucocyte Antigens (HLA) represent the genetic loci most strongly
linked to Multiple Sclerosis (MS). Apart from HLA-DR and HLA–DQ, HLA-DP alleles have been
previously studied regarding their role in MS pathogenesis, but to a much lesser extent. Our objective
was to investigate the risk/resistance influence of HLA-DPB1 alleles in Hellenic patients with early-
and adult-onset MS (EOMS/AOMS), and possible associations with the HLA-DRB1*15:01 risk allele.
Methods: One hundred MS-patients (28 EOMS, 72 AOMS) fulfilling the McDonald-2010 criteria
were enrolled. HLA genotyping was performed with standard low-resolution Sequence-Specific
Oligonucleotide techniques. Demographics, clinical and laboratory data were statistically processed
using well-defined parametric and nonparametric methods and the SPSSv22.0 software. Results:
No significant HLA-DPB1 differences were found between EOMS and AOMS patients for 23 distinct
HLA-DPB1 and 12 HLA-DRB1 alleles. The HLA-DPB1*03 allele frequency was found to be significantly
increased, and the HLA-DPB1*02 allele frequency significantly decreased, in AOMS patients compared
to controls. The HLA-DPB1*04 allele was to be found significantly decreased in AOMS and EOMS
patients compared to controls. Conclusions: Our study supports the previously reported risk
susceptibility role of the HLA-DPB1*03 allele in AOMS among Caucasians. Additionally, we report
for the first time a protective role of the HLA-DPB1*04 allele among Hellenic patients with both EOMS
and AOMS.
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1. Introduction

Multiple sclerosis (MS) is considered a complex, multifactorial disease entity, as both environmental
and genetic factors have been implicated in its pathogenesis [1]. The Major Histocompatibility Complex
(MHC) represents a cluster of highly polymorphic genes, including mainly the Human Leukocyte
Antigens (HLA) system, namely Class I (A, B, C) and II (DR, DQ, DP) genes, and genes encoding
for some other immune factors, like complement components, Bf, C2, C4 and TNF, in Class III and
IV loci [2]. HLA molecules mediate antigen presentation to T-lymphocytes, playing a crucial role in
immune response and affecting all clinical and neuroimaging characteristics and response to treatment
in MS [3,4]. Linkage studies in various populations have consistently demonstrated that the MHC and
its polymorphisms represent the genetic locus most strongly linked to MS [3–5], and that the MHC
class II (HLA-DR, HLA-DQ, HLA-DP) region is the susceptibility complex that accounts for the majority
of familial clustering in MS [6].

The MHC class II linkage to MS differs in various populations, with the highest association
conferred by the HLA-DRB1*15:01/HLA-DQB1*06:02 haplotype, present in Caucasians [5]. In 2011, in
a collaborative European study, the HLA-DRB1*15:01 allele exhibited the strongest association with
MS, along with the HLA-DRB1* 03:01 and HLA-DRB1*13:01 alleles [7], although DRB1*15:01 was
recently found to be hypomethylated and predominantly expressed in monocytes among carriers of
DRB1*15:01, suggesting putative therapeutic strategies targeting methylation-mediated regulation of
this major risk gene [8].

Recent studies have further established the role of HLA-DRB1*15:01 in early-onset (pediatric and
adolescent) MS (EOMS), which accounts for 3–5% of all MS cases, while the role of HLA-DRB1*04 and
HLA-DRB1*03 remains to be clarified [9–11].

Apart from the well examined HLA-DR and HLA-DQ genes, other class II genes and their products,
HLA-DP alleles, have been previously studied regarding their role in MS pathogenesis. One of the
earliest studies regarding HLA-DP genotyping was performed three decades ago using a small sample
of 45 Swedish patients with MS in comparison with 166 Danish controls [12]. Since then, few studies
have been published on the role of the HLA- DPB1 locus concerning genetic risk in adult-onset MS
(AOMS), either in Asian [13–16] or European populations [17–21], and no such studies have been
performed on EOMS. In 2013, Patsopoulos et al. used single nucleotide polymorphisms (SNP) data from
genome-wide studies and tested classical alleles and polymorphisms in eight classical HLA genes in
5091 AOMS cases and 9595 controls [22]. Among a total of 11 identified statistically independent effects,
they confirmed a possible association of HLA-DPB1*03:01, and also highlighted a more statistically
significant effect at amino acid position 65 in the peptide binding groove of HLA-DPB1* [22]. So far,
HLA-DPB1* alleles have been mainly correlated with neuromyelitis optica spectrum disorders (NMOSD)
in Asian but not Caucasian populations [23], while a series of studies suggest a possible role in other
autoimmune disorders as well, including juvenile idiopathic arthritis [24], type I diabetes [25] and
atopic myelitis in Japanese [26].

The present study attempts to expand the existing data on HLA and MS by investigating the
influence of HLA-DPB1* alleles on disease risk and resistance in a Hellenic sample of 100 patients of
both EOMS and AOMS, using healthy controls (HC) for comparisons, given the pre-existing difference
in HLA-DRB1 allele frequencies in EOMS and AOMS in our ethnic group [11] and the total absence of
information on HLA-DPB1 genotyping in the Hellenic MS population.

Additionally, we examined, the putative positive or negative association between the well-defined
HLA-DRB1*15:01 allele and the various HLA-DPB1* alleles, given the extensive epistatic mechanisms
that exist in HLA loci, as clearly illustrated in previous reports [12,19,27,28].
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2. Materials and Methods

2.1. Patients

One hundred patients with MS (62 females, 38 males, mean age 36.9 ± 11.4 years old) were
selected, fulfilling the McDonald criteria for MS diagnosis [29]. These patients were enrolled from the
outpatient clinic at the Neurology Department of the Aeginition University Hospital (Athens, Greece)
after providing written informed consent. The study received ethical approval by the Hospital’s Ethics
Committee (ethic approval code number: 117/2-4-13), as it was found consistent with the Declaration
of Helsinki. At the time this study, 42 patients had the relapsing-remitting type of the disease (RRMS),
and 10 patients were identified with primary progressive MS (PPMS), while the rest had the secondary
progressive type (SPMS). For all patients, the mean age of disease onset was 27.8 ± 10.8 years old,
the mean disease duration was 100.9 ± 80.4 months and the median Expanded Disability Status Scale
(EDSS) was 3.0 (range:1.0–8.0) [30]. There were two MS onset groups; 28 in the ≤19 years old or
early onset MS (EOMS) group and 72 in the >19 years old or adult onset MS (AOMS) group. Valid
Magnetic Resonance Imaging (MRI) and cerebrospinal fluid (CSF) (i.e., presence of oligoclonal bands
and IgG index calculation) assessments were available 60 (60%) of the patients. Missing data for MRIs
were attributed to the lack of recent MRI scans. With regards to CSF, some but not all patients had
been subjected to CSF analysis, since this was not a prerequisite for the MS diagnosis, according to
the revised 2010 McDonald criteria [29]. All patients provided informed consent for participation
and publication.

2.2. HLA-DPB1* and HLA-DRB1* Genotyping

HLA genotyping was performed at the Immunogenetics Laboratory of the 1st Department of
Neurology, in Aeginition Hospital. High molecular weight DNA was extracted from peripheral blood
samples (8 mL peripheral blood in sodium citrate, ACD Vacutainer® tube) using the DNA extraction,
Maxi Kit (QIAGEN, Venlo, the Netherlands) as per manufacturer’s guidelines in the commercial kit.
HLA class II (HLA-DRB1 and HLA-DPB1) frequencies were determined by molecular techniques for all
the specificities included in the HLA Nomenclature of 2012 (we present only the first two or four digits
of each allele, for low or high resolution respectively) [31]. HLA-DRB1 genotyping had been previously
performed, using a PCR-SSO (Polymerase-Chain-Reaction, PCR, Sequence-Specific Oligonucleotide,
SSO) technique (Elpha Bio-Rad, High resolution), as described elsewhere [11]. HLA-DPB1 genotyping
was performed using a different PCR-SSO technique, based on a method that depends on reverse
hybridization (Line Probe Assay, INNO-LiPA, Low Resolution, Innogenetics, Fujirebio, Europe)
according to the manufacturer’s protocol.

2.3. Statistical Analyses

The Hardy-Weinberg proportions (HWP) and linkage disequilibrium for HLA-DPB1, HLA-DRB1
haplotypes were ascertained using the PyPoP software [32]. An Ewens-Watterson (EW) homozygosity
test for neutrality was also performed. Calculation of the normalized deviate of the homozygosity
(i.e., Fnd) was done, with positive and negative values implying directional and balancing selection,
respectively. HLA-DPB1* genotype frequency in patients with MS was compared with that reported in
a previous study of Hellenic HC by using multiple binomial tests [33].

Separate analyses were performed in the EOMS and AOMS groups using the same expected
genotype frequencies of the healthy controls [33]. A Fisher’s exact test for categorical and Mann-Whitney
U test for numerical variables were performed to allow us to make group comparisons. Mantel-Haenszel
statistics were used to ascertain the role of MS groups in the association between HLA-DPB1 genotypes
and categorical clinical parameters. In HLA-DPB1 genotype-related tests (except those for clinical
parameters), p value correction was made according to the Benjamini–Yekutieli method (or B–Y)
based on the following formula: p (B–Y) = a/(Σ1/i), where i denotes the number of comparisons and
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a = 0.05 [34,35]. Statistical analyses were performed using the SPSS v22.0 software (Armonk, NY, USA:
IBM Corp).

3. Results

3.1. HWP and Linkage Disequilibrium of the Study’s Sample

Twenty-three distinct HLA-DPB1 alleles were identified (total alleles: 200). There were 28
homozygote and 72 heterozygote patients with MS. There were no deviations from the HWP
(homozygotes: 29.71 expected, F(1) = 0.1, p = 0.754, heterozygotes: 70.29 expected, F(1) = 0.04, p = 0.838).
The most common haplotypes were HLA-DPB1*04/DPB1*04 (27%), followed by HLA-DPB1*02/DPB1*04
(13%), HLA-DPB1*03/DPB1*04 (11%) and HLA-DPB1*10/DPB1*04 (6%). The EW homozygosity test of
neutrality was found to be significantly positive (i.e., Fnd = 3.79, p = 0.992, i.e., over the limit 0.975),
denoting a directional selection of the HLA-DPB1*04 allele.

Twelve distinct HLA-DRB1 alleles were identified (total alleles: 174) in 87 out of the 100 patients.
There were 11 (12.6%) homozygote and 76 (87.3%) heterozygote patients. There were no deviations
from the HWP (homozygotes: 10.84 expected, F(1) = 0, p = 0.962, heterozygotes: 76.16 expected, F(1) =

0, p = 0.986). The most common allele was HLA-DRB1*11 (20.1%), followed by HLA-DRB1*16 (15.5%),
HLA-DRB1*15 (13.2%), HLA-DRB1*04 (12.1%) and HLA-DRB1*13 (10.4%). The most common, but
still of low frequency (4.6%), genotype was HLA-DRB1*11/DRB1*16. The EW homozygosity test of
neutrality was found to be significantly negative (i.e., Fnd = −1.41, p = 0.0033, i.e., lower the limit 0.05),
indicating a balancing selection.

The delta distance for the HLA-DPB1 and HLA-DRB1 haplotypes was 0.00938 (p = 0.303),
denoting linkage equilibrium. This did not change when age of MS onset was taken into
account (EOMS: delta 0.0128, p = 0.954, AOMS: delta 0.0133, p = 0.351). The most common
(i.e., over 5%) HLA-DPB1/HLA-DRB1 haplotypes were HLA-DPB1*04/HLA-DRB1*11 (10.8%),
HLA-DPB1*04/HLA-DRB1*16 (7.7%), HLA-DPB1*04/HLA-DRB1*04 (7%), HLA-DPB1*02/HLA-DRB1*11
(6.6%) and HLA-DPB1*04/HLA-DRB1*03 (5.5%).

3.2. Nongenetic Comparisons between Age of Onset Groups

Table 1 presents the main characteristics of the two MS groups. Patients with EOMS were
significantly younger and had longer disease duration compared to AOMS, which primarily reflects
the blood sampling timing, and has no specific clinical significance. Of most importance, patients with
EOMS had significantly higher IgG indexes compared to AOMS. It should be noted that this difference
reflects 60 out of the 100 patients with MS of this study, since, as mentioned in the methods section,
no CSF testing was available for 40 patients.

Table 1. Nongenetic Comparisons Between Age of Multiple Sclerosis (MS) Onset Groups.

Characteristics EOMS AOMS Sig 1

Females 19/28 (67.9%) 43/72 (59.7%) 0.499
Age (years old) 29.9 ± 9.8 39.8 ± 10.8 0.001 *

Duration of MS (months) 148.1 ± 105.4 81.3 ± 69.1 0.011 *
EDSS 3.1 ± 1.7 3.3 ± 1.6 0.414

Primary Progressive 3/28 (10.7%) 7/72 (9.7%) 0.917
Relapses since onset 5.2 ± 6.1 3.7 ± 2.5 0.393

IgG index 2 1.3 ± 0.7 0.8 ± 0.4 0.004 *
Presence of OCBs 2 13/15 (86.7%) 31/45 (68.9%) 0.312
Subcortical lesions 2 12/17 (70.6%) 27/43 (62.8%) 0.765

Periventricular lesions 2 16/17 (94.1%) 42/43 (97.7%) 0.49
Infratentorial lesions 2 12/17 (70.6%) 30/43 (69.8%) 1.000
Spinal cord lesions 2 12/14 (85.7%) 29/31 (93.5%) 0.578

Numbers represent means ± standard deviation and absolute (%) frequencies; 1 Fisher exact test for categorical and
Mann-Whitney U test for numerical characteristics. OCBs: Oligoclonal Bands, Sig.: significance. 2 Valid MRI and
cerebrospinal fluid assessments were available for 60 (66%) and 60 (60%) patients, respectively. * p ≤ 0.05.
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3.3. HLA-DPB1 Allele Comparisons between the Age of Onset Groups

No significant HLA-DPB1 allele differences were found between patients with EOMS and AOMS
(Table 2). However, there were significantly fewer HLA-DPB1*04-positive patients in the EOMS group
compared to HC (64.3% vs. 92.7%). The HLA-DPB1*03 allele was found to be significantly increased
in patients with AOMS compared to HC (23.6% vs. 13.4%). On the other hand, HLA-DPB1*02 and
HLA-DPB1*04 were found to be significantly decreased (p < 0.001) in patients with AOMS compared to
HC (22.2% vs. 36.6% and 79.2% vs.92.7%).

A total of 21 out of 87 patients (24.1%) were positive for the HLA-DRB1*15 allele, which is
significantly higher than the expected 11.4% allele frequency in HC (p < 0.001), confirming the
well-established role of this allele in MS pathogenesis [33]. HLA-DRB1*15 allele positivity was 20.8%
(5/24) for EOMS and 25.4% (16/63) for AOMS (p = 0.783).

Table 3 presents the HLA-DRB1*15 allele frequency among the different HLA-DPB1* alleles.
Only statistically significant associations are presented. The HLA-DRB1*15 allele was statistically
significantly absent among HLA-DPB1*03 positive patients (p = 0.001) and among HLA-DPB1*03
positive AOMS (p = 0.003), whereas it was significantly increased among HLA-DPB1*04 (p = 0.048),
HLA-DPB1*14 (p = 0.008) -positive genotype patients. Finally, the HLA-DRB1*15 allele was positive in
the two HLA-DPB1*14 positive patients with EOMS (p = 0.036).

In the 60 patients with available CSF examination, those with the HLA-DPB1*02 allele had
significantly higher IgG indexes than those who were negative for HLA-DPB1*02 (mean 1.22 ± 0.70 vs.
0.75 ± 0.39, respectively, p = 0.02), irrespective of age of MS onset. There were no other significant
associations between the HLA-DPB1 or HLA-DRB1 alleles (i.e., presence or not of each HLA-DPB1*
allele and HLA-DRB1*15 allele) and gender, type of MS, MRI or CSF assessments (data not shown).
Patients with AOMS who were positive for HLA-DPB1*02 had significantly fewer relapses since onset
than HLA-DPB1*02 negative patients with AOMS (2.7 ± 2.5 vs. 3.9 ± 2.4, p = 0.033), corroborating the
protective role of HLA-DPB1*02 phenotype, as reported above (Figure 1). No other MS group effects
on the HLA and clinical parameter associations were found.
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Table 2. HLA-DPB1 Allele Frequencies Among Different Age of Multiple Sclerosis (MS) Onset Groups of Patients.

Early MS Adult MS HCs Early vs. Adult MS Early MS vs. HCs Adult MS vs. HCs

(N = 28) (N = 72) (N = 246) Sig 1 Sig 2 Sig 2

HLA-DPB1*01 3.6 4.2 4.5 0.85 (0.09–8.55)
1.000

0.79 (0.1–6.37)
0.500

0.92 (0.25–3.42)
0.500

HLA-DPB1*02 39.3 22.2 36.6 2.27 (0.89–5.80)
0.131

1.12 (0.5–2.5)
0.461

0.5 (0.23–0.91)
0.008 **

HLA-DPB1*03 17.9 23.6 13.4 0.7 (0.23–2.13)
0.602

1.4 (0.50–3.95)
0.339

2.0 (1.04–3.84)
0.009 **

HLA-DPB1*04 64.3 79.2 92.7 0.47 (0.18–1.24)
0.132

0.14 (0.06–0.35)
<0.001 **

0.3 (0.14–0.63)
<0.001 **

HLA-DPB1*05 3.6 2.8 2.4 1.3 (0.11–14.89)
1.000

1.48 (0.17–12.77)
0.500

1.14 (0.23–5.79)
0.500

HLA-DPB1*06 0 1.4 0.8 -
1.000

-
0.500

1.72 (0.15–19.23)
0.500

HLA-DPB1*09 0 1.4 2.8 -
1.000

-
0.372

0.48 (0.06-3.97)
0.356

HLA-DPB1*10 10.7 9.7 4.9 1.11 (0.27–4.65)
1.000

2.34 (0.62–8.85)
0.162

2.1 (0.8–5.55)
0.052

HLA-DPB1*11 0 1.4 - -
1.000 - -

HLA-DPB1*13 3.6 2.8 6.1 1.3 (0.11–14.89)
1.000

0.57 (0.07–4.49)
0.435

0.44 (0.1–1.97)
0.176

HLA-DPB1*14 7.1 6.9 3.7 1 (0.18–5.48)
1.000

2.03 (0.42–9.88)
0.321

1.97 (0.64–6.06)
0.126

HLA-DPB1*15 0 4.2 2.0 -
0.557

-
0.468

2.1 (0.49–8.99)
0.186

HLA-DPB1*19 0 1.4 0.4 -
1.000

-
0.500

3.45 (0.21–55.87)
0.346

HLA-DPB1*22 3.6 0 - -
0.280 - -

HLA-DPB1*23 3.6 0 2.4 -
0.280

1.48 (0.17–12.77)
0.500

-
0.172
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Table 2. Cont.

Early MS Adult MS HCs Early vs. Adult MS Early MS vs. HCs Adult MS vs. HCs

(N = 28) (N = 72) (N = 246) Sig 1 Sig 2 Sig 2

HLA-DPB1*32 3.6 0 0.8 -
0.280

4.52 (0.4–51.49)
0.279

-
0.460

HLA-DPB1*33 3.6 2.8 0.4 1.3 (0.11–14.89)
1.000

9.07 (0.55–149.24)
0.123

7.0 (0.63–78.34)
0.130

HLA-DPB1*34 0 1.4 - -
1.000 - -

HLA-DPB1*35 0 4.2 0.8 -
0.557

-
0.500

10.65 (1.09–104.03)
0.005 **

HLA-DPB1*38 3.6 0 - -
0.280 - -

HLA-DPB1*46 3.6 0 - -
0.280 - -

HLA-DPB1*50 0 1.4 0.4 -
1.000

-
0.500

3.45 (0.21–55.87)
0.346

HLA-DPB1*56 0 1.4 - -
1.000 - -

Numbers represent frequencies (%). 1 Fishers’s exact test (23 comparisons) 2 Binomial tests (17 comparisons). ** p ≤ 0.015 (17 comparisons) or p ≤ 0.013 (23 comparisons), according to the
Benjamini–Yekutieli method for 17 comparisons, HCs: Healthy Control
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Table 3. Significant DRB1*15 Positivity Differences among HLA-DPB1 Alleles and Age of Onset Groups
in Multiple Sclerosis (MS) Patients.

Total Sample of MS Patients

HLA-DPB1* Genotype HLA-DRB1*15 Positive Sig 1

HLA-DPB1*03 0/22 (0%) 0.001 *
HLA-DPB1*04 19/63 (30.2%) 0.048 *
HLA-DPB1*14 5/7 (71.4%) 0.008 *

Adult-Onset MS

HLA-DPB1* Genotype HLA-DRB1*15 Positive Sig 1

HLA-DPB1*03 0/17 (0%) 0.003 *

Early-Onset MS

HLA-DPB1* Genotype HLA-DRB1*15 Positive Sig 1

HLA-DPB1*14 2/2 (100%) 0.036 *

Values represent observed frequencies (%) of HLA-DRB1*15 allele positivity among the different HLA-DPB1
genotypes. 1 Fisher exact tests. * p ≤ 0.05.

4. Discussion

HLA-immunogenetics is an old but still rapidly expanding field in MS pathogenesis. In order
to keep abreast of rapid developments in this field, we investigated the role of the HLA-DP locus
in MS pathophysiology. We genotyped 100 Hellenic patients with MS for HLA-DR and HLA-DP
alleles, as described above, which is a rather small sample and the main limitation of this study.
HLA-DPB1 genotyping was performed for the first time on a Hellenic MS population and in patients
with EOMS, which is the core novelty of our research, albeit on a small sample (28 patients); however,
we highlight again that EOMS is a rare disease entity and represents only the 3–5% of all MS patients
in Caucasian populations.

In our study, we replicated the well-established predominance of the HLA-DRB1*15 genotype in
Hellenic patients with MS compared to HC, independently of age at disease onset [11].

No statistically significant HLA-DPB1 allele differences were found between patients with EOMS
and AOMS. All statistically significant differences were investigated in the AOMS group, except for
the HLA-DPB1*04 allele, which is lower in EOMS and AOMS, compared to the HC group at a high
statistical level (p < 0.001, Table 2), suggesting a possible protective role in the Hellenic population.
This is in contrast with an early study in 1988 [12] where the frequencies of DPw4 were 93.3% in patients
with MS and 72.3% in controls (relative risk, R2 = 5.4, p = 0.0014). Nevertheless, we have to mention
that in this early study, the HLA-DNA typing was carried out on a small sample of 45 patients with
MS and 63 controls of different ethnic European groups (Swedish and Danish), using the Restriction
Fragment Length Polymorphism (RFLP) technique for HLA-DP and HLA-DR genes. In this same study,
the HLA-DR2 antigen was present in 75.5% of patients and in 33.7% of the controls (R2 = 6.1, p less
than 10(-6)). HLA-DPw4 was not associated (i.e., was not in linkage disequilibrium) with HLA-DR2
in patients or controls. Thus, the researchers concluded that in MS, the associations with HLA-DP
and HLA-DR are independent of each other, but the combined presence of HLA-DPw4 (cellularly
defined) and HLA-DR2 represented a significantly higher risk than either antigen alone, indicating that
synergism between HLA-DP and HLA-DR gene products may play a role in the genetic susceptibility to
MS. On the other hand, a recent study on celiac disease showed that the HLA-DPB1*04:01 allele protects
genetically-susceptible children from celiac disease [36], a fact that is in line with our results, concerning
children and adults with MS, while in another study in 2015, another HLA-DPB1*04 allele, namely
HLA-DPB1*04:02, conferred a strong protective effect against narcolepsy [37]. Finally, the worldwide
risk HLA-DRB1*15 allele in MS, in Caucasians, was found to be significantly increased among HLA-
DPB1*04 positive patients with MS (p = 0.048) in our sample.

In another early study in France in 1991, it was found that the distribution of HLA-DPB1 alleles
was not significantly different in patients with MS and controls [20]. Nowadays, it is perfectly clear
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that the HLA-DP*03 allele is associated with MS and epitope spreading in MS [17,22], and in this study,
we observed the risk susceptibility of this allele in our Hellenic MS sample, at a highly significant level
(p < 0.009, Table 2).

Regarding AOMS, the HLA-DPB1*03 allele could be a risk factor for the disease, as it was
found to be significantly increased in patients with AOMS compared to HC. The percentage of
HLA-DPB1*03 positive patients with EOMS was higher than HC (17.9% vs. 13.4%), although at a
nonstatistically significant level. The HLA-DRB1*15 allele was absent among HLA-DPB1*03 positive
patients. This cannot be attributed to linkage disequilibrium, as this was tested. Linkage disequilibrium
for the HLA-DR and HLA-DP genes was excluded in previous studies as well [12]. Since HLA-DPB1*03
was found to be increased in AOMS, it may constitute a risk factor; this genotype may exert its risk
factor effect only in the absence of HLA-DRB1*15, at least in AOMS. Moreover, the HLA-DRB1*15
allele was found to be significantly increased among HLA-DPB1*04-positive patients, suggesting that
HLA-DPB1*04 exerts a protective effect only in the absence of HLA-DRB1*15. Despite the relatively
small sample size in our study, these findings suggest that epistatic mechanisms between Class II
HLA-DR and HLA-DP alleles may play a role in disease pathogenesis and risk of disease occurrence.
This conclusion is in line with the results of Dekker et al. [19] who observed that in patients with MS
who lacked HLA-DQB1*06:02 allele, the HLA-DPB1*03:01 allele frequency was significantly (p = 0.006)
increased (50.0%) compared with HLA-DQB1*06:02-negative controls (9.1%). In parallel, in 2009,
Lincoln et al. highlighted the role of epistasis between HLA-DRB1*15 and HLA-DQA1*01:02 alleles.
More specifically, they proved that HLA-DQA1*01:02, which shows no primary MS association,
increases disease risk when combined with HLA-DRB1*15:01, through transepistatic interactions [27].
Of note is the fact that the presented slight HLA-DPB1 allele differences between AOMS and EOMS
could also reflect the different clinical course of these two groups, given that patients with older age at
onset are known to be more at risk of having secondary-progressive disease. For instance, predicting
the onset of secondary-progressive multiple sclerosis is accomplished using genetic and nongenetic
factors, with the HLA-A*02:01 allele conferring a decreased risk for MS and also contributing to
decreased hazards for SPMS [38].

Another finding in our study that is worthy of mention is the possible protective role of the
HLA-DPB1*02 allele in AOMS. HLA-DPB1*02 was found to be significantly decreased in AOMS,
while those who were HLA-DPB1*02 positive had, in general, fewer relapses since onset compared to
HLA-DPB1*02-negative patients with AOMS, corroborating the protective role of the HLA-DPB1*02
allele reported above (Figure 1).

The HLA-DPB1*35 allele was found to be significantly increased in patients with AOMS compared
to HC, while increased prevalence of the HLA- DRB1*15 allele in HLA-DPB1*14-positive patients
with MS and patients with EOMS was also noted. Nevertheless, their possible genetic risk should be
interpreted with caution, due to the very low frequency of these alleles.

At this point, we have to mention that the HLA-DPB1*04 allele is the most frequent in the Hellenic
population (92.7%), followed by HLA-DP*02 (36.6%) and HLA-DP*03 (13.4%) [30]. Additionally,
according to our results, the most common HLA-DPB1-haplotypes in Hellenic patients with MS were
HLA-DPB1*04/DPB1*04 (27%), followed by HLA-DPB1*02/DPB1*04 (13%), HLA-DPB1*03/DPB1*04
(11%) and HLA-DPB1*10/DPB1*04 (6%). Thus, the emerging protective role of the HLA-DP*04 allele is
in parallel with the HLA-DR*11 allele, which is the most common in the Hellenic population, and the
protective HLA-DRB1 allele in Hellenic patients with MS [11].

The role of HLA-DPB1 alleles has been studied in a range of other autoimmune diseases, especially
NMOSD [23]. More specifically, HLA-DPB1*05:01, which is extremely rare in Caucasian populations,
has the strongest association with opticospinal MS and anti-AQP4 seropositivity in Asian populations,
while HLA-DPB1*03 possibly offers genetic protection against the disease [23]. Moreover, HLA-
DPB1*02:01 has been associated with oligoarticular and rheumatoid factor-negative polyarticular
juvenile idiopathic arthritis and childhood-onset diabetes type I in the Japanese population [24,25].
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Therapeutic interventions in MS are sometimes difficult, because the patient’s symptoms at the
initial stages are not clearly suggestive of a definite demyelinating syndrome, especially in children.
Furthermore, sometimes the neuroradiological (MRI) aspects and blood antibody tests are not helpful.
In these situations, having a marker or a combination of markers that supports the differential diagnosis
is of crucial importance, and has a direct impact on therapeutic decision making. The HLA-DR alleles,
and especially the HLA-DR*15 allele, are the most robust genetic markers for almost every clinical or
paraclinical aspect of the disease [4] in Caucasians and for the therapeutic response to different Disease
Modified Treatments (DMTs) [4]. Nowadays, the expansion and overlap of various demyelinating
diseases, namely MS, NMOSD, ADEM (Acute Disseminating Encephalomyelitis), MOG-Demyelinating
(Myelin Oligodendrocyte Glycoprotein-Demyelinating) disease, Optic Neuritis, etc., make the need for
specific biomarkers more urgent than ever before, as noted in our previous critical review [39] and in
this works of other researchers [40].

Apart from a genetic association with MS and other demyelinating diseases, HLA-DP molecules
play a key role in MS pathogenesis and progression, as described many years ago [17,41].

Additionally, in our Hellenic cohort, the HLA-DP alleles seemed to play an independent role in
patients with MS (risk/protective), apart from the HLA-DR alleles, a fact that has to be confirmed in
larger cohorts in the future. This could pave the way for the usage of these alleles in patient stratification
(carriers and noncarriers)—as already happens with various HLA-DRB1 alleles and especially with the
HLA-DRB1*15 allele [4,42]—for many MS characteristics and therapy responses in different DMTs in
Caucasian populations [4,42].

Altogether, clarification of HLA-DP allele associations with both EOMS and AOMS is needed in
every ethnic group to get a better idea of clinical features and MS phenotypes and disease progression,
and as a form of future putative data for better therapeutics.

5. Conclusions-Limitations

In conclusion, our study supports the previously reported risk susceptibility role of the
HLA-DPB1*03 allele in AOMS in many Caucasian populations. Additionally, we report, for the first
time in the international literature, the protective role of the HLA-DPB1*04 allele for patients with both
EOMS and AOMS, and the putative protective role of the HLA-DPB1*02 allele in patients with AOMS
in our sample. Another finding that is worthy of mention is the total absence of the well-established
HLA-DRB1*15 allele among patients having the most statistically frequent HLA-DPB1*03 allele in
our cohort.

A limitation of our study was the relatively small sample size (28 patients with EOMS and
72 patients with AOMS). Indeed, observed small effect sizes for DPB1 alleles from the different group
comparisons were the following: EOMS vs. AOMS 7%, EOMS vs. HCs 21.9% and AOMS vs. HCs
25.8%. However, this is a first attempt towards clarifying the role of the HLA-DPB1 alleles in MS in a
Hellenic AOMS and EOMS cohort. Moreover, the small study sample did not allow us to conduct
multivariable analyses, which would more readily reveal confounding effects in our analyses.

These novel data could also contribute to personalized MS-therapeutics in the near future,
taking into account the rapid expansion of our knowledge of multiple sclerosis and other distinct
demyelinating diseases in many ethnic groups.
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