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A B S T R A C T

In order to overcome intercellular variability and thereby effectively assess signal propagation in biological
networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While
fluorescent biosensors have been the tool of choice to monitor the dynamics of protein interaction and enzymatic
activity, co-measuring more than two of them has proven challenging. In this work, we designed three spectrally
separated anisotropy-based Förster Resonant Energy Transfer (FRET) biosensors to overcome this difficulty. We
demonstrate this principle by monitoring the activation of extrinsic, intrinsic and effector caspases upon
apoptotic stimulus. Together with modelling and simulations we show that time of maximum activity for each
caspase can be derived from the anisotropy of the corresponding biosensor. Such measurements correlate re-
lative activation times and refine existing models of biological signalling networks, providing valuable insight
into signal propagation.

1. Introduction

Cellular function emerges from the concerted activities of multiple
proteins structuring interconnected signalling networks that receive,
process and relay information. To understand signal propagation and
thereby cellular processes it is necessary to monitor the state of key
nodes in such networks with high spatial and temporal resolution in
single living cells [42,40]. The aforesaid comprehension of information
flow and regulation between key nodes has brought insight in therapy
development [27].

One of such networks is the apoptotic signalling cascade. The
apoptotic network can be portrayed by describing the activation dy-
namics of its key nodes which are the proteases known as caspases.
These are cysteine-aspartic proteases found in animal cells as inactive
proenzymes, which can be classified into effector caspases, capable of
directly dismantling cells, and initiator caspases, regulating effector
caspases [2]. Initiator caspases can be further classified into extrinsic or
intrinsic whether they transduce signalling from ligands, such as TNF-α,
or from inside the cell, such as reactive oxygen species or DNA damage
[29]. Quantifying the activation timing between caspases could provide
information about the network topology and connection strength.

Fluorescent biosensors have long been the tool of choice to obtain
time courses of the single cell state of these nodes [12]. In particular,
ratiometric Förster Resonant Energy Transfer (FRET) based approaches
using fluorescent proteins (FP) have provided dynamical information
with subcellular resolution [30,8]. FRET is the non-radiative energy
transfer, via dipole-dipole coupling, between two nearby (∼5 nm)
fluorophores. The energy transfer rate is dependent on the relative
distance and orientation of the fluorophores and thereby is a sensitive
readout of the biosensor conformation.

A typical ratiometric heteroFRET biosensor consists of two spec-
trally separated fluorophores: a donor and a red-shifted acceptor. These
are usually linked by a sensitive domain that transduces a biological
signal, for example phosphorylation [25,11], methylation [19,15] or
protein cleavage [41], to a conformational change which can be mea-
sured as a variation in the relative donor/acceptor fluorescence in-
tensity.

Several reports demonstrated simultaneous imaging of two different
ratiometric FRET sensors [1,26,22,24,9,23,18,21]. However, due to the
broad spectra of FP it is challenging to image more than 2 sensors (4 FP)
in the visible range. When cellular compartments of interest can be
spatially resolved, sensors with similar spectral properties can be
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targeted to each of them; a technique known as spatial multiplexing
[10,26,13]. In other cases, computational multiplexing (i.e. to digitally
combine the information from multiple cells expressing different pairs
of sensors) has also been used to co-measure three sensors [22]. How-
ever, the applicability is limited due to high variability in biological
systems. It would be desirable to have a FRET sensor with a narrower
spectra in order to image more activities simultaneously.

FRET between identical or spectrally similar fluorescent proteins
can also be measured by monitoring the depolarization of the emission
using fluorescence polarization microscopy, and has the advantage of
reducing spectra per sensor. Upon excitation with linearly polarized
light, the fluorescence emission of FP will be anisotropic due to a
photoselection effect on fluorophores and a large rotational diffusion
time as compared to the fluorescence lifetime. To the contrary, FRET
will transfer energy to non-photoselected FP resulting in a more iso-
tropic emission [6,28]. This can be determined by comparing the po-
larization components in the planes parallel and perpendicular to the
excitation (see Fig. 1A). Genetically encoded proteins have been de-
signed to implement this technique for detection of protein clustering
[5], measuring protein conformations [37] and protease activity [33].
Unlike their heteroFRET counterparts in which analytical methods to
derive quantitative biological information have been broadly demon-
strated [31], information derived from anisotropy FRET-based sensors
has mostly remained at the qualitative level. However, it is of interest to
pursue this family of biosensors as their narrower spectral window per

sensor would in principle allow to co-measure a larger number of them
[32]. Until now, only two number of activities have been co-measured
[39].

In this work we demonstrate for the first time that three biosensors
can be indeed co-measured and also provide a quantitative and reliable
readout of the timing of key events in a signalling network. We apply
this concept to track in time three key steps in the apoptotic network,
namely the activation of caspase 8, 9 and 3 (extrinsic, intrinsic and
effector caspases respectively). Our results demonstrate that multi-
parametric quantification allows to distinguish between competing
molecular models and therefore provide a more detailed insight into
signal propagation.

2. Results

2.1. Design of three spectrally separable FRET based biosensors

We designed and optimized three spectrally distinct anisotropy
FRET-based biosensors. For this purpose we calculated the Förster radii
of different pairs of fluorescent proteins with suitable spectral char-
acteristics. We generated several candidate tandem constructs across
the visible spectrum for those with larger R0 and compared their
fluorescence anisotropy to their single FP counterpart (Supplementary
Fig. 1). It is worth noticing that in the blue range, constructs consisting
of different kinds of FP were looked into due to their short Förster

Fig. 1. Spectrally separable anisotropy
FRET-based sensors state can be de-
termined by fluorescence polarization mi-
croscopy. (A) Fluorescent proteins within a
sensor are linked by a sequence recognized by
the protease of interest. Upon activation of this
enzyme, the population of sensors is gradually
cleaved. Consequent to excitation with linearly
polarized light, the emission of the ensemble of
fluorescent proteins exhibits a significant po-
larization anisotropy due to the occurrence of
FRET in dimers. In contrast, as dimers are
cleaved into monomeric state, the emission of
fluorescent proteins is more polarized. As the
reaction is unidirectional, the fraction of
cleaved sensor is therefore a measure of the
integral activity of the protein of interest. (B)
Excitation and emission spectra of FRET sen-
sors designed to take advantage of the visible
range in order to monitor simultaneously the
activity of three enzymes. Filters used to vi-
sualize each fluorophore are detailed below
the plot. (C) Anisotropy images obtained for a
single cell where each column corresponds to
each channel. The same cell was imaged before
and after apoptosis and is shown in each row.
A considerable change in anisotropy can be
appreciated in each channel along with typical
apoptotic morphological changes. Scale bar is
10 μm.
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distance. Here, the difference in anisotropy between states arise not
only from FRET but also from the filters used and the effect of objec-
tives NA [32]. The same approach was found useful in the red range.

Some of the tandem constructs showed a significant anisotropy
change indicating the occurrence of FRET. On the other hand, some
constructs did not exhibit a significantly lower fluorescence anisotropy
than their monomer counterpart most likely due to an unfavourable
relative orientation of the chromophores in the constructs, an effect that
is difficult to take into account in the calculations of Förster distance.
Among those, we selected a set of three constructs and their corre-
sponding filters that could be co-expressed and imaged simultaneously
in the same cell. The selected sensor set consisted of TagBFP-x-Cerulean
(named here: x-b), mCitrine-x-mCitrine (x-y) and mCherry-x-mKate2 (x-
r) (Fig. 1B).

Having successfully obtained a suitable sensor set, we engineered
each of them into a caspase activity sensor by replacing the linker (x)
with a cleavable sequence specific for caspase 3 (Cas3). HeLa cells were
transfected with these sensors (Cas3-b, Cas3-r and Cas3-y) and sub-
jected to an apoptotic stimulus leading to caspase activation and sub-
sequent biosensor cleavage (See Section 4.2). Using automated fluor-
escence microscopy, modified for polarization fluorescence
measurements, we monitored the state of the sensor set. Resulting
images were background and G-factor corrected and segmented into
individual cells (see Supplementary Fig. 2 and Sections 4.3 and 4.4).
This procedure resulted in a significant change in their polarization
anisotropy confirming the expected biosensor function (Fig. 1C).

2.2. From anisotropy signal to enzymatic activity

As onset of apoptosis can occur anytime during the length of the
experiment, sensors were monitored before, during and after the out-
start. The mean anisotropy and intensity among other estimators to-
gether with morphological attributes were calculated for the cell.
Anisotropy change as well as morphological signs of apoptosis can be
appreciated (see Fig. 2A).

The measured anisotropy at each time point reflects the mean ani-
sotropy weighted by concentration of biosensor in each state (monomer
vs dimer). Given that the cleavage reaction is unidirectional, the frac-
tion of biosensor in monomeric, cleaved, state (m) results from the in-
tegrated enzymatic activity of the caspase of interest. It can be de-
monstrated from reaction equations and also numerically that the
derivative of anisotropy time series, divided by the normalized aniso-
tropy curve, is a good proxy of instantaneous caspase activity (see
Section 4.5 and Fig. 2B and C). This holds true even for enzymes em-
bedded in more complex networks.

To demonstrate this principle we modified a well established in si-
lico model of the capase network [3] consisting in 58 species and 28
reactions by including the biosensors and simulated time evolution of
the fraction of cleaved sensor from which the anisotropy was obtained
(see Section 4.6). In this way we can compare the time of maximum
activity (tmax) as obtained from simulations to the one derived from
simulated anisotropy curve using the proposed method. Even for two
distinct simulated activity profiles (see Fig. 2C red and blue) the time of
maximum activity (dark arrow) agrees with the one derived by our
method (dashed lines). In contrast, a common readout such as the time
at which anisotropy reaches 50% of the change strongly depends on
activity profile (blue and red stars).

2.3. Extrinsic, intrinsic and effector caspase activity were measured to study
signal propagation in apoptotic network

In order to estimate the uncertainty of the method, anisotropy and
corresponding caspase activity time series was obtained for each cell
expressing three different spectral versions of caspase 3 activity sensors
(Cas3-b, Cas3-r, Cas3-y, see Fig. 3A). All cells with a significant step
increase in anisotropy exhibited the morphological changes expected

for apoptosis. Time series corresponding to cells not responding to
treatment were discarded (See Section 4.4). As expected, the observed
transition of 54 different cells are scattered throughout the 15 h ex-
periment (Fig. 3A rug plot) but the differences in activation time within
the same cell was 10

3 min. (median where lower and upper bounds
correspond to the first and third quartiles, see Fig. 3B).

To investigate timing of the apoptotic network we then use the same
principle to generate additional activity sensors for caspases 8 and 9
using previously published cleavage sequences (see Section 4.1)
[41,36,35,16,7]. By co-transfecting Cas3-b, Cas8-r and Cas9-y in HeLa
cells we measured the activation times of these key nodes in individual
cells after stimulation with TNF-α (see Fig. 3C). While the activation
time of effector caspase 3 was not deterministic after stimuli, caspase 3
always reached maximum activity before caspase 8 ( =tΔ 52

9 min.). This
is consistent with the fact that caspase 8 activity grows slowly until
caspase 3 feeds back into it (not shown) and with previously described
models [20,3]. Furthermore, caspase 3 maximum activity preceded
caspase 9 by 85

14 min., meaning that caspase 9 was the last caspase to
achieve maximum activity.

2.4. Correlation and distribution in measured timing deliver insight into
apoptotic network modelling

Having observed simultaneously the three nodes of the network, a
positive correlation was found between time difference from caspase 8
to caspase 3 ( tΔ (Cas3-b, Cas8-r)) and caspase 9 to caspase 3 ( tΔ (Cas3-
b, Cas9-y), see Fig. 3D, orange contour). We hypothesized that the
source of such heterogeneity might be cell to cell variability in the
overexpressed sensor concentration and sequestration by the biosensor.
To test this scenario in silico, we sampled biosensor initial concentra-
tion space and simulated time series to study caspase network timing
using our adapted model (see Section 4.7).

We then applied the same analysis method that was used on ex-
perimental data to the simulated fluorescence anisotropy and found
that variability in sensor expression significantly affected the timing
between caspases and presented the same correlation. At a sensor
concentration of 1.7μM, compatible with typical exogenous expression
levels of FP in HeLa [38], and just 5–10 times higher than PARP con-
centration in the model, we could match the observed correlation of
time. However, the distribution of time difference was not matched to
the experimental data as is evident by the location of the distributions
(Fig. 3D, purple vs orange contours).

Therefore, we seek out to modify the model conserving the observed
experimental features in previous works but accounting from this novel
correlative dataset. As stated previously by Albeck et al. in the original
work presenting EARM [3], different stimuli will generate differences in
the model at the level of ligand and receptor interaction. Therefore, we
scanned parameters related to ligand and receptor activity. Reducing
ligand concentration by a factor of 3 and increasing receptor con-
centration by 5 we could adequately describe timing between caspase 3
and caspase 8, but not caspase 9 (see Supplementary Fig. 3).

On the other hand, subsequent studies by Aldridge et al. [4] showed
how different concentrations of XIAP relative to procaspase 3 give rise
to different substrate cleavage profiles and types of apoptosis. We found
that changes in the initial concentration of XIAP were sufficient to ex-
plain the differences in caspase maximum activity order of occurrence
(see Fig. 3D, blue and E). This effect can be interpreted by noticing in
the model that XIAP belongs to one of the pathways connecting caspase
8 with caspase 3, without going through caspase 9 (see Fig. 3D). To
systematically obtain the optimal model values we scanned XIAP, li-
gand and receptor concentrations and compared the outcome of the
simulation with our experimental results by comparing the time dif-
ferences distributions (see Section 4.7, and Supplementary Fig. 4).
Multivariate normal noise was added to simulated time differences
using a covariance matrix calculated from the time differences dis-
tribution of the experiment where all linkers where specific for caspase
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3. By scanning these parameters we found that reducing XIAP con-
centration by three orders of magnitude exchanges the order between
caspase 9 and caspase 3 to accurately describe experimental observa-
tions without affecting other predictions. Modifying ligand, receptor
and XIAP initial concentration proved to be sufficient to recover our
experimental observations without loosing any other previously ob-
served predictions of the model.

3. Discussion

In this work we demonstrate for the first time that three anisotropy
FRET-based biosensors can be co-measured in single cells obtaining
correlative biological information from their photophysical signals. In
this way, the propagation of biological signals in response to stimuli can
be monitored by quantifying the state of key nodes within the network.

Our work introduces new options for imaging multiple signalling
activities in single cells. Notably, the sensors are based on a broad
palette of established fluorescent proteins, profiting from many years of

optimization for cellular imaging purposes [34]. The acquisition of
polarized imaging data can be achieved with relatively simple and in-
expensive modifications of a standard fluorescence microscope. Aniso-
tropy calculation is straightforward and relies on signal ratios, thus it is
relatively insensitive to sample thickness, light intensity and con-
centration [14]. Therefore, the sensors presented in this work are in
principle compatible with embryological and organotypic studies and
could provide valuable insight about the spatial and temporal regula-
tion of apoptosis during development and processes involved in neu-
rodegeneration or neuronal loss.

Currently it is the only method capable of simultaneously imaging
three FRET-based biosensors in a single cell without introducing addi-
tional limitations such as spatial or computational multiplexing.
Moreover, simultaneous monitoring gives information on correlation
between signals that would be otherwise missed out. Importantly, the
principle is applicable to other readouts as long as a sensor motif is
known.

Alongside the implementation of multiple sensor, our work reveals

Fig. 2. Cells were transfected with the de-
veloped biosensors to transduce integral
caspase activity into anisotropy signal. (A)
Through fluorescence and fluorescence polar-
ization microscopy we can see how apoptotic
cells change their roundness and start bleb-
bing, at the same time as we monitor the shift
in anisotropy. Scale bar is 15 μm. (B)
Anisotropy curve obtained from mean parallel
and perpendicular intensity reports the in-
tegral activity of the caspase in study.
Instantaneous enzymatic activity can be cal-
culated after using finite differences to find the
derivative of anisotropy. The time of maximum
activity is a robust readout of caspase timing.
Blue vertical lines represent the time from
which images are shown. (C) By means of an
adapted apoptotic network of ordinary differ-
ential equation model we simulated caspase
activity over different concentrations of bio-
sensors in the cell and the anisotropy signal
detected. Sigmoid-like and hyperbolic-like
profiles correspond to distinct possible enzy-
matic activities. Stars in anisotropy curves co-
incide with the time when anisotropy reaches
50% of total change. Using the described pi-
peline, it is clearly shown how simulated
maximum activity (represented as a black
arrow head) and tmax calculated from simulated
anisotropy curve (dashed line) agree and do
not depend on the signal profile, nor on the
concentration of biosensor. (For interpretation
of the references to color in this figure, the
reader is referred to the web version of this
article.)
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Fig. 3. Three spectrally distinct biosensors are used to analyze signal propagation in different nodes of a complex network. (A) Top panel: Anisotropy signal
time series from three biosensors transducing activity of the same enzyme show similar behaviour. While the time of maximum activity differs substantially from cell
to cell (rug plot, above), the variations between sensors within each cell is small. Inset: Time series for all cells (N=54) time translated to maximum activity as
reported by Cas3-b sensor (−2.5 to 2.5 h). Bottom panel: Proportional monomer derivative curve. Inset: zoom showing negligible time differences of maximum
activity. (B) Bidimensional hexagonal histogram of time differences reported by Cas3-y (horizontal axis) and Cas3-r (vertical axis) referenced to Cas3-b (with
histograms on respective axes). Kernel density contour lines enclosing 34% and 68% of data points. Notice that data points are concentrated near the origin. (C)
Analogous to A where in this case anisotropy signals show the different activity profiles for caspase 8, 9 and 3 (N=121 cells). Notice that significant time differences
in activation are observed. (D) Orange contour lines represent experimental points meaning that caspase 3 maximum activity is reached first. Shown in Purple are
results for a previously published model simulating the apoptotic network adapted only to include the biosensors without any parameter modification. While timing
between caspase 3 and 8 are compatible, order and timing of caspase 9 does not coincide with observed timing. After modifying XIAP, ligand and receptor
concentration, timing obtained through modelling is comparable to the one observed experimentally, shown in blue. (E) Simplified version of the apoptotic cascade
model where main information flow routes are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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novel analytical methods to transform photophysical signals corre-
sponding to anisotropy experiments into the state of an enzyme of in-
terest. From this biologically relevant readout, we derived the activa-
tion timing between effector and initiator caspases. In particular, we
found effector caspase 3 reaches maximum activity 52

9 minutes before
extrinsic initiator caspase 8. Maximum activity of caspase 8 has been
described to occur after caspase 3 due to its slow dynamics and feed-
back between them. Similarly, caspase 3 time of maximum activity
takes place 85

14 minutes before caspase 9 as XIAP inhibition from mi-
tochondrial species is much faster than activation of caspase 9.
Interestingly, XIAP initial concentration regulates whether cells go
through type I or type II apoptosis, as previously stated.

Mathematical modelling was necessary to compare the specific
order of activation, and the origin of the observed photophysical signal
had to be interpreted as a result of the state of sensor ensemble and
subsequently into active enzyme state. This procedure presents a
complete process that is scalable to answer new biologically interesting
questions. Other stimuli, such as reactive oxygen species could be used
to onset an intrinsic apoptotic response and study differences in caspase
activation order by perturbing the network at different nodes [33].
Through careful signal interpretation and data acquisition, biological
networks can be simulated to better understand their systemic beha-
viors.

4. Methods

4.1. Plasmids

Anisotropy sensors were constructed by inserting a second fluor-
ophore amplified by PCR and flanked by a SpeI and a SalI restriction
site and containing a STOP codon into the SpeI/SalI restriction sites of a
C1-vector backbone (Clontech). Additionally, the PCR product con-
tained a short linker sequence at the 5′ end. These plasmids were used
as non-cleavable controls. To construct the cleavable caspase sensors,
the sequences encoding the cleavage sites of caspase 3, 8 and 9 (DEVD,
IETD-IETD, LEHD, respectively) were amplified by PCR and the pro-
ducts, flanked by a BspI and a SpeI cleavage site, subcloned into the
corresponding restriction sites of the digested non-cleavable control
sensors. In addition, the PCR products were flanked by a previously
published linker sequence [20].

4.2. Cell culture and imaging sample preparation

HeLa cells were grown in DMEM (PAN Biotech) supplemented with
10% fetal calf serum (FCS, Gibco), 100 U/ml penicillin, 100 μg/ml
streptomycin, 1% L-glutamine and 1% non-essential amino-acids (all
PAN Biotech) at 37 °C and 5% CO2 in a humidified incubator. On the
day before transfection cells were seeded in 8 well dishes (LabTekII,
Nalgene) at a density of ×3 104 cells. Transfection was carried out using
Fugene 6 (Promega) following the manufacturer's protocol. 20 h post
transfection cells were imaged in DMEM without Phenol red (PAN
Biotech) and 0% FCS either in presence of 1 μM Staurosporin (Sigma
Aldrich, Germany) or 50 ng/ml TNF-α (Invitrogen) together with
10 μg/ml Cycloheximide (Sigma Aldrich, Germany) to induce apoptosis
or DMSO as a control.

4.3. Image acquisition

Data for anisotropy imaging was acquired with a custom built setup,
as previously described [32,37]. Briefly, images were acquired using an
Olympus IX81 inverted microscope (Olympus, Germany) equipped with
a MT20 illumination system. A linear dichroic polarizer (Meadowlark
Optics, Frederick, Colorado, US) was placed in the illumination path of
the microscope, and two identical polarizers were placed in an external
filter wheel at orientations parallel and perpendicular to the polariza-
tion of the excitation light. Fluorescence was collected via a 20X 0.7 NA

air objective, and parallel and perpendicular polarized emission images
were acquired sequentially on an Orca CCD camera (Hamamatsu Pho-
tonics, Japan). The CellR software (Olympus, Germany) or an in-house
developed LabVIEW (National Instruments) program was used to con-
trol the data acquisition. Before each experiment, a reference sample
consisting of a dilute fluorescein solution was measured. The samples
were imaged at 37 °C using a temperature control system consisting of
an objective heater and the Stable Z specimen warmer (Bioptechs Inc.,
Butler, PA, USA). Images were acquired every 10min for a period of
15 h in the experiment for three different caspases or every 15min for
12.5 h in the experiment where all three sensors monitor caspase 3
activity.

4.4. Image processing

To correct for uneven illumination, parallel and perpendicular
images were divided pixel-wise by the corresponding parallel and
perpendicular images acquired from a dilute fluorescein solution. As
the anisotropy value of fluorescein is close to zero, this operation also
constitutes an effective G-factor correction, which corrects for differ-
ences in the detection sensitivity for the two polarization directions,
which are introduced by various optical components, such as the di-
chroic filters [17]. In both resulting images, the background fluores-
cence was then estimated from the average intensity in a small area
outside the cells, and subtracted, yielding the corrected parallel image
(I ), and perpendicular image (I ⊥).

As the emission polarizers introduce a slight shift between the two
images, registration artifacts will arise, visible as shadows in the ani-
sotropy image, unless a correction is applied. The extent of the shift is
the same for all data acquired and was determined by calculating the
maximum agreement using 2D autocorrelation shifting the perpendi-
cular image of a representative data set, with sub-pixel accuracy. The
estimated shifts were used to correct the perpendicular image ( ⊥I ),
before calculating anisotropy. All data analysis operations were per-
formed in Python 3.5.2. Cell Profiler was used to segment and track
cells in the acquired images to later generate curves corresponding to
mean attributes (I , ⊥I ) of each individual cell. These were later used to
calculate fluorescence anisotropy r through

=
−

+
⊥

⊥
r

I I
I I2

.
(1)

By fitting sigmoid curves to different windows of the anisotropy
curves, we obtained parameters used to filter data corresponding to
successful experiments (apoptotic cells) from those consistent with
imaging or segmentation artifacts, as well as non-apoptotic cells.
Aforementioned parameters were also used to select the time lapse
where anisotropy was actually changing due to protease activity.

4.5. Anisotropy signal analysis

In order to derive the fraction of sensor in monomeric state, we
cannot simply use the mean anisotropy but we have to account for
changes in brightness detection. In the case of homoFRET, assuming
both fluorescent proteins have not undergone photobleaching and are
mature, the emission intensity of the dimer is twice that of the
monomer, irrespective of FRET. However, in the case of a hetero-dimer,
the differences in quantum yield and emission spectrum between the
two means that the observed intensity depends on the fraction of
monomer and the FP to FP distance in the dimer. Therefore, observed
fluorescence intensity depends on the detected brightness of each
fluorophore and its concentration,

= +I b M b MM M M1 21 2 (2)

= + +I b b δb D( ) ,D M M1 2 (3)

where M1, M2 and D correspond to each monomer and dimer
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concentration, while I and b are fluorescence intensity and detected
brightness, respectively. As fluorophore pairs are of different kind, their
detected brightness will be different. Furthermore, as energy migrates
during FRET, emission is not equivalent between fluorophores and this
is taken into consideration as δb.

As biosensors are synthesized as pairs of fluorophores, we can as-
sume = =M M M1 2 leading to

= +I b b M( )M M M1 2 (4)

= + +I b b δb D( ) .D M M1 2 (5)

On the other hand, measured anisotropy depends on the intensity
detected of each involved species

=
∑
∑

r
I r
I

.i i i

i i (6)

We can find an expression of m, proportion of sensor in monomeric
state, in terms of anisotropy

= −
− + −

m
b r r

r r r r
( )

( )
,d

m c (7)

where = + + +b b b δb b b( )/( )M M M M1 2 1 2 is the relative brightness of
fluorophores in dimeric over monomeric state, and rM and rD corre-
spond to anisotropy of the biosensor in monomeric and dimeric state
respectively. Defining = +b δb b bΔ /( )M M1 2 , we can use = +b b1 Δ in
the calculation of the derivative of m, taking into consideration that
anisotropy depends on time,

= +
− ⎡

⎣⎢
+ −

−
⎤
⎦⎥

m b
r r

r

b r r
r r

˙ 1 Δ ˙

1 Δ
.

M D D

M D

2

(8)

To sum up, a proportional curve to ṁ can be calculated through
anisotropy, its derivative and its parameters. If a pair of monomers had
the same detected brightness as a single dimer ( =bΔ 0) then the deri-
vative of monomeric fraction would be proportional to the anisotropy
derivative.

Finite differences of order 5 was implemented in order to derive
anisotropy curves while minimizing noise in the derived curve. bΔ was
estimated from time series, by analyzing change in cell total fluores-
cence intensity when anisotropy changes, and fine tuned by correcting
bias in timing of control experiment. Estimated values used for bΔ were
0.15 for construct b, −0.15 for construct r and 0.17 for construct y.

We then calculated monomeric fraction derivative by applying Eq.
(8). As monomer and dimer anisotropy varied considerably from cell to
cell, the denominator was written in terms of the normalized anisotropy
curve. The maximum activity time was obtained after interpolating
with splines the calculated proportional curve to monomeric fraction
derivative.

4.6. Biological model adaptation

A mass action law and ordinary differential equation based model
developed by Albeck et al. [3] (Extrinsic Apoptosis Reaction Model
V1.0) was adapted by the addition of the species corresponding to our
biosensors in the different possible states (dimer, monomer, and in
complex with caspase). Reaction constants were chosen to be the same
as each caspase with its substrate. Other parameters of the model were
also varied to explore new possibilities. Simulated sensor state curves
were generated and subsequently studied to design predictors of cas-
pase state. Anisotropy curves were also generated to evaluate and
compare with the experimentally observed curves.

Furthermore, through mass action law it is clear that derivation of
proportion of sensor in monomeric state will yield a curve proportional
to caspase in complex with sensor, or, caspase instantaneous activity.
Maximum caspase activity was defined as a robust proxy for caspase

timing as it proved to be independent of sensor concentration and
caspase function profile.

4.7. Experimental and model correspondence

As sensor concentration varied greatly producing important time
variations within the model, simulations were made with various
combinations of sensor concentration coming from latin hypercube
sampling. This can be interpreted as the network perturbation caused
by enzyme sequestration due to high sensor concentration. Anisotropy
curves obtained from experiments and simulations were identically
processed to obtain maximum activity times and study caspase time
differences in both cases.

As timing between caspases differed from experimentally observed
time differences, caspase network and bibliography were analyzed in
pursuit of possible modifications that could recover experimental be-
haviour. After finding the biosensor concentration range that re-
produced adequate correlation between time difference from caspase 3
to caspase 8 and caspase 3 to caspase 9, simulations were performed
varying different parameters to explore the best correction. We assessed
matching between simulated and observed times by generating two
dimensional histograms and calculating the Pearson coefficient be-
tween corresponding bins (see Supplementary Fig. 4). Different bin-
nings were used to see robustness of the method employed. A reduction
in XIAP concentration to 102 proteins per cell and ligand to 103 per cell,
as well as an increment in receptor concentration to 103 proteins per cell
was found to be the best matching correction.
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Summary

Three spectrally distinct anisotropy FRET-based biosensors are de-
monstrated by co-monitoring caspase 8, 9 and 3 activity upon apoptotic
stimulus. Signal analysis together with biochemical modelling render a
correlative dataset valuable for understanding signalling networks to-
pology.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.redox.2018.07.023.
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