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Abstract

antidepressants are not particularly effective.

gene expression profile of SSD patients.

efforts.

Background: Recent depression research has revealed a growing awareness of how to best classify depression into
depressive subtypes. Appropriately subtyping depression can lead to identification of subtypes that are more
responsive to current pharmacological treatment and aid in separating out depressed patients in which current

Differential co-expression analysis (DCEA) and differential regulation analysis (DRA) were applied to compare the
transcriptomic profiles of peripheral blood lymphocytes from patients with two depressive subtypes: major
depressive disorder (MDD) and subsyndromal symptomatic depression (SSD).

Results: Six differentially regulated genes (DRGs) (FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16 transcription
factor-to-target differentially co-expressed gene links or pairs (TF2target DCLs) appear to be the key differential
factors in MDD; in contrast, one DRG (PATZ1) and eight TF2target DCLs appear to be the key differential factors in
SSD. There was no overlap between the MDD target genes and SSD target genes. Venlafaxine (Efexor™, Effexor™)
appears to have a significant effect on the gene expression profile of MDD patients but no significant effect on the

Conclusion: DCEA and DRA revealed no apparent similarities between the differential regulatory processes underlying
MDD and SSD. This bioinformatic analysis may provide novel insights that can support future antidepressant R&D

Keywords: Major depressive disorder, MDD, Subsyndromal symptomatic depression, SSD, Differential co-expression
analysis, DCEA, Differential regulation analysis, DRA, Antidepressant, Venlafaxine

Background

Clinicians currently face a large number of patients who
suffer from major depressive disorder (MDD, major
depression), many of whom live under difficult circum-
stances and some who finally succumb to suicide. Ac-
cording to 2010 estimates, there were over 298 million
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cases of MDD globally, with the highest proportion of
cases occurring between patients aged 25 and 34 years
[1]. Global point prevalence has been relatively constant
across time (4.4% across 1990, 2005, and 2010), ranging
from 3.7% in North America to 8.6% in South Asia with
conflict regions displaying higher prevalences than those
with no conflict [1]. Moreover, in 2010, prevalence was
higher in females (5.5%) as compared to males (3.2%)
[1]. The annual incidence of an episode of MDD
followed a similar age and regional pattern to prevalence
but was about one and a half times higher, consistent
with an average duration of 37.7 weeks [2].
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Unfortunately, MDD is often resistant to standard
antidepressant medication, and a large percentage of
patients respond just as well to placebo [3,4]. As it is
unlikely that a polymorphic syndrome like depression
reflects a single disease process, recent depression
research has revealed a growing awareness of how to
best classify depression into depressive subtypes [5].
However, the broad DSM-based diagnosis of MDD does
not encourage a search for depressive subtypes that may
require their own specific treatments, and most anti-
depressant trials are commercially-sponsored multicen-
ter studies that aggregate many possible subtypes under
an overarching ‘depression’ umbrella for the sake of
powering without regard to depressive subtypes [5]. In
contrast, the clinical reality is that physicians regularly
subtype depression when describing patients to col-
leagues [5]. Appropriately subtyping depression should
lead to identification of subtypes that are more respon-
sive to current pharmacological treatment and aid in
separating out depressed patients in which current anti-
depressants are not highly effective.

One reason for this failure at depression subtyping is
our insufficient understanding of the various neurobio-
logical processes underlying depression [6]. An improved
understanding of the pathophysiological mechanisms
underlying different depressive subtypes should aid anti-
depressant pharmacological development. For instance,
previous studies by our group have applied proteomic,
transcriptomic, and metabololomic approaches to better
characterize MDD and rodent models of depression
[7-11]. Other advanced technologies such as DNA mi-
croarrays and next-generation sequencing can allow for
rapidly acquiring detailed biochemical information about
DNA polymorphisms and transcriptome profiles in differ-
ent depressive subtypes [12]. These studies collectively
show profound biochemical changes in depressed patients,
and animal depression models partly corroborate or com-
plement the alterations identified in depressed patients.
Transcriptional changes in the course of MDD and the ef-
fects of antidepressant drugs on multiple disease-related
transcriptional pathways have also been surveyed. The
combination of both can unravel additional mechanisms
of disease etiology and can provide a ‘bottom-up’ approach
for the discovery of novel antidepressant drugs.

One depressive subtype — subsyndromal symptomatic
depression (SSD) — has been identified as a transitory
depressive state in the depression spectrum. In this
study, we hypothesized that the transcriptomic profiles
of leukocytes derived from drug-free first-episode SSD
patients and MDD patients were significantly different
in these two depressive subtypes. Additionally, we hy-
pothesized that these transcriptomic profiles were sig-
nificantly different before and after treatment with the
popular antidepressant venlafaxine (Efexor™, Effexor™).
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Applying differential co-expression analysis (DCEA) and
differential regulation analysis (DRA), the transcriptomic
profiles of leukocytes derived from drug-free first-episode
SSD patients, MDD patients, and healthy controls were
compared using whole-genome c¢DNA microarrays in
order to discover venlafaxine’s mechanism (s) of action in
MDD and SSD patients.

Methods

Expression dataset

We reutilized the GSE32280 dataset [13], which was pub-
lished on GEO (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=gse32280), to unveil the dysregulated mecha-
nisms in MDD and SSD and explore the differential pro-
cesses of venlafaxine action on MDD and SSD. The
GSE32280 data consists of whole blood gene expression
profiles of five SSD patients and eight MDD patients be-
fore venlafaxine treatment (hereinafter ‘pre-treatment’)
and after venlafaxine treatment (hereinafter ‘post-treat-
ment’) as well as eight healthy controls (Table 1). Raw data
were normalized by the RMA method and log2 trans-
formed. After filtering out ambiguous genes, 20283 gene
expression values were obtained for all samples.

Differential Co-Expression Analysis (DCEA)

In transcriptomics, differential co-expression analysis
(DCEA) has emerged as a unique complement to trad-
itional differential expression analysis (DEA) [14]. Rather
than merely calculating expression level changes in indi-
vidual genes as DEA does, DCEA analyzes differences in
gene interconnection by calculating the expression cor-
relation changes of gene pairs between two conditions
[14-16]. The rationale underlying DCEA is that changes
in gene co-expression patterns between contrasting phe-
notypes (in this case, SSD versus MDD versus healthy
control) provide insight into the disrupted regulatory re-
lationships or affected regulatory subnetworks specific to
the phenotype (s) of interest.

We utilized the DCGL software package to conduct
DCEA, which is a software program released as an R
package including two gene filtering functions, three link
filtering functions, and five DCEA functions [17,18] In
the DCGL software package, differential co-expression
profile (DCp) and differential co-expression enrichment
(DCe) are designed based on the exact co-expression
changes of gene pairs, and thus can differentiate signifi-
cant co-expression changes from relatively trivial ones
and identify co-expression reversal between positive and
negative.

For example, for the MDD vs. healthy control compari-
son, the DCGL package constructed two co-expression
networks by calculating gene pair-wise correlation coeffi-
cients based on MDD samples and healthy samples. Then,
a cutoff for correlation coefficients was applied to filter
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Table 1 Sample characteristics
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Group N Biological samples Venlafaxine treatment
Pre-treatment Post-treatment
Control 8 Peripheral blood lymphocytes \J
MDD 8 Peripheral blood lymphocytes \J V
SSD 5 Peripheral blood lymphocytes \J \V

out some gene pairs and retain the most relevant gene
pairs to form two co-expression networks. These two co-
expression networks possessed the same topological struc-
ture with different correlation coefficients for each gene
pair. In these co-expression networks, genes that con-
nected with other genes were deemed to be neighboring
genes. Then, DCp was employed to calculate the change
between the two co-expression networks that was defined
by different co-expression (dC) (see Eq. 1 below). In order
to evaluate the statistical significance of dC, DCp imple-
mented a permutation test, in which we shuffled 20283
genes and samples randomly 500 times. Then, we esti-
mated 500 pseudo dCs for every gene using the permuted
data. Finally, the p-value for each gene could be estimated,
and the FDR value could be obtained accordingly. Dif-
ferentially co-expressed genes (DCGs) were identified
by p-value and/or FDR threshold. DCe used the limit
fold change (LFC) model [19] to sort out different co-
expression gene pairs or differentially co-expressed
links (DCLs) and employed a binomial probability
model to identify DCGs based on enrichment of DCLs
(see Eq. 2 below).

dC;(DCp) = \/(xil_yil)z + (xiz_yiil)z + .+ (x,',,—ym)2 (1)

dCi(DCe) = P(g,) = Zk o4 (%) <1- %) (2)

where X;1, Xip ... Xin (Vir Vi2 --- Vin) denote correlation
coefficients between gene i with its n neighbors in con-
dition x (y) and n denoting the number of neighbors. In
DCe, N represents the number of links in each co-
expression network, K represents the number of DCLs
determined by the LFC model. Eq. 2 calculates the
enrichment of DCL for gene i with n; links of which k;
are DCLs.

Differential regulation analysis (DRA)

Among the many growing directions of DCEA, there is
differential regulation analysis (DRA), which integrates
the transcription factor-to-target (TF2target) informa-
tion to probe upstream regulatory events that account
for the observed co-expression changes [20,21]. DRA can
unveil the central regulatory network which straightfor-
wardly reflected the differential regulation mechanisms of

two contrastive conditions via differential co-expression
analysis results. DCGL package was also used in the differ-
ential regulation analysis step. The DCGL package con-
tains a library of transcription factors known to regulate
the relationships between human target genes termed the
transcription factor-to-target library (TF2targetlibrary),
which includes 214607 binary tuples involving 215 human
transcription factors and 16863 targets [18].

Using this TF2target library, the DRsort function of
DCGL was used to scrutinize the DCGs and DCLs
against the transcription factor-to-target information to
highlight a subset of the genes and links that are poten-
tially highly related to the putative differential regulation
mechanisms. If a DCG coincides with a transcription
factor (TF), it is regarded as a differentially regulated
gene (DRG) based on the likelihood that a differential
co-expression of this type of DCG could be attributed to
disrupted regulatory relationships between the transcrip-
tion factor and its targets. Hereinafter, “TF2target DCLs’
refers to differentially co-expressed gene links or pairs
(DCLs) that coincide with transcription factor-to-target
relations. Our rationale here is that the disruption of
regulatory relations can affect the co-expression links
between a regulator and its targets [18].

Application of DCEA and DRA

To explore the underlying regulatory mechanisms in
MDD, we conducted DCEA and DRA to compare the two
different MDD states (pre-treatment and post-treatment),
pre-treatment MDD versus healthy control, and post-
treatment MDD versus healthy control. To explore the
effects of venlafaxine therapy on MDD patients, we con-
ducted DCEA and DRA to compare post-treatment MDD
versus healthy controls and pre-treatment MDD versus
post-treatment MDD. An identical analysis was performed
on SSD samples as well. First, we identified DCGs thor-
ough the DCp function, and DCLs and another list of
DCGs through the DCe function. Then, in order to avoid
lack of individual method, we sorted out true DCGs via
overlapping DCp’s DCGs and DCe’s DCGs. DCLs were
defined as true DCLs if one of the genes among the DCLs
was identified in overlapping DCGs. Finally, the TF2target
library was employed to highlight DCGs and DCLs. If a
DCG coincided with a TF, it was listed as a DRG. If a DCL
coincided with a TF-regulated target gene in the TF2target
library, it was listed as a TF2target DCL or DRL.
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Results

Differential regulatory mechanisms in MDD

In order to reveal the underlying regulatory mechanisms
of non-medicated MDD, samples of pre-treatment MDD
versus healthy controls were compared. First, we identified
13 putative DRGs (termed DRGupp.pre that included
FOSL1, FOXL1, MEF2A, HNF1A, IRF1, JUN, SOX9, SRE,
TFAP4, TFCP2, TLX2, HLF, and ZNF423) and 49 putative
TF2target DCLs (termed DRLyipp.pre that are displayed in
Table 2). Furthermore, by comparing post-treatment
MDD and healthy control samples, 10 putative DRGs
(termed DRGyipp-pos that included BPTE, EP300, FOXII,
IL10, NFKB1, NFYC, NR3C1, TP53, USF2, and FOXL1)
and 294 putative TF2target DCLs (termed DRLypp-post
that are shown in Additional file 1: Table S1) were identi-
fied. In order to exclude differences within individuals
from different samples, the overlapping elements between
pre-treatment MDD versus healthy controls and post-
treatment MDD versus healthy controls were deemed to
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indicate differential regulatory information among individ-
uals. Therefore, the expression results that excluded the
overlapping differences in co-expression of pre-treatment
MDD versus healthy controls were deemed to be the
DRGs and TF2target DCLs responsible for differentiat-
ing MDD and healthy controls (MDD panel, Figure 1).
Therefore, DRGypp = DRGuMDD - pre = (DRGMDD - pre N
DRGuMpDD - pos) Were deemed to be the true MDD-
related DRGs (termed DRGypp that included FOSLI1,
MEF2A, HNF1A, IRF1, JUN, SOX9, SRF, TFAP4,
TFCP2, TLX2, HLF, and ZNF423). These 12 true
DRGypp are depicted in Figure 1 by the lime green
area of pre-treatment/control that excludes the overlap-
ping brown area of pre-treatment/control with post-
treatment/control. Based on the foregoing analysis, these
12 DRGypp may be involved in the pathological processes
underlying MDD.

According to the same logical analysis applied to DRG,
we identified 48 true MDD-related TF2target DCLs (i.e.,

Table 2 Identification of 49 TF2target DCLs through comparing MDD pre-treatment and healthy control samples

NO. TF Target p. DCG Cor.l1 Cor2 Type NO. TF Target p. DCG Cor.1  Cor.2 Type
1 AHR TLE4" 6776-23 094 014 0 26 NFYA PANK2" 537E-05  -013 097 1
2 ZEB1 ATP12A" 3.56E-73 054 095 1 27 MRPL36  NR4AT" 134E-08 088  -094 1
3 FOXL1"  (CBX6 0014521 095 0.13 0 28 NF1 NUPL2" 186E-35 091 0.10 0
4 CEBPB  PLEKHM1™ 0000574  0.18 094 0 29 ZEB] OTOF" 262607 006 096 1
5 CREB1 TGM1” 0001644 087 005 0 30 HANDT  PITX2 583-06 090 001 0
6 CREB1 CROCCP2"  502E-09 092 007 0 31 PLAU NP1’ 200E-19 001 092 0
7 PATZ1 DYRK2" 279%-16 088 002 0 32 PSG1 YRDC" 627E-11 01 093 0
8 FOS FEZ2 0000107 003 096 0 33 RFX1 SNORA21" 3876-38 098  -005 1
9 MYCN FLRT2" 932E-05 029 098 1 34 RFX1 LOC283481°  334E-55 096 033 1
10  FOSL1"  HIVEP3 637E-06 094 002 O 35 SOX9"  FLAD1 8.34E-09 -092 -0.10 O
1 FOSL1® DSCAML1 6.37E-06 091 0.16 0 36 SREBF1  PHOX2B' 0002661 089 006 0
12 GATAT  COL19A1T"  963E-10  0.12 093 0 37  SRF Caorf7 1.23E-18 -096 074 1
13 JUN GRIA4 430E-10 -060 097 1 38  SRF SHMT1 1.23EX18  -092 -0.12 0
14  SRF HCG18 1.23EX18 -091 -0.14 O 39 STATSB  TRAK2 T42ER06 045 095 1
15 HLF" LRRTM4 0.022779 092 018 0 40 TCF3 Cllorfe1” 0003455 087 -010 0
16 E2F5 D1 0008474 088 011 0 41 TFAP4"  BSCL2 3.03E-16 -006 -094 0
17 JUN’ ZNF830 430E-10 -0.09 -093 0 42  TLX2' C30rf70" 003 -097 1
18 JUN’ SPOP 430E-10 -0.11 -095 O 43 FOXL1"  TOBI 0014521 088  -011 0
19  JUN GAK 430E-10 -043 096 1 44 TIX2 TSPANS 653E-06 094 011 0
20 JUN CHURC1 430E-10 051  -095 1 45 CREB1 VPS26A 6.76E-05 092 0.05 0
21 PAX5 KCTD7" 114E-05 097 054 1 46  SRF" VWA3A 1.23E-18 -0.89 -008 0
22 JUN KLF6 430E-10 089 0.12 0 47 Y ZNF518A" 193E-119 090 004 0
23 MZF1 MID1" 0006234 096 028 1 48 POU2F1  ZNF518A" 193E-119 098  -015 1
24 MZF1 EPHB2" 0012953 093 013 0 49 ZSCAN1  KRT13' 480E-10 089  0.15 0
25  SRF NDUFA1 1.23E-18 088 012 0

“Denotes DCG in each TF2target DCL. Some rows were discarded (strikethrough) since they are individual basis. Rows in bold represent the 16 key-DRLypp. The
p. DCG column denotes the p-value of DCG for each TF2target DCL; the “Cor.1” and “Cor.2” columns represent the correlation coefficients of the two respective
conditions. The “Type” column reflects the mode of regulation with “1” denoting a positive/negative regulation in disease samples switched to a negative/positive

regulation in control samples and “0” denoting no change in regulation.
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Pre-treatment/control

MDD:

DRGs

Post-treatment/control

SSD:

DRGs

DRGs and 9 DRLs in SSD.

Post-treatment/control

Pre-treatment/control

Figure 1 Venn Diagrams of DRGs and TF2target DCLs in MDD and SSD. In the MDD panel, DRGs and TF2target DCLs (i.e. DRLs) among
pre-treatment MDD versus healthy control (pre-treatment/control), post-treatment MDD versus healthy control (post-treatment/control), and
pre-treatment MDD versus post-treatment MDD (pre-treatment/post-treatment). The lime green area of pre-treatment/control, excluding the
overlapping brown area of pre-treatment/control with post-treatment/control, indicates the 12 DRGs and 48 DRLs in MDD. In the SSD panel,
DRGs and TF2target DCLs (i.e. DRLs) among pre-treatment/control, post-treatment/control, and pre-treatment/post-treatment. The lime green
area of pre-treatment/control, excluding the brown overlapping area of pre-treatment/control area with post-treatment/control, indicates the 2

Post-treatment/control

Pre-treatment/
control

DRLs

Post-treatment/control
Pre-treatment/control

DRLs

DRLs) according to the following formula: DRLypp =
DRLyvpD - pre = (DRLvpD - pre N DRLMDD - post).  The 48
TF2target DCLs contained 33 transcription factors and
47 target genes (Table 2 except striked-through rows).
By overlapping the 12 DRGy;pp with the 48 DRLypp,
six key DRGs (termed key-DRGypp that included
FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16
TF2target DCLs (termed key-DRLypp) appear to be the
key differential factors in MDD (Figure 2). GO analysis
revealed that the six key-DRGypp are involved in RNA
metabolism (SRF, JUN, HLF, and FOSL1) and develop-
mental processes (SRF and JUN) (Additional file 1:
Table S3, Figure S1). Moreover, four key-DRGyipp
(SRF, JUN, HLF, and FOSL1) localize to the nucleus
and are enriched for transcription regulatory activity
(Additional file 1: Table S3, Figure S1).

Potential mechanism of venlafaxine in MDD

In order to discover the pharmacological mechanism (s)
of venlafaxine in MDD, samples from the same MDD
patients pre-treatment and post-treatment were com-
pared. Consequently, a total of nine DRGs and 532
TF2target DCLs were discovered. The 532 TF2target
DCLs contained 65 transcription factors and 466 target

genes (Additional file 1: Table S2). Nine differential
regulatory transcription factors, which participated in
TF2target DCLs, appear to be the key differential regula-
tory relation pairs reflecting the pharmacological action
of venlafaxine in MDD (Figure 3).

Differential regulatory mechanism in SSD

Similar to the analysis conducted in MDD, the DCGL
software package identified three putative DRGs (termed
DRGgsp.pre that included FOSB, PATZ1, and TFAP4)
and 10 putative TF2target DCLs (termed DRLgsp_pre that
are displayed in Table 3) between pre-treatment SSD
and healthy control samples. A comparison of post-
treatment SSD with healthy control samples yielded five
DRGs (termed DRGgsp.post that included EGRI, IRF1,
MYOD1, SOX5, and TFAP4) and 15 TF2target DCLs
(termed DRLgsp_post). After exclusion on an individual
basis, i.e., and DRLggsp =DRLssp _ pre = (DRLgsp — pre N
DRLssp - post)> two DRGs (DRGgsp = PATZ1 and FOSB)
and nine DRLggp appear to be associated with SSD. The
nine DRLgsp are indicated by the lime green area that ex-
cludes the overlapping brown area (SSD panel, Figure 1)
and listed in Table 3 (except striked-through rows). Apply-
ing a similar analysis to that used in MDD by overlapping
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Figure 2 Key TF2target DCLs in MDD. Every line with an arrow represents a differential regulatory relationship in MDD. Squares represent
transcription factors (yellow = differential, blue = non-differential), circles represent target genes (yellow = differential, blue = non-differential), and
lines represent the action of transcription factors on target genes (green = positive regulation in disease samples transformed to negative

regulation in control samples or vice-versa, red = unchanged regulation).

the 2 DRGggp with the 9 DRLgsp, we determined one key-
DRGssp (PATZ1) and 8 key-DRLgsp in SSD (Figure 4).

Potential mechanism of venlafaxine in SSD

No DRG or TF2target DCLs were identified between
SSD pre- and post-treatment. Therefore, the expression
profiles between pre- and post-treatment SSD samples
were not significantly different; thus, venlaxafine appears
to have no significant effect on the gene expression pro-
file of SSD patients.

Discussion

With regard to the differential regulatory mechanism (s)
underlying MDD, six key-DRGypp (FOSL1, SRE, JUN,
TFAP4, SOX9, and HLF) and 16 key-DRLypp (TF2tar-
get DCLs) appear to be the key differential factors in
MDD (Table 2). FOSL1 has been previously associated
with addiction, depression, and anxiety [22]. SRF and
JUN (c-JUN) are functionally involved in the MAPK
signaling pathway (Additional file 1: Figure S2) [13]. GO
analysis revealed that the six key-DRGgsp are involved
in RNA metabolism (SRF, JUN, HLF, and FOSL1) and
developmental processes (SRF and JUN) (Additional file 1:
Table S3, Figure S1). Moreover, four key-DRGympp (SRE
JUN, HLF, and FOSL1) localize to the nucleus and are

enriched for transcription regulatory activity (Additional
file 1: Table S3, Figure S1).

With regard to the differential regulatory mechanism
(s) underlying SSD, one key-DRGssp (PATZ1) and eight
key-DRLssp (TF2target DCLs) appear to be the key dif-
ferential factors in SSD (Table 3). Unfortunately, after an
extensive literature search, we found no previous studies
showing any association between these genes and SSD,
which may be attributed to the paucity of research on
SSD. These initial findings can open an entirely new
field of investigation on the underlying regulatory mech-
anism (s) of SSD.

As for a potential mechanism (s) underlying venlafax-
ine in MDD and SSD, nine DRGs and 532 TF2target
DCLs were responsible for distinguishing pre-treatment
and post-treatment MDD samples (Additional file 1:
Table S2). However, no DRGs or TF2target DCLs were
found between pre-treatment and post-treatment SSD
samples, suggesting that venlaxafine appears to have a
significant effect on the gene expression profile of MDD
patients but no significant effect on the gene expression
profile of SSD patients.

Different mechanisms underlying MDD and SSD
DCEA and DRA revealed no similarities between the
differential regulatory processes underlying MDD and
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Figure 3 Key TF2target DCLs of Venlafaxine in MDD. Nine differentially requlated genes (yellow squares) display the action of venlafaxine in
MDD. Squares represent transcription factors (yellow = differential, blue = non-differential), circles represent target genes (yellow = differential,
blue = non-differential), and lines represent the action of transcription factors on target genes (green = positive regulation in disease samples
transformed to negative regulation in control samples or vice-versa, red = unchanged regulation).

Table 3 Identification of 10 TF2taraget DCLs through comparing SSD pre-treatment and healthy control samples

No. TF Target

p. DCG cor.1

cor.2

Type

PATZ1"
PATZ1"
PATZ1"
P53

PATZ1"
CBFB

PATZ1"
PATZ1"
PATZ1"
10 PATZ1"

ury

ADAM17
CALM3

CIB1

FUS”
LOC100130776
MACROD2"
NLGN2
SECISBP2L
POLD4

PTMA

O 00 N O u1n A W N

0.018596
0.018596
0.018596
0.001496

0.018596
0.029467

0.018596
0.018596
0.018596
0.018596

-0.71
0.03
0.03
-047
0.54
-0.53
-0.07
-0.68
-0.18
-0.37

0.97
0.94
0.93
0.97
-0.97
097
-0.94
0.97
0.97
0.97

1
1

“Denotes DCG in each TF2target DCL. Some rows were discarded (strikethrough) since they are individual basis. Rows in bold represent the 8 key-DRLssp. The
p. DCG column denotes the p-value of DCG for each TF2target DCL; the “Cor.1” and “Cor.2” columns represent the correlation coefficients of the two respective
conditions. The “Type” column reflects the mode of regulation with “1” denoting a positive/negative regulation in disease samples switched to a negative/positive

regulation in control samples and “0” denoting no change in regulation.
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Figure 4 Key TF2target DCLs in SSD. Eight TF2target DCLs showing
the differential regulatory mechanisms in SSD. Squares represent
transcription factors (yellow = differential, blue = non-differential), circles
represent target genes (yellow = differential, blue = non-differential), and
lines represent the action of transcription factors on target genes

(green = positive regulation in disease samples transformed to negative
regulation in control samples or vice-versa, red = unchanged regulation).

SSD. Specifically, six DRGs (FOSL1, SRF, JUN, TFAP4,
SOX9, and HLF) and 16 TF2target DCLs appear to be
the key differential factors in MDD; in contrast, one
DRG (PATZ1) and eight TF2target DCLs appear to be
the key differential factors in SSD (Tables 2, 3). More-
over, there was no overlap in MDD target genes and
SSD target genes. While there were 62 downstream
target genes for MDD or SSD, there was no overlap in
MDD target genes and SSD target genes. In addition, via
the Wilcoxon test, we found that the distance between
TFs and target genes in SSD were significantly larger
than those in MDD (p = 0.02). Therefore, although MDD
appears to include more key-DRGypp and key-DRLypp
as compared to the number of key-DRGgsp and key-
DRLgsp in SSD, the extent of differential gene regulation
in MDD was lower than that in SSD. Based on this evi-
dence, we hypothesize that MDD involves preferential
influence to a wider set of genes, while SSD involves pref-
erential influence of gene regulatory elements.

With regard to venlafaxine’s mode of action in MDD,
nine transcription factors (ARID5B, ATF6, BPTE, GATA3,
HANDI, IL10, NFE2L1, NFYC, and RFX1) were found to
act on 256 target genes. In contrast, no differences be-
tween pre-treatment and post-treatment SSD were identi-
fied, suggesting that venlafaxine has no significant effect
on the gene expression profile of SSD patients. Therefore,
as the aforementioned evidence reveals that MDD and
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SSD display completely different underlying mechanisms,
we presume that venlaxafine has no significant effect on
SSD patients due to the different underlying mechanisms
of the two depressive subtypes. In future studies, conduct-
ing a similar analysis involving additional antidepressants
would provide additional evidence to support this view
and may provide insight into other antidepressant therap-
ies or potential drug targets that may be more efficacious
for SSD patients.

Numerous hypotheses for MDD

The pathoetiology underlying MDD remains largely un-
known [23]. MDD can spontaneously develop but often
follows a traumatic emotional experience or can be a
symptom of other diseases, most often neurological (e.g.,
stroke, multiple sclerosis, and Parkinson’s disease) or
endocrine (e.g., Cushing’s disease and hypothyroidism).
MDD can also be triggered by pharmacological agents
or drug abuse [24]. Different mechanisms have been
proposed to explain the pathophysiological basis of
MDD from a neurobiological point of view [25,26]
These hypotheses include monoaminergic deficiency,
hypothalamic-pituitary-adrenal (HPA) axis dysregula-
tion [27-29], neurogenetic and neurotrophic-growth
factor impairment, metabolic disturbances, circadian
rhythm desynchronization, and inappropriate stimula-
tion of the immune system [25,26,30]. This multiplicity
of hypotheses can be explained by the fact that several
of them are intertwined rather than being mutually
exclusive [27-30]. Moreover, it is probable that differ-
ent endophenotypes correlate with different neurobio-
logical adaptations. From this vantage point, a lack of
criteria in selecting appropriate patients may contrib-
ute to the difficulties experienced in the quest for new
therapies that rely on non-monoamine mechanisms of
action.

Lighting the future for antidepressant R&D
The efficacy of available antidepressant therapies has
been demonstrated with respect to placebo, especially in
cases of severe depression [31]. Nevertheless, a relatively
large number of patients still fail to respond to conven-
tional treatment [32]. Moreover, a number of symptoms
may not be adequately resolved in patients that experience
an overall positive therapeutic response. In addition, al-
though the safety profile of newer antidepressant agents is
quite superior to older drugs, the incidence of side effects,
such as sexual dysfunction, may cause therapy discontinu-
ation, especially in younger patients. Therefore, consider-
able efforts have been dedicated to developing therapeutic
agents that address novel neurobiological targets with the
hope of overcoming the aforementioned issues [33,34].
Unfortunately, approaches aimed at identifying therapies
based on different mechanisms have not been successful
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[35], and pharmaceutical companies are disengaging from
this disease area, which has been perceived as highly
risky. One reason is our insufficient understanding of
the neurobiological basis of MDD [26,30]. As discussed
earlier, MDD is likely a constellation of merging dis-
ease states that can be split into endophenotypes [27].
Several lines of evidence support the notion that the
occurrence of environmental challenges, often in the
form of stressful experiences, needs to be associated
with a pre-existing genetic predisposition to bring
about the disease [36]. The bioinformatic analysis in
this report provides reliable evidence that can support
future antidepressant R&D efforts.

Study limitations

First, the sample size of the current study was limited;
thus, the low power of this study limits the applicability
of our findings. Second, this study only employed two
methods — DCEA and DRA - to analyze the expression
profiles of the samples. Although this did provide novel
evidence that can aid in pharmacological target develop-
ment, no biological experiments were performed to
validate the findings. Therefore, further biological ex-
periments with larger sample sizes are required to val-
idate the current findings. Third, it would have been
more insightful to measure clinical response to venlax-
afine in terms of improvements in depression rating
scales in lieu of assessing differential expression pre-
and post-treatment without regard to clinical response.
Unfortunately, there were no clinical response data re-
ported in the previously published studies. Therefore,
for our future research on this topic, we will collect pa-
tient samples from our hospital and record the clinical
responses in terms of improvements in depression rat-
ing scales.

Conclusions

Here, we applied DCEA and DRA in comparing the
transcriptomic profiles of peripheral blood lymphocytes
from MDD and SSD patients, which revealed no appar-
ent similarities between the differential regulatory pro-
cesses underlying MDD and SSD. Six DRGs (FOSLI,
SRE, JUN, TFAP4, SOX9, and HLF) and 16 TF2target
DCLs appear to be the key differential factors in MDD;
in contrast, one DRG (PATZ1) and eight TF2target
DCLs appear to be the key differential factors in SSD.
Moreover, there appears to be no overlap between MDD
target genes and SSD target genes. In addition, venlaxa-
fine appears to have a significant effect on the gene ex-
pression profile of MDD patients but appears to have no
significant effect on the gene expression profile of SSD
patients. This bioinformatic analysis may provide novel
insights that can support future antidepressant R&D
efforts.
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