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Abstract
Background: Early detection of disease outbreaks enables public health officials to implement
disease control and prevention measures at the earliest possible time. A time periodic geographical
disease surveillance system based on a cylindrical space-time scan statistic has been used
extensively for disease surveillance along with the SaTScan software. In the purely spatial setting,
many different methods have been proposed to detect spatial disease clusters. In particular, some
spatial scan statistics are aimed at detecting irregularly shaped clusters which may not be detected
by the circular spatial scan statistic.

Results: Based on the flexible purely spatial scan statistic, we propose a flexibly shaped space-time
scan statistic for early detection of disease outbreaks. The performance of the proposed space-
time scan statistic is compared with that of the cylindrical scan statistic using benchmark data. In
order to compare their performances, we have developed a space-time power distribution by
extending the purely spatial bivariate power distribution. Daily syndromic surveillance data in
Massachusetts, USA, are used to illustrate the proposed test statistic.

Conclusion: The flexible space-time scan statistic is well suited for detecting and monitoring
disease outbreaks in irregularly shaped areas.

Background
The anthrax terrorist attacks in 2001, the severe acute res-
piratory syndrome (SARS) outbreak in 2002, and a con-
cern about pandemic influenza have motivated many
public health departments to develop early disease out-
break detection systems. Early detection of disease out-
breaks enables public health officials to implement
disease control and prevention measures at the earliest
possible time. For an infectious disease, improvement in
detection time by even one day might enable public
health officials to control the disease before it becomes

widespread. In many cities such as New York City [1],
Washington, D.C. [2], Boston [3,4], Denver, and Minne-
apolis, real-time, geographic, early outbreak detection sys-
tem have been implemented. For a well-defined
geographical area, standard disease surveillance uses
purely temporal methods that seek anomalies in time
series data without using spatial information [5]. The
increased need for geographical cluster detection has coin-
cided with an increasing availability of spatial data [6].
Investigators ask whether the geographical cluster is
unlikely to have arisen by chance given random variations
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from the background incidence, according for the multi-
ple comparisons inherent in the many possible cluster
locations and size evaluated. Scan statistics are tools to
answer such questions [7,8]. Increasingly, there is interest
in the prospective surveillance of new data as it becomes
available in order to detect a localized disease outbreak as
early as possible. Particularly in light of the perceived
threat of bioterrorism and newly emerging infectious dis-
eases, there has been a spate of recent interest in the devel-
opment of geographic surveillance systems that can detect
changes in spatial patterns of disease [9]. Recently, a time
periodic geographical disease surveillance system based
on a cylindrical space-time scan statistic was proposed by
Kulldorff and colleagues [10,11].

Several different approaches to the statistical assessment
of potential geographic clustering in either point-or area-
based disease data have been developed [12,13]. Almost
all of these purely spatial approaches are retrospective, in
the sense that they describe statistical tests that are
designed to be carried out once, on a set of data that has
been collected from the recent past [9]. In particular, the
circular spatial scan statistic [8] has been used extensively
for the detections and evaluation of purely spatial disease
clusters along with the SaTScan software [14]. For exam-
ple, as part of their cancer surveillance initiative, the New
York State Department of Health used the spatial scan sta-
tistic to look at the geographical variation of breast, lung,
prostate, and colorectal cancer incidence in New York
State, finding various statistically significant clusters but
no local hotspots with greatly elevated risk [15]. However,
as the statistic uses a circular scanning window with vari-
able size to define the potential cluster area, it is difficult
to correctly detect some non-circular clusters such as those
along a river [16]. Recently, spatial scan statistics for irreg-
ular shaped clusters have been proposed, using the same
likelihood ratio test formulation as before. The spatial
scan statistics proposed by Duczmal and Assunção [17],
Patil and Taillie [18], Tango and Takahashi [16], Assunção
et al. [19] and Kulldorff et al. [20] are aimed at detecting
irregularly shaped clusters which may not be detected by
the circular spatial scan statistic. Due to the unlimited geo-
metric freedom of cluster shapes, some of these statistics
run the risk of detecting quite large and very peculiarly
shaped clusters. The flexible spatial scan statistic [16],
which has been used along with the FleXScan software
[21], has a parameter K as the pre-set maximum length of
neighbors to be scanned, to avoid detecting clusters with
a very peculiar shape.

In this paper, we propose a flexibly shaped space-time
scan statistic ("flexible space-time scan statistic" hereafter)
for the early detection of disease outbreaks. It is based on
the flexible purely spatial scan statistic [16] and the pro-
spective space-time scan statistic [10]. The performance of

our proposed space-time scan statistic is compared with
that of the cylindrical scan statistic, using the benchmark
data provided by Kulldorff et al. [22]. In order to evaluate
its performance we propose a space-time power distribu-
tion by extending the purely spatial bivariate power distri-
bution [16]. Daily syndromic surveillance data in
Massachusetts, USA, are used to illustrate the proposed
method with real data.

The flexible space-time scan statistic
Consider the situation where an entire study area is
divided into m regions (for example, counties, ZIP codes,
enumeration districts, etcetera), and each region is period-
ically reporting the number of cases of a disease or syn-
drome under study. We assume that, under the null
hypothesis of no clustering, the number of cases Nid is a
Poisson random variable with the observed value nid and
the expected values μid in each region i(i = 1,...,m) at time
d, where μid is proportional to its population size, or a
covariate-adjusted population at risk. Since we are only
interested in detecting clusters that are alive (active) at the
current time tP, we only consider 'alive' clusters that are
present in the following T time intervals:

[tP - T + 1, tP], [tP - T + 2, tP],..., [tP - 1,tP], [tP, tP]

where T is a pre-specified maximum temporal length of
the cluster.

A time periodic geographical disease surveillance system
based on a cylindrical space-time scan statistic has already
been proposed by Kulldorff [10]. The cylindrical space-
time scan statistic uses a cylindrical window in three
dimensions where the base of the cylinder represents
space and the height represents time. As with the purely
spatial scan statistic, the cylindrical space-time scan statis-
tic imposes a circular base Z on each centroid of regions
for each of T time intervals. For each of centroids, the
radius of the circle is varied from zero up to a pre-set max-
imum radius, for example, so that the window never
includes more than 50% of the total population at risk
[8]. In this paper, we use a pre-set maximum number of
regions K to be included in the cluster as an upperbound
of the radius. If the base contains the centroid of a region,
then that whole region is included in the base. In total, a
very large number of different but overlapping circular
bases are created, each with a different set of neighboring
regions and each being a possible candidate area contain-
ing a disease outbreak. Let Zik, k = 1,...,K, denote the base
composed by the region i and the (k - 1)-nearest neigh-
bors to i. Then, all the cylindrical windows to be scanned
by the cylindrical scan statistic are the cylinders with the
base in the set

Z1 1 1= ≤ ≤ ≤ ≤{ | , }Z i m k Kik (1)
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and the heights in the set

On the other hand, a flexible space-time scan statistic
which we propose in this paper imposes a three dimen-
sional prismatic window with an arbitrarily shaped base
Z. For any given region i, we create the set of arbitrarily
shaped bases consisting of k connected regions (1 ≤ k ≤ K)
including i. To avoid detecting a cluster of unlikely pecu-
liar shape, the connected regions are restricted as the sub-
set of the K-nearest neighbors to the region i, where K = 1
implies the region i itself. Let Zik(j), j = 1,...,jik denote the j-
th window which is a set of k regions connected starting
from the region i, where jik is the number of j satisfying
Zik(j) ⊆ ZiK for k = 1,...,K. Then, all the windows to be
scanned are the prisms whose base is included in the set

with height in the set . In other words, for any given
region i, the cylindrical scan statistic consider K concentric
circles for the base, whereas the flexible scan statistic con-
sider K concentric circles plus all the sets of connected
regions including the single region i, whose centroids are
located within the K-th largest concentric circle.

Define L(W) as the likelihood under the alternative
hypothesis that there is a cluster in the space-time window

W(∈ ), where  (or ) and L0 the

likelihood under the null hypothesis. Then, conditioning
on the observed total number of cases, N, the definition
of the space-time scan statistic S is the maximum likeli-
hood ratio over all possible windows W,

Let nW be the number of cases in window W . For the Pois-
son model, let μW be the expected number in window W
under the null hypothesis, so that μG = N for G, the entire
study space in three dimensions. It can then be shown that

if nW > μW, and L(W)/L0 = 1 otherwise. The window for
which the likelihood ratio is maximized identifies the
most likely cluster (MLC) [8]. To find the distribution of
the log likelihood ratio (LLR) under the null hypothesis,
Monte Carlo hypothesis testing [23] is required. p-value
of the test is based upon the null distribution of LLR with

large number B of Monte Carlo replications of data sets
generated under the null hypothesis, i.e.,

where LLRv and LLR* is the value of the test statistic for the
v-th Monte Carlo replicate and that for the observed data,
respectively, and I(·) is the indicator function.

Syndromic surveillance in Massachusetts
We applied the prospective flexible space-time scan statis-
tic to daily syndromic surveillance data in eastern Massa-
chusetts mimicking a real time surveillance system. The
data came from an electronic medical record system used
by Harvard Vanguard Medical Associates [3,24]. We used
the rash and respiratory data during August 1–30, 2005.
The data are geographically aggregated to ZIP codes. The
number of ZIP codes used were different for each syn-
drome, for example cases of the rash were analyzed in 252
ZIP codes and respiratory in 385. Note that for the flexible
space-time scan statistic, the ZIP code whose data does not
exist, was treated like a ravine. For example, assume that
ZIP codes i1 and i2, i2 and i3 are adjacent each other,
respectively, but i1 and i3 are not adjacent. If the data of i2
does not exist under the situation, then it is assumed that
i1 and i3 are not directly connected.

Based on the prior daily data for over a year in MA, the
expected number of cases were calculated as the predicted
means from a generalized linear mixed model (GLMM) as
developed by Kleinman et al, adjusted for seasonal effect,
day of week, etc, these are the same expectations used in
the actual real time surveillance system [25]. We set K = 20
as the maximum length of the geographical window, and
the maximum temporal length to be T = 7 days. The
number of replications for the Monte Carlo procedure was
set to B = 999. In disease outbreak detection, the recur-
rence interval (RI) is often used as an alternative to the p-
value [14]. The measure reflects how often a cluster will be
observed by chance, assuming that analyzes are repeated
on a regular basis with a periodicity equal to the period of
the study. For daily surveillance such as this analysis, the
p-value of 0.001 corresponds to the RI of 1,000 days, i.e.,
2.7 years, and an alpha level of 0.0027 corresponds to one
expected false alarm every year.

The results of analysis during August 1–30 by the flexible
and the cylindrical space-time scan statistics are given in
Tables 1, 2 and Figure 1. The tables show results for the
days with p < 0.0054, which corresponds to the RI of at
least 6 months. When looking at rash outbreaks (Table 1),
both tests detected the same cluster with a single ZIP code
01951 on August 7, with the same temporal length (6
days) and the same RI (2.7 years). Note that the clusters

 = − + ≤ ≤{[ , ] | },t t t t TP P1 1 (2)
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detected by both tests from August 8 to 10 are not signals
of an outbreak because the number of cases on August 8
must be 0, and on August 9 and 10, the number of cases
of the cluster was decreasing. For respiratory syndrome
(Table 2), each test detected a different cluster with the
same RI of 2.7 years on August 12. The cluster detected by
the flexible scan statistic contained 12 ZIP codes, while
that from the cylindrical scan statistic contained 18 ZIP
codes, with 11 ZIP codes detected in common. On August
13 and 14, the flexible scan statistic detected significant
clusters with larger RIs, 333 days and 250 days respec-
tively, while the cylindrical scan statistic detected clusters
with short RIs, 91 days and 30 days respectively. The flex-
ible scan statistic also detected a cluster on August 15 (RI
= 1.4 years) with a temporal length of 6 days, while the

cylindrical scan statistic detected a cluster with a temporal
length of 5 days (RI = 200 days). For the 6 days from
August 12 to 17 (results on August 16 and 17 are not
shown in Table 2 because of shorter RIs), the cylindrical
scan statistic kept detecting the same cluster, while the
flexible scan statistic detected a similar but slightly differ-
ent cluster each day. However, we should acknowledge
the similar lack of evidence in Table 2 for a continued out-
break on August 13 to 14, because the number of addi-
tional cases on those days is very close to the expected
number of additional cases. On the other hand, there is
some evidence for an excess of cases on August 15 (23
additional cases), although the estimated relative risk is
substantially reduced.

Table 1: Detected outbreaks of Rash based on daily syndromic surveillance data in eastern Massachusetts during August 1–30, 2005.

Day zip codes cluster period cases expected llr R.I.(p-value)

Rash:
- flexible

Aug.07 01951 Aug.02–07 7 0.0427 27.949 2.7 years(0.001)
Aug.08 01951 Aug.02–08 7 0.0545 26.259 2.7 years(0.001)
Aug.09 01951 Aug.03–09 6 0.0545 21.562 2.7 years(0.001)
Aug.10 01951 Aug.04–10 5 0.0545 17.315 2.7 years(0.001)

- cylindrical
Aug.07 01951 Aug.02–07 7 0.0427 27.949 2.7 years(0.001)
Aug.08 01951 Aug.02–08 7 0.0545 26.259 2.7 years(0.001)
Aug.09 01951 Aug.03–09 6 0.0545 21.562 2.7 years(0.001)
Aug.10 01951 Aug.04–10 5 0.0545 17.315 2.7 years(0.001)

Table 2: Detected outbreaks of Respiratory based on daily syndromic surveillance data in eastern Massachusetts during August 1–30, 
2005.

Day zip codes cluster period case
s

expected llr R.I.(p-value)

Respiratory:
- flexible

Aug.12 01720, 01742, 01752, 01754, 01772, 01775, 01776, 01778, 02451, 
02462, 02481, 02493

Aug.11–12 42 12.452 17.635 2.7 years (0.001)

Aug.13 01720, 01742, 01749, 01752, 01754, 01772, 01775, 01776, 01778, 
02451, 02462, 02481, 02493

Aug.11–13 46 14.950 16.634 333 days (0.003)

Aug.14 01720, 01742, 01749, 01752, 01754, 01772, 01775, 01776, 01778, 
02451, 02462, 02481, 02493

Aug.11–14 49 16.957 15.927 250 days (0.004)

Aug.15 01702, 01720, 01742, 01749, 01752, 01754, 01772, 01775, 01776, 
01778, 02481, 02493

Aug.10–15 72 29.975 16.726 1.4 years (0.002)

- cylindrical
Aug.12 01701, 01702, 01718, 01719, 01720, 01742, 01749, 01752, 01754, 

01772, 01773, 01775, 01776, 01778, 02451, 02453, 02481, 02493
Aug.11–12 51 20.036 12.688 2.7 years (0.001)

Aug.13 01701, 01702, 01718, 01719, 01720, 01742, 01749, 01752, 01754, 
01772, 01773, 01775, 01776, 01778, 02451, 02453, 02481, 02493

Aug.11–13 55 23.768 10.945 91 days (0.011)

Aug.14 01701, 01702, 01718, 01719, 01720, 01742, 01749, 01752, 01754, 
01772, 01773, 01775, 01776, 01778, 02451, 02453, 02481, 02493

Aug.11–14 59 26.959 10.221 30 days (0.033)

Aug.15 01701, 01702, 01718, 01719, 01720, 01742, 01749, 01752, 01754, 
01772, 01773, 01775, 01776, 01778, 02451, 02453, 02481, 02493

Aug.11–15 82 40.981 11.662 200 days (0.005)
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Statistical power, sensitivity and positive predictive value
In this section, we compare the flexible and cylindrical
space-time scan statistics, using benchmark data from 176
New York City ZIP codes ([14,22]). This benchmark data
has been described in detail elsewhere [22], and here we
only give a brief overview. Based on 2002 numbers, the
total population is 8,003,510. The benchmark data sets
contain a number of randomly located of cases of a hypo-
thetical disease or syndrome, generated either under the
null model with no outbreaks or under one of eight differ-

ent alternative models with an outbreak in one of four dif-
ferent locations and with either a high or modest excess
risk. For each of the null and alternative models, three dif-
ferent sets of data sets were generated, with 31, 32, and 33
days, respectively. For each of the null models, 9,999 ran-
dom data sets were generated. For each of the alternative
models, 1,000 random data sets were generated.

For each data set, the total number of randomly allocated
cases was 100 times the number of days (i.e., 3,100 cases

Detected outbreaks of Rash and Reepiratory in eastern Massachusetts during August 1–30, 2005, by the cylindrical scan statis-tic ((a) and (b)) and the flexible scan statistic ((a), (c) and (d))Figure 1
Detected outbreaks of Rash and Reepiratory in eastern Massachusetts during August 1–30, 2005, by the cylin-
drical scan statistic ((a) and (b)) and the flexible scan statistic ((a), (c) and (d)).

(a) Rash (flexible & cylindrical) (b) Respiratory (cylindrical on Aug.12 and 15)

(c) Respiratory (flexible on Aug.12) (d) Respiratory (flexible on Aug.15)
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in the data sets containing 31 days). The number 100 was
chosen to reflect the occurrence rate of certain syndromes
common to the NYC emergency department(ED)-based
syndromic surveillance system. Under the null model,
each person living in NYC is equally likely to contract the
disease, and the time of each case is assigned with equal
probability to any given day. Thus, each case was ran-
domly assigned to ZIP code i and day d with probability
proportional to μid = popi, where popi is the population of
ZIP code i. For the alternative models, one or more ZIP
codes were assigned an increased risk on Day 31 and,
when applicable, on Days 32 and 33 as well. For these ZIP
code and day combinations, μid was multiplied by an
assigned relative risk. For all other ZIP code and day com-
binations, μid did not change. Each case was then ran-
domly assigned with probability proportional to the new
set of μid to generate data under the alternative models.

Eight alternative models were evaluated, based on four
different outbreak areas of length s* and total population
pop* therein, with either high or medium relative risk
(RR) [22] (Figure 2).

1. Cluster A: a single ZIP code area in Brooklyn (circular
area)

s* = 1, pop* = 85, 089, RR: high = 9.91, medium = 5.66

2. Cluster A5: the same ZIP code with 4 neighboring ZIP
codes (non-circular area)

s* = 5, pop* = 318, 754, RR: high = 4.47, medium = 3.06

3. The Rockaways, 5 ZIP codes area (non-circular area)

s* = 5, pop* = 106, 738, RR: high = 8.48, medium = 5.01

4. Hudson River: 20 ZIP codes areas along the shore of the
Hudson River (non-circular area)

s* = 20, pop* = 827, 382, RR: high = 2.97, medium = 2.24

A maximum length of the geographic window K = 20 was
used for the flexible scan statistic, while the cylindrical
scan statistic used a maximum of either K = 20 or a 50 %
of the population at risk. A period of T = 3 days was used
as the maximum temporal length of the cluster. We did
not use the options to include purely temporal clusters
(see details in [14]).

Standard statistical power
First of all, we estimated the standard statistical power,
which is the probability that the null hypothesis is
rejected at the α = 0.05 significance level, without consid-
ering the overlap between the detected and real clusters.
The random data sets generated under the null model
were used to get the critical values of the scan statistics. For
α = 0.05, this is defined as the 500th highest log likeli-
hood ratio when raning those value from all the 9,999
simulated data sets. The estimated power was then calcu-
lated is the proportion of the 1,000 random data sets that
had a higher log likelihood ratio than the critical value
obtained from the null data sets. The results are shown in
Table 3. In general, the cylindrical space-time scan statistic
has higher power for the three more compact clusters,
while the flexible space-time scan statistic have higher
power for the long and narrow the Hudson River cluster.
On Day 33 of the high excess risk outbreaks, both meth-
ods have very high power.

Space-time power distribution
In order to compare the performance of the cluster detec-
tion tests, the standard power has been derived in the
same manner as for usual hypothesis tests. However, it
should be noted that standard statistical power reflect the
'power to reject the null hypothesis for whatever reasons,'
while the probability of both rejecting the null hypothesis
and accurately identifying the true cluster is a different
matter altogether.

In order to compare the performance of purely spatial
cluster detection tests, Tango and Takahashi [16] pro-
posed a spatial bivariate power distribution P0(l, s | s*)
based on Monte Carlo simulation where l is the length of
the significant MLC, while s is the number of regions iden-
tified out of the true cluster with s* regions.

NYC 176 ZIP codes area and assumed clusters (i) Cluster A, (ii) Cluster A5, (iii) The Rockaways, and (iv) Hudson RiverFigure 2
NYC 176 ZIP codes area and assumed clusters (i) 
Cluster A, (ii) Cluster A5, (iii) The Rockaways, and 
(iv) Hudson River.

Legend

A

Cluster A and A5

The Rockaways

Hudson River
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where L and S denote the random variable of l and s under
the specified model, respectively, and l ≥ 1 and 0 ≤ s ≤ s*.
In a similar manner, we propose a space-time tri-variate
power distribution for a space-time cluster detection test
based on Monte Carlo simulation where the temporal
length of the true cluster is denoted t*:

where U denotes the random variable of t and 1 ≤ t ≤ T.

In Tables 4, 5 and 6, we show the estimated tri-variate
power distribution P(l, s, t | s*, t*) × 1,000 for (a) Cluster
A (s* = 1) on Day 31 (t* = 1) (b) Cluster A5 (s* = 5) on
Day 33 (t* = 3) and (c) the Rockaways cluster (s* = 5) on
Day 33 (t* = 3), in all cases with high excess risk.

This tri-variate power distribution provides us with a
detailed description of the space-time cluster detection
tests performance. For the outbreak in cluster A with a sin-
gle ZIP code, the cylindrical scan statistic has higher power
to detect the cluster with complete accuracy, with P1(l = 1,
s = 1, t = 1 | s*, t*) = 697/1000, compared to 315/1000 for
the flexible. Moreover, the flexible scan statistic has a
heavier tail in the (s, t) = (1, 3) column than the cylindri-
cal one. However the cylindrical scan detected some large
clusters including several with l ≥ 15. For outbreaks in the
non-circular shaped A5 and Rockaway clusters, the flexi-
ble scan statistic has higher power for complete accurate
detection. Indeed, the cylindrical scan statistic cannot
detect these clusters with complete accuracy since they are

not circular, so that the power for complete accuracy is
zero. Moreover, note that for cluster A5, the flexible scan
statistic is more likely to include all the five areas in the
true cluster (797 + 12 = 809/1000 versus 601 + 12 = 613/
1000), and it is also more likely to avoid including any of
the ZIP codes outside the true cluster (12 + 74 + 2 + 287 +
3 = 378/1000 versus 37 + 1 + 301 + 7 = 346/1000). For the
Rockaway cluster, the flexible scan statistic is again more
likely to include all the five areas in the true cluster (667 +
4 + 1 = 672 versus 1 + 0 + 1 = 1), but the cylindrical scan
statistic avoids the ZIP codes outside the cluster more
often (2 + 8 + 52 + 1 + 876 + 6 + 1 + 0 + 0 + 0 = 946/1000
versus 0 + 0 + 6 + 0 + 181 + 1 + 0 + 571 + 2 + 0 = 761/
1000). Tables 5 and 6 show that the temporal accuracy of
the detected cluster is very good for both methods. For
example, for cluster A5, the flexible scan has P1(+, +, 3 |
s*, t*) = ∑l ∑sP1(l, s, 3 | s*, t*) = (15 + 171 + 797)/1000
= 0.983 while the cylindrical scan has P1(+, +, 3 | s*, t*) =
(41 + 338 + 601)/1000 = 0.980.

The complexity of the three-dimensional tri-variate power
distributions suggests that we need some summary meas-
ure. Since the temporal accuracy is very similar, we focus
on the geographical accuracy. We will compute the
extended power of spatial cluster detection tests, as devel-
oped by Takahashi and Tango [26]. We will also define
and compute geographical sensitivity and false positive
rates.

The extended power
We can consider two types of spatial misclassifications
when applying the cluster detection test (CDT). One is a
false negative test result (FN) in which the CDT misses a
region included in the true cluster. Sensitivity is 1 - FN
rate. The other is a false positive test result (FP) in which
the CDT incorrectly detects a region that is not present in
the true cluster. The numbers of FNs and FPs for geograph-
ical detection are s* - s and l - s, respectively.

P l s s L l S s s

l
0( , ,| ) Pr{ , | }

#{

∗ ∗= = =

= significant MLC has length  aand includes  true regions}
trials for each simulation

s
#{ }

(6)
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#{

∗ ∗ ∗ ∗= = = =

= significant MLC hass geographical length  and includes  true regions with l s ttemporal length }
trials for each simulation

t
#{ }

(7)

Table 3: Standard power of the prospective space-time scan statistics – flexible and cylindrical – at different days of the outbreak

Power on Day 31 Power on Day 32 Power on Day 33

Outbreak areas No. of zip 
codes s*

excess 
risk

flex. K = 20 cylind. K = 
20

cylind. 50% 
pop

flex. K = 20 cylind. K = 20 cylind. 50% 
pop

flex. K = 20 cylind. K = 20 cylind. 50% 
pop

Cluster A 1 high 0.764 0.860 0.862 0.988 0.996 0.996 0.999 0.999 0.999
Cluster A5 5 high 0.797 0.850 0.847 0.994 0.996 0.996 1.000 1.000 1.000
The Rockaways 5 high 0.769 0.855 0.840 0.992 0.997 0.997 1.000 1.000 1.000
Hudson River 20 high 0.656 0.597 0.632 0.964 0.933 0.949 0.998 0.994 0.995

Cluster A 1 med. 0.272 0.357 0.357 0.651 0.733 0.737 0.844 0.915 0.916
Cluster A5 5 med. 0.382 0.435 0.428 0.752 0.801 0.795 0.914 0.940 0.941
The Rockaways 5 med. 0.261 0.373 0.348 0.648 0.768 0.759 0.848 0.924 0.917
Hudson River 20 med. 0.290 0.257 0.297 0.631 0.582 0.610 0.845 0.782 0.803
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Table 4: Space-time power distribution P1(l, s, t | s*, t*) for the Cluster A (s* = 1) on Day 31 (t* = 1) with high risk (RR= 9. 91), where t is 
a temporal length of detected cluster. The mark "*" is the powers of accurate detection.

(A) flexible (K = 20)

includes s assumed areas
0 1

29- 30- 31- 29- 30- 31-
length l of areas t = 3 2 1 t = 3 2 1 total

1 0 0 0 0 6 *315 321
2 0 0 0 0 1 50 51
3 0 0 0 1 2 34 37
4 0 0 0 1 6 34 41
5 0 0 0 2 5 48 55
6 1 0 0 2 2 51 56
7 1 0 0 4 13 35 53
8 0 1 0 1 12 28 42
9 1 1 2 5 6 28 43

10 0 0 0 2 7 22 31
11 1 0 0 1 4 8 14
12 1 1 2 1 0 10 15
13 0 0 0 1 1 2 4
14 0 0 0 0 0 1 1
15 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0

total 5 3 4 21 65 666 764

(B) cylindrical (K = 20)

includes s assumed areas
length l of areas 0 1

29- 30- 31- 29- 30- 31-
t = 3 2 1 t = 3 2 1 total

1 0 0 0 5 18 *697 720
2 0 0 0 5 4 63 72
3 0 0 0 1 2 18 21
4 0 0 0 0 4 10 14
5 0 0 0 0 0 2 2
6 1 0 0 1 0 3 5
7 1 0 0 1 1 1 4
8 2 0 0 0 1 1 4
9 0 1 1 0 0 2 4

10 0 0 0 0 0 0 0
11 0 0 0 0 0 1 1
12 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0
14 0 0 0 0 0 2 2
15 0 0 0 0 1 3 4
16 0 0 0 0 0 0 0
17 0 0 0 2 0 1 3
18 1 0 0 0 0 1 2
19 0 0 0 0 0 1 1
20 0 0 0 0 0 1 1

total 5 1 1 15 31 807 860
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Table 5: Space-time power distribution P1(l, s, t | s*, t*) for the Cluster A5 (s* = 5) on Day 33 (t* = 3) with high risk (RR = 4. 47), where t 
is a temporal length of detected cluster, and the raw all cells of which have zero powers of both tests is not shown. The mark "*" is the 
powers of accurate detection.

(A) flexible (K = 20)

includes s assumed areas
3 4 5

31- 32- 31- 32- 31- 32-
length l of areas t = 3 2 t = 3 2 t = 3 2 total

1 0
2 0
3 12 0 12
4 2 0 74 2 78
5 0 0 37 2 *287 3 329
6 1 0 26 1 158 2 188
7 0 0 16 0 118 2 136
8 0 0 5 0 105 2 112
9 0 0 4 0 67 2 73

10 0 0 6 0 39 1 46
11 0 0 2 0 11 0 13
12 0 0 0 0 10 0 10
13 0 0 1 0 1 0 2
14 0 0 0 0 1 0 1
15 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0

total 15 0 171 5 797 12 1000

(B) cylindrical (K = 20)

includes s assumed areas
length l of areas 3 4 5

31- 32- 31- 32- 31- 32-
t = 3 2 t = 3 2 t = 3 2 total

1 0
2 0
3 37 1 38
4 2 0 301 7 310
5 2 0 32 0 *0 0 34
6 0 0 5 0 516 10 521
7 0 0 0 0 64 1 65
8 0 0 0 0 5 0 5
9 0 0 0 0 3 0 3

10 0 0 0 0 3 0 3
11 0 0 0 0 4 0 4
12 0 0 0 0 2 0 2
13 0 0 0 0 3 1 4
14 0 0 0 0 1 0 1
15 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0

total 41 1 338 7 601 12 1000
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Table 6: Space-time power distribution P1(l, s, t | s*, t*) for the Rockaways (s* = 5) on Day 33 (t* = 3) with high risk (RR = 8. 48), where 
t is a temporal length of detected cluster, and the raw all cells of which have zero powers of both tests is not shown. The mark "*" is 
the powers of accurate detection.

(A) flexible (K = 20)

includes s assumed areas
1 2 3 4 5

31- 31- 31- 32- 31- 32- 33 31- 32- 33
length l of areas t = 3 t = 3 t = 3 2 t = 3 2 1 t = 3 2 1 total

1 0 0
2 0 0 6
3 0 2 6 0 22
4 0 0 20 0 181 1 0 204
5 0 0 22 0 50 0 0 *571 2 0 626
6 0 0 3 0 26 1 0 23 1 0 52
7 0 0 1 0 9 0 0 54 1 1 66
8 0 0 1 0 2 0 0 11 0 0 14
9 0 0 1 0 2 0 0 6 0 0 8

10 0 0 0 0 0 0 0 1 0 0 1
11 0 0 0 0 0 0 0 1 0 0 1
12 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0

total 0 8 48 0 270 2 0 667 4 1 1000

(B) cylindrical (K = 20)

includes s assumed areas
length l of areas 1 2 3 4 5

31- 31- 31- 32- 31- 32- 33 31- 32- 33
t = 3 t = 3 t = 3 2 t = 3 2 1 t = 3 2 1 total

1 2 2
2 0 8 8
3 0 0 52 1 53
4 0 0 0 0 876 6 1 883
5 0 0 1 0 3 0 0 *0 0 0 4
6 0 0 0 0 32 0 0 0 0 0 32
7 0 0 0 0 14 1 0 1 0 0 16
8 0 0 0 0 2 0 0 0 0 0 2
9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0

total 2 8 53 1 927 7 1 1 0 0 1000
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The extended power is based on the bivariate distribution
P0(l, s | s*) and penalties introduced for the FPs and FNs
of the geographical detection as

where W(l, s; w-, w+) is a weight function such that

and w- and w+ are the predefined penalties for the FNs and
FPs (per region), respectively. This power includes the fol-
lowing three special powers:

1. The standard power as I(0, 0).

2. The power to detect the geographical true cluster accu-
rately as I(1, 1).

3. The power for which the MLC includes all the regions
within the true cluster as I(1, 0).

Takahashi and Tango [26] also proposed the profile of the
extended power as

Q(r | s*) = I(1/s*, r/s*),  (0 ≤ r ≤ 1) (10)

where r = w+/w- with w- = 1/s*, because it is difficult to set
the value of w- and w+ in advance. Figure 3 shows the plots
of the profile Q(r | s*) against r (0 ≤ r ≤ 1) for flexible and
cylindrical scan statistics applied to (a) the cluster A5 and
(b) the Rockaways, both on Day 33 with high risk, based
upon Tables 5 and 6. Figure 3(a) shows the flexible scan
statistic has higher extended power when r = 0 i.e. penal-
ties for the FP w+ = 0, I(1/5, 0) = 0.978 for the flexible and
0.954 for the cylindrical, while the extended power of
cylindrical scan statistic is higher for large r, as I(1/5, 1/5)
= 0.765 for the flexible and 0.862 for the cylindrical. On
the other hand, Figure 3(b) shows the flexible scan statis-
tic is more uniformly powerful than the cylindrical one for
the Rockaways cluster, I(1/5, 0) = 0.958 and I(1/5, 1/5) =
0.913 for the flexible, and I(1/5, 0) = 0.885 and I(1/5, 1/
5) = 0.872 for the cylindrical, respectively.

Sensitivity and positive predictive value
As other measures of accuracy of cluster detection tests, we
shall consider sensitivity and positive predictive value
[27,28]. These measures can be defined in terms of either
the number of regions or the population. First, we define
sensitivity of cluster detection tests as the probability of
detecting the regions that actually constitute the cluster,

i.e, proportion of the number of regions correctly detected
from the true cluster, s/s*. We shall present the expected
value:

Positive predictive value (PPV) of cluster detection tests is
defined in a similar manner as the proportion of the
number of true regions in the detected cluster, i.e, s/l
under l > 0, and the expected value is presented:

Based upon the population, we can define the following
sensitivity TP2 and positive predictive value PP2:

All these summary measures are better the larger they are
with 100 being the optimal.

Table 7 shows the sensitivity and PPV of the flexible and
cylindrical space-time scan statistics for each cluster with
a high relative risk. For cluster A, the cylindrical scan sta-
tistic has higher PPV and higher sensitivity than the flexi-
ble one. For cluster A5 and the cylindrical has higher PPV
on all days and higher sensitivity on day 31, but the flexi-
ble scan statistic has higher sensitivity on days 32 and 33.
The same is true for the Rockaway cluster. For the Hudson
River cluster, the flexible scan statistic has higher PPV than
the cylindrical. The flexible scan has higher sensitivity
than for the cylindrical with the same upper constant K =
20 on the number of regions in the detected cluster, but
lower sensitivity compared to the cylindrical scan with a
50% upper limit on the cluster size. Note though, that this
difference in sensitivity is less than the difference in PPV
that goes the other way.

Conclusion
In this paper, we have proposed a flexible space-time scan
statistic to detect arbitrarily shaped disease outbreaks. We
have also presented a tri-variate power distribution which
is useful for evaluating the performance of cluster detec-
tion tests, informing us about the spatial and temporal
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accuracy of the detected clusters in addition to the stand-
ard statistical power.

For the benchmark data evaluated in this paper, the cylin-
drical scan statistic performs better for the small single
zip-code cluster, although by the third day of the outbreak
both methods are almost perfect. For the small irregular
shaped clusters, A5 and Rockaways, the cylindrical per-
forms better on the first day of the outbreak, but as more
data accumulates, the flexible scan statistic has certain
advantages in determining the precise size and shape of
the outbreak. For the large and narrow Hudson River clus-
ter, the flexible scan statistic performs better than the
cylindrical one, with slightly higher standard power,
much higher PPV and slightly higher or lower sensitivity
depending on the type of cylindrical method used. Results
may be different for other types of regular and irregularly
shaped disease outbreaks, but the four examples used in

this paper gives some sense of the proposed methods per-
formance.

For early detection, timeliness is much more important
than geographical accuracy. When monitoring an occur-
ring outbreak, on the other hand, geographical accuracy
becomes critical and is then the key objective since we
already know the outbreak is there. Our results suggest
that we may use both the cylindrical and flexible scan sta-
tistic for disease outbreak detection, but for different pur-
poses. Specifically, for detecting new outbreak that, one
may want to use the cylindrical scan statistic. That is espe-
cially if we expect the outbreak to start locally, within a
reasonably small and compact area containing only a few
ZIP-codes. On the other hand, once the outbreak has
spread to a larger area, and we want to monitor that
spread, one may want to use the flexible scan statistic,
with its ability to accuratly determine the precise geo-
graphical extent of irregular shaped outbreaks. This is
especially true ones the outbreak has left its local area of
origin.

To evaluate the performance of space-time scan statistic,
we applied the extended power for purely spatial cluster
detection test (8), which is defined as the weighted sum of
the bivariate power distribution wherein the weight is
given by the geometric mean of (1-penalty for the false
negatives) and (1-penalty for the false positives), includ-
ing the standard power as a special case. Also we applied
the profile Q(r | s*) proposed by Takahashi and Tango
[26]. This plot gave us a detailed description regarding
power of cluster detection tests. Needless to say, it is pos-
sible to extend it to space-time version if we could con-
sider the penalties for temporal false negatives and false
positives, but we leave this problem for future work. Also,
for the profile of the extended power, we chose to use a
fixed cost of w- = 1/s* for false negatives and a smaller or
equal cost for false positives. For more general situations,
we could plot the full bivariate extended power function
on the unit square.

Similarly to the flexible spatial scan statistic in the purely
spatial situation, the flexible space-time scan statistics pro-
posed in this paper has a limitation of cluster size, because
of the limitation of the speed of computation. The pro-
posed scan statistic works well for small to moderate sized
clusters. Although we set the maximum length of the geo-
graphical window to K = 20, this is not large enough to
detect the 20 ZIP codes of the Hudson River cluster accu-
rately because this cluster is too long to be the subset of
the 20-th nearest neighbors of any region. Computation
time depends on the size of the data set and K. Indeed, for
the August 11 analysis of respiratory syndrome data in
Massachusetts, with 385 ZIP codes, a maximum temporal
length of T = 7 days, a maximum spatial size of K = 20, and

Profile of the extended power Q(r | s*) for flexible and cylin-drical scan statistics applied to the cluster (a) Cluster A5, and (b) The RockawaysFigure 3
Profile of the extended power Q(r | s*) for flexible 
and cylindrical scan statistics applied to the cluster 
(a) Cluster A5, and (b) The Rockaways.
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with 999 Monte Carlo replications, the flexible space-time
scan statistic took 87.7 minutes to run on a 3.06-GHz Pen-
tium 4 computer, while the cylindrical space-time scan
statistic took only 9.8 minutes.

A limitation of length may also prevent the analysis to
present large clusters of unlikely and very peculiar shapes.
These undesirable properties produced by maximum like-
lihood ratio might suggest the use of different criterion for
model selection, including some penalized likelihood
[20,29]. Also, for larger cluster seizes, the method is not

practically feasible and a more efficient algorithm is
needed.

In this paper, we considered the right cylinder or right
prism of the cluster model, as an expansion of the cylin-
drical space-time scan statistic for a prospective disease
surveillance by Kulldorff [10]. This does not allow the
scanning window to adjust itself as the disease outbreak
grows or shrinks geographically over time. Recently, Iyen-
gar has suggested using a square pyramid shape window

Table 7: Sensitivity and positive predictive value (PPV) of the flexible and cylindrical space-time scan statistics.

zip codes population
traditional power sensitivity (%) PPV (%) sensitivity (%) PPV (%)

Cluster A; s* = 1; high risk
Day 31 flexible (K = 20)

cylindrical (K = 20) 0.860 85.30 89.45 85.30 91.50
cylindrical (50% pop) 0.862 85.90 88.79 85.90 90.84

Day 32 flexible (K = 20) 0.988 98.80 84.50 98.80 87.80
cylindrical (K = 20) 0.996 99.50 97.44 99.50 98.18
cylindrical (50% pop) 0.996 99.50 97.33 99.50 98.08

Day 33 flexible (K = 20) 0.999 99.90 96.27 99.90 97.32
cylindrical (K = 20) 0.999 99.90 99.48 99.90 99.65
cylindrical (50% pop) 0.999 99.90 99.48 99.90 99.65

Cluster A5; s* = 5; high risk
Day 31 flexible (K = 20) 0.797 66.08 55.93 67.29 63.00

cylindrical (K = 20) 0.850 69.62 80.35 71.65 84.21
cylindrical (50% pop) 0.847 70.62 78.17 71.62 82.02

Day 32 flexible (K = 20) 0.994 92.22 70.17 92.94 76.73
cylindrical (K = 20) 0.996 88.78 85.14 90.86 89.41
cylindrical (50% pop) 0.996 88.96 84.81 91.05 89.11

Day 33 flexible (K = 20) 1.000 95.88 80.02 96.64 85.25
cylindrical (K = 20) 1.000 91.42 87.32 93.66 91.67
cylindrical (50% pop) 1.000 91.42 87.30 93.66 91.65

The Rockaways; s* = 5; high risk
Day 31 flexible (K = 20) 0.769 60.68 72.09 69.04 73.58

cylindrical (K = 20) 0.855 62.32 91.63 74.45 91.76
cylindrical (50% pop) 0.840 61.40 91.04 73.65 91.15

Day 32 flexible (K = 20) 0.992 86.76 87.36 94.17 89.86
cylindrical (K = 20) 0.997 77.00 96.84 92.75 97.46
cylindrical (50% pop) 0.997 77.00 96.84 92.75 97.46

Day 33 flexible (K = 20) 1.000 92.16 93.81 97.15 95.97
cylindrical (K = 20) 1.000 78.50 98.06 94.51 98.59
cylindrical (50% pop) 1.000 78.50 98.06 94.51 98.59

Hudson River, s* = 20; high risk
Day 31 flexible (K = 20) 0.656 20.07 64.99 26.00 69.72

cylindrical (K = 20) 0.597 14.23 61.10 18.16 65.18
cylindrical (50% pop) 0.632 26.15 50.70 31.26 53.71

Day 32 flexible (K = 20) 0.964 32.17 73.59 41.81 78.36
cylindrical (K = 20) 0.933 24.13 61.55 31.58 66.69
cylindrical (50% pop) 0.949 42.90 50.27 51.50 53.96

Day 33 flexible (K = 20) 0.998 34.91 79.39 46.27 84.17
cylindrical (K = 20) 0.994 27.23 60.56 36.75 66.20
cylindrical (50% pop) 0.995 48.14 47.34 58.54 51.34
Page 13 of 14
(page number not for citation purposes)



International Journal of Health Geographics 2008, 7:14 http://www.ij-healthgeographics.com/content/7/1/14
which can model either growth (or shrinkage) and move-
ment of the disease cluster [30]. For the proposed flexible
space-time scan statistic, if we could consider the flexibil-
ity in both space and time, that is, evaluating all con-
nected subsets within a cylinder instead of  in (4), we
can detect more arbitrarily shaped clusters in space-time.
For such an expansion, an efficient computational algo-
rithm will be needed for the scanning process, as well as a
more sophisticated mechanism for the interpretation of
such complicatedly shaped clusters. The implementation
and importance of such methods for disease surveillance
and monitoring, is an issue for future research.
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