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Abstract

Negative feedback is common in biological processes and can increase a system’s stability to 

internal and external perturbations. But at the molecular level, control loops always involve 

signaling steps with finite rates for random births and deaths of individual molecules. By 

developing mathematical tools that merge control and information theory with physical chemistry 

we show that seemingly mild constraints on these rates place severe limits on the ability to 

suppress molecular fluctuations. Specifically, the minimum standard deviation in abundances 

decreases with the quartic root of the number of signaling events, making it extraordinarily 

expensive to increase accuracy. Our results are formulated in terms of experimental observables, 

and existing data show that cells use brute force when noise suppression is essential, e.g. 

transcribing regulatory genes 10,000s of times per cell cycle. The theory challenges conventional 

beliefs about biochemical accuracy and presents an approach to rigorously analyze poorly 

characterized biological systems.

Life in the cell is a complex battle between randomizing and correcting statistical forces: 

births and deaths of individual molecules create spontaneous fluctuations in 

abundances1,2,3,4 – noise – while many control circuits have evolved to eliminate, tolerate 

or exploit the noise5,6,7,8. The net outcome is difficult to predict because each control 

circuit in turn consists of probabilistic chemical reactions. For example, negative feedback 

loops can compensate for changes in abundances by adjusting the rates of synthesis or 

degradation7, but such adjustments are only certain to suppress noise if the individual 

deviations immediately and surely affect the rates5. Even the simplest transcriptional 

autorepression by contrast involves gene activation, transcription and translation, 

introducing intermediate probabilistic events that can randomize or destabilize control. 

Negative feedback may thus either suppress or amplify fluctuations depending on the exact 

mechanisms, reaction steps and parameters9 – details that are difficult to characterize at the 

single cell level and that differ greatly from system to system. This raises a fundamental 
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question: to what extent is biological noise inevitable and to what extent can it be 

controlled? Could evolution simply favor networks – however elaborate or ingeniously 

designed – that enable cells to homeostatically suppress any disadvantageous noise, or does 

the nature of the mechanisms impose inherent constraints that cannot be overcome?

Control is limited by information loss

To address this question without oversimplifying or guessing at the complexity of cells, we 

consider a chemical species X1 that affects the production of a second species X2, which in 

turn indirectly controls the production of X1 via an arbitrarily complicated reaction network 

with any number of components, nonlinear reaction rates, or spatial effects (Fig. 1). For 

generality, we only specify three of the chemical events of the larger network:

(1)

where x1 and x2 are numbers of molecules per cell, the birth and death rates are probabilistic 

reaction intensities, τ1 is the average lifetime of X1 molecules, f is a specified rate function, 

and the unspecified control network allows u to be dynamically and arbitrarily set by the full 

time history of X2 values. Death events for X2 are omitted because the results we derive 

rigorously hold for all types and rates of X2 degradation mechanisms, as long as they do not 

depend on X1. The generality of u and f allows X1 to represent many different biological 

species: an mRNA with X2 as the corresponding protein, a protein with X2 as either its own 

mRNA or an mRNA downstream in the control pathway, an enzyme with X2 as a product, 

or a self-replicating DNA with X2 as a replication control molecule.

The arbitrary birth rate u represents a hypothetical ‘control demon’ that knows everything 

about past and present values of x2 and uses this information to minimize the variance in x1. 

This corresponds to an optimal reaction network capable of any type of time-integration, 

frequency-based control, spatially extended dynamics, or other exotic actions. The sole 

restriction is that the control system depends on x1 only via reaction (iii), an example of a 

common chemical signaling relay where a concentration determines a rate. Because 

individual X2 birth events are probabilistic, some information about X1 is then inevitably 

and irrecoverably lost and the current value of X1 cannot be perfectly inferred from the X2 

time-series. Specifically, the number of X2 birth events in a short time period is on average 

proportional to f(x1), with a statistical uncertainty that depends on the average number of 

events. If x1 remained constant, the uncertainty could be arbitrarily reduced by integrating 

over a longer time, but because it keeps changing randomly on a time scale set by τ1, 

integration can only help so much. The problem is thus equivalent to determining the 

strength of a weak light source by counting photons: each photon emission is probabilistic, 

and if the light waxes and wanes, counts from the past carry little information about the 

current strength. The otherwise omniscient control demon thus cannot know the exact state 

of the component it is trying to control.
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We then quantify how finite signaling rates restrict noise suppression, without linearizing or 

otherwise approximating the control systems, by analytically deriving a feedback-invariant 

upper limit on the mutual information10 between X1 and X2 – an information-theoretic 

entropic measure for how much knowing one variable reduces uncertainty about another – 

and derive lower bounds on variances in terms of this limit. We use a continuous stochastic 

differential equation for the dynamics of species X1, an approximation that makes it easier to 

extend the results to more contexts and processes, but keep the signaling and control 

processes discrete. After considerable dust has settled, this theory (summarized in Box 1 and 

detailed in the Supplementary Information, SI) allows us to calculate fundamental lower 

bounds on variances.

Box 1

Outline of underlying theory

Statistical uncertainties and dependencies are often measured by variances and 

correlation coefficients, but both uncertainty and dependence can also be defined purely 

in terms of probabilities (pi), without considering the actual states of the system. The 

Shannon entropy H (X) = Σpilogpi measures inherent uncertainty rather than how 

different the outcomes are, and the mutual information between random variables I (X1; 

X2) = H (X1)–H (X1|X2) measures how much knowing one variable reduces entropic 

uncertainty in another, regardless of how their outcomes may correlate10,27. Despite the 

fundamental differences between these measures, however, there are several points of 

contact that can be used to predict limits on stochastic behavior.

First, because imperfectly estimating the state of a system fundamentally restricts the 

ability to control it (SI), there is a hard bound on variances whenever there is incomplete 

mutual information between the signal X2 and the controlled variable X1. We quantify the 

bound by means of Pinsker’s nonanticipatory epsilon entropy28, a rarely utilized 

information-theoretic concept that exploits the fact that the transmission of information in 

a feedback system must occur in real time. This shows (SI) how an upper bound on the 

mutual information I (X1; X2) – i.e. a limited Shannon capacity in the channel from X1 to 

X2 – imposes a lower bound on the mean squared estimation error E (X1X̂1)2, where the 

‘estimator’ X̂1 is an arbitrary function of the discrete signal X2 time series and the X1 

dynamics at equilibrium is described by a stochastic differential equation. Since the 

capacity of the molecular channels we consider is not increased by feedback, this results 

in a lower limit in the variance of X1, in terms of the channel capacity C, that holds for 

arbitrary feedback control laws: .

Second, the Shannon capacity is potentially unlimited when information is sent over 

point process ‘Poisson channels’29, , as in stochastic reaction networks where 

a controlled variable affects the rate of a probabilistic signaling event. However, infinite 

capacity requires that the rate f (x1) is unrestricted and thus that X1 is unrestricted – 

contrary to the purpose of control. Here we consider two types of restrictions. First, if the 

rate has an upper limit fmax it follows30 that C=K<f> where K= log(fmax/<f>). The 

channel capacity then equals the average intensity multiplied by the natural logarithm of 

the effective dynamic range fmax/<f>, and the noise bound follows 
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. This allows for any nonlinear function f (x1) but, for 

specific functions, restricting the variance in x1 can further reduce the capacity. For 

example, we analytically show that the capacity of the generic Poisson channel subject to 

mean and variance constraints follows . Having less noise in 

x1will reduce the variance in f and thereby make it harder to transmit the information that 

is fundamentally required to reduce noise. Combining this expression for the channel 

capacity with the feedback limit above reveals hard limits beyond which no 

improvements can be made: any further reduction in the variance would require a higher 

mutual information, which is impossible to achieve without instead increasing the 

variance. When f is linear in x1 this produces the result in Eq. (2). Analogous calculations 

allow us to derive capacity and noise results when f is a Hill function, or for processes 

with bursts, extrinsic noise, parallel channels, and cascades (SI). Finite channel capacities 

are the only fundamental constraints considered here, so at infinite capacity perfect noise 

suppression is possible by construction.

Noise limited by 4th root of signal rate

When the rate of making X2 is proportional to X1, f =αx1, for example when X1 is a 

template or enzyme producing X2, the hard lower bound on the (squared) relative standard 

deviation created by the loss of information follows:

(2)

where <…> denotes population averages and N1 = <u>τ1 = <x1> and N2 = α<x1>τ1 are the 

numbers of birth events of X1 and X2 made on average during time τ1. Thus no control 

network can significantly reduce noise when the signal X2 is made less frequently than the 

controlled component. When the signal is made more frequently than the controlled 

component, the minimal relative standard deviation (square root of Eq. (2)) at most 

decreases with the quartic root of the number of signal birth events. Reducing the standard 

deviation of X1 10-fold thus requires that the signal X2 is made at least 10,000 times more 

frequently. This makes it hard to achieve high precision, and practically impossible to 

achieve extreme precision, even for the slowest changing X1 in the cell where the signals X2 

may be faster in comparison.

Systems with nonlinear amplification before the infrequent signaling step are also subject to 

bounds. For arbitrary nonlinear encoding where f is an arbitrary functional of the whole x1 

time history – corresponding to a second control demon between X1 and X2 – the quartic 

root limit turns into a type of square root limit (Box 1 and SI). However, gene regulatory 

functions typically saturate at full activation or leak at full repression, as the generalized Hill 

function  with K1<K2. Here X1 may be an activator or repressor, 

and X2 an mRNA encoding either X1 or a downstream protein. Without linearizing f or 

restricting the control demon, an extension of the methods above (SI) reveals similar quartic 

root bounds as in Eq. (2), with the difference that N2 is replaced by γN2,max where γ is on 

the order of one in a wide range of biologically relevant parameters (SI), and N2,max= vτ1 = 
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N2 v/<f>. Cells can then produce much fewer signal molecules without reducing the 

information transfer, depending on the maximal rate increase v/<f>, but the quartic root 

effect still strongly dampens the impact on the noise limit. If X2 is an mRNA, N2,max is also 

limited because transcription events tend to be relatively rare even for fully expressed genes.

Many biological systems show much greater fluctuations due to upstream sources of noise, 

or sudden ‘bursts’ of synthesis4,11,12. If X1 molecules are made or degraded in bursts (size 

b1, averaged over births and deaths) there is much more noise to suppress, and if signal 

molecules X2 are produced in bursts (size b2) each independent burst only counts as a single 

signaling event in terms of the Shannon information transfer, and:

(3)

The effective average number of molecules or events is thus reduced by the size of the burst, 

which can increase the noise limits greatly in many biological systems. The effect of slower 

upstream fluctuations in turn depends on their time-scales, how they affect the system, and 

whether or not the control system can monitor the source of such noise directly. If noise in 

the X1 birth rate is extrinsic to X1 but not directly accessible by the controller, the predicted 

noise suppression limits can follow similar quartic root principles for both fast and slow 

extrinsic noise, while for intermediate time-scales the power-law is between 3/8 and ¼ (SI, 

and Fig 2).

Information losses in cascades

Signaling in the cell typically involves numerous components that change in probabilistic 

events with finite rates. Information about upstream states is then progressively lost at each 

step much like a game of ‘broken telephone’ where messages are imperfectly whispered 

from person to person. If each signaling component Xi+1 decays exponentially and is 

produced at rate αixi, an extension of the theory (SI) shows that if a control demon monitors 

Xn+1 and controls X1, N2 above is replaced by

(4)

where Nj is the average number of birth events (or bursts, as in Eq. (3)) of species j during 

time period τ1. Information transfer in cascades is thus limited by the components made in 

the lowest numbers, and because the total average number of birth events over the n steps 

obeys Ntot≥n2Neff, a five-step linear cascade requires at least 25 times more birth events to 

maintain the same capacity to suppress noise as a single-step mechanism. This effect of 

information loss is superficially similar to noise propagation where variation in inputs cause 

variation in outputs, but though both effects reflect the probabilistic nature of infrequent 

reactions, the governing principles are very different. In fact, the mechanisms for preventing 

noise propagation – such as time-averaging or kinetic robustness to upstream changes6 – 
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cause a greater loss of information, while mechanisms that minimize information losses – 

such as all-or-nothing nonlinear effects13 – instead amplify noise. Large variation in 

signaling intermediates is thus not necessarily a sign of reduced precision but could reflect 

strategies to minimize information loss, which in turn allows tighter control of downstream 

components.

The rapid loss of information in cascades also suggests another trade-off: effective control 

requires a combination of appropriately nonlinear responses and small information losses, 

but nonlinear amplification in turn requires multiple chemical reactions with a loss of 

information at each step. The actual bounds may thus be much more restrictive than 

predicted above, where assuming Hill functions or arbitrary control networks conceals this 

trade-off. One of the greatest challenges in the cell may be to generate appropriately 

nonlinear reaction rates without losing too much information along the way.

Parallel signal and control systems can instead improve noise suppression, since each 

signaling pathway contributes independent information about the upstream state. However, 

for a given total number of signaling events, parallel control cannot possibly reduce noise 

below the limits above: the loss of information is determined only by the total frequency of 

the signaling events, not their physical nature. The analyses above in fact implicitly allow 

for arbitrarily parallel control with f interpreted as the total rate of making control molecules 

affected directly by X1 (SI).

Systems selected for noise suppression

The results above paint a grim picture for suppression of molecular noise. At first glance this 

seems contradicted by a wealth of biological counterexamples: molecules are often present 

in low numbers, signaling cascades where one component affects the rates of another are 

ubiquitous, and yet many processes are extremely precise. How is this possible if the limits 

apply universally? First, the transmission of chemical information is not fundamentally 

limited by the number of molecules present at any given time, but by the number of 

chemical events integrated over the time-scale of control (i.e., by N2 rather than <x2> 

above). Second, most processes that have been studied quantitatively in single cells do in 

fact show large variation, and the anecdotal view of cells as microscopic-yet-precise largely 

comes from a few central processes where cells can afford a very high number of chemical 

events at each step, often using post-translational signaling cascades. Just like gravity places 

energetic and mechanistic constraints on flight but does not confine all organisms to the 

surface of the earth, the rapid loss of information in chemical networks places hard 

constraints on molecular control circuits but does not make any level of precision inherently 

impossible.

It can also be tempting to dismiss physical constraints simply because life seems fine despite 

them. For example, many cellular processes operate with a great deal of stochastic variation, 

and central pathways seem able to achieve sufficiently high precision. But such arguments 

are almost circular. The existence of flight does not make gravity irrelevant, nor do winged 

creatures simply fly sufficiently well. The challenges are instead to understand the trade-offs 
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involved: what performances are selectively advantageous given the associated costs, and 

how small fitness differences are selectively relevant?

To illustrate the biological consequences of imperfect signaling we consider systems that 

must suppress noise for survival and must relay signals through gene expression, where 

chemical information is lost due to infrequent activation, transcription, and translation. The 

best characterized examples are the homeostatic copy number control mechanisms of 

bacterial plasmids that reduce the risk of plasmid loss at cell division. These have been 

described much like the example above with X1 as plasmids and X2 as plasmid-expressed 

inhibitors5, except that plasmids self-replicate with rate u(t)x1 and therefore are bound by 

the quartic root limit for all values of N1 and N2 (SI, Fig. 2). To identify the mechanistic 

constraints when X1 production is directly inhibited by X2, rather than by a control demon 

that is infinitely fast and that delivers the optimal response to every perturbation, we 

consider a closed toy model:

(5)

where X1 degradation is a proxy for partitioning at cell division, and the rate of making X2 

is proportional to X1 because each plasmid copy encodes a gene for X2. We then use the 

logarithmic gains6,14 H12 = −∂lnu/∂lnx2 and  to quantify the 

percentage responses in rates to percentage changes in levels without specifying the exact 

rate functions. Parameter H12 is similar to a Hill coefficient of inhibition, and H22 

determines how X2 affects its own rates, increasing when it is negatively auto-regulated and 

decreasing when it is degraded by saturated enzymes. The ratio H12/H22 is thus a total gain, 

corresponding to the eventual percentage response in u to a percentage change in x1. With τ2 

as the average lifetime of X2 molecules, stationary fluctuation-dissipation 

approximations6,15 (linearizing responses, SI) then give:

(6)

where the limit holds for all Hij and τi (SI). This reflects a classic trade-off in control theory: 

higher total gain suppresses spontaneous fluctuations in X1 but amplifies the transmitted 

fluctuations from X2 to X1. Numerical analysis confirms that even a Hill-type inhibition 

function u can get close to the limit (not shown), and thus that direct inhibition can do 

almost as well as a control demon. However, the parameter requirements can be extreme: 

the signal molecules must be very short-lived, and the optimal gain 

 may be so high that introducing any delays or ‘extrinsic’ 

fluctuations6,16 would destabilize the dynamics. Regardless of the inhibition control 

network, plasmids thus need to express inhibitors at extraordinarily high rates, and generate 

strongly nonlinear feedback responses without introducing signaling cascades. Most 

plasmids indeed take these strategies to the extreme, for example transcribing control genes 

tens of thousands of times per cell cycle using several gene copies and some of the strongest 
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promoters known. Some plasmids also eliminate many of the cascade steps inherent in gene 

expression, using small regulatory RNAs, and still create highly nonlinear responses using 

proofreading-type mechanisms (Fig. 3, left). Others partially avoid indirect control by 

ensuring that the plasmid copies themselves prevent each others’ replication (Fig. 3, right), 

or suppress noise without closing control loops17,18 by changing the Poisson nature of the 

X1 and X2 chemical events (Eq. (1)). Though such schemes may have limited effects on 

variances11, some plasmids seem to take advantage of them5.

Outlook

Several recent studies have generalized control-theoretic notions19,20 or applied them to 

biology21,22. Others have demonstrated physical limits on the accuracy of cellular 

signaling13,23,24,25, for example using fluctuation-dissipation approximations to predict 

estimation errors associated with a constant number of diffusing molecules hitting a 

biological sensor26. Interestingly, the latter show that the minimal relative error decreases 

with the square root of the number of events, regardless of detection mechanism. Some 

studies have also analyzed the information transfer capacity of open-loop molecular 

systems25, or extracted valuable insights from Gaussian small-noise approximations. Here 

we extend these works by developing exact mathematical methods for arbitrarily complex 

and nonlinear real-time feedback control of a dynamic process of noisy synthesis and 

degradation. In such systems, the minimal error decreases with the quartic root of the 

integer number of signaling events, making a decent job 16 times harder than a half-decent 

job. This perhaps explains why there is so much biochemical noise – correcting it would just 

be too costly – but also constrains other aspects of life in the cell. For example, the noise 

levels may increase or decrease along signaling cascades, depending on the kinetic details at 

each step, but information about upstream states is always progressively and irreversibly 

lost. Though it is tempting to believe that large reaction networks are capable of almost 

anything if the rates are suitably nonlinear, the opposite perspective may thus be more 

appropriate: having more steps where one component affects the rates of another creates 

more opportunities for losing information and fundamentally prevents more types of 

behaviors. While awaiting the detailed models that predict what single cells actually do – 

which require every probabilistic chemical step to be well characterized – fusing control and 

information theory with stochastic kinetics thus provides a useful starting point: predicting 

what cells cannot do.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of optimal control networks and information loss
Biological networks can be overwhelmingly complex, with numerous feedback loops and 

signaling steps. Predictions about noise then rely on quantitative estimates for how every 

probabilistic reaction rate responds to every type of perturbation. To investigate bounds on 

behavior, most of the network is here replaced by a ‘control demon’ representing a 

controller that is optimized over all possible network topologies, rates and mechanisms. The 

bounds are then calculated in terms of the few specified features.
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Figure 2. Hard limits on standard deviations
(left) Intrinsic noise (Eq. (1)). The lower limit on the relative standard deviation normalized 

by that of a Poisson distribution, as a function of the ratio N2/N1. Blue curve corresponds to 

reaction scheme (1), and red to the autocatalytic scheme described above Eq. (5). The 

quartic root is the strongest relative response along either curve, while at low relative 

signaling frequencies the limit is an even more damped function of N2/N1. (Left, inset) The 

same lower limit for an average of 100 X1 molecules, as a function of N2. (Right) Extrinsic 

noise. X1 is made at rate x3u, where X3 is born with constant probability and decays 

exponentially with rate 1/τ3, while intrinsic birth and death noise in X1 is ignored. For 

τ3≪τ1 or τ3≫τ1, the quartic root asymptotic still applies, essentially because the process 

mimics a one-variable random process in both cases. At intermediate time-scales the N2 

dependence is less strict and τ3=τ1 produces an asymptotic power law exponent of 3/8 rather 

than ¼, partly supporting previous6,16 conclusions that extrinsic noise is slightly easier to 

suppress. However, many actual control systems may find intermediately slow noise the 

hardest to eliminate and any predictions about suppressing extrinsic noise will depend on the 

properties of that noise. The predicted extrinsic noise limit is also a conservative estimate, 

and the actual magnitude of the noise limit may be slightly higher (SI).
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Figure 3. Plasmid replication control
(Left) Plasmid ColE1 expresses an inhibitor that prevents replication, similarly to the self-

replication model in the main text with X1 as plasmid and X2 as inhibitor. Because plasmids 

are under selection for noise suppression the theory predicts it must maximize expression 

rates and minimize the length of signaling cascades while still achieving ‘cooperative’ 

nonlinear effects in the control loop. ColE1 indeed expresses a short-lived anti-sense RNA 

inhibitor (RNA I) tens of thousands of times per cell cycle (~10Hz), that directly and 

irreversibly blocks the maturation of a constitutively synthesized sense-RNA replication pre-

primer (RNA II)5 – eliminating both the translation step and binding and unbinding to genes 

and making it energetically and mechanistically possible to produce inhibitors at such high 

rates. ColE1 could also create strongly nonlinear control kinetics by exploiting kinetic 

proofreading in RNA II elongation5,31. Many unrelated plasmids similarly express anti-

sense inhibitors at high rates, avoid cascades, and use multistep inhibition kinetics. (Right) 

Plasmids such as P1, F, and pSC101 use ‘handcuffing’ mechanisms, where repeated DNA 

sequences (iterons) bind each other and prevent replication32. This can achieve similar 

homeostatic dynamics as monomer-dimer equilibria where a higher fraction of molecules 

are in dimer form at higher abundance. Using DNA itself as inhibitor this could eliminate 

the need for indirect signaling altogether, but because the mechanisms seem incapable of 

strongly nonlinear corrections32, most such plasmids use additional control systems that go 

through gene expression and thus are subject to information loss. Plasmids also commonly 

use counteracting loops, where replication inhibitors also auto-inhibit their own synthesis – a 

counter-intuitive strategy that in fact can improve control greatly (increasing H22 for a given 

high H21 in Eq. (4)).
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