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Inhibition of RGMa alleviates 
symptoms in a rat model of 
neuromyelitis optica
Kana Harada1, Yuki Fujita1,2, Tatsusada Okuno3,4, Shogo Tanabe2, Yoshihisa Koyama5,  
Hideki Mochizuki   4 & Toshihide Yamashita1,2,6

Neuromyelitis optica (NMO) is an autoimmune disease associated with NMO immunoglobulin G (NMO-
IgG), an antibody that selectively binds to the aquaporin-4. Here, we established a localized NMO 
model by injecting NMO-IgG into the spinal cord, and assessed the efficacy of treating its NMO-like 
symptoms by blocking repulsive guidance molecule-a (RGMa), an axon growth inhibitor. The model 
showed pathological features consistent with NMO. Systemic administration of humanized monoclonal 
anti-RGMa antibody delayed the onset and attenuated the severity of clinical symptoms. Further, it 
preserved astrocytes and reduced inflammatory-cell infiltration and axonal damage, suggesting that 
targeting RGMa is effective in treating NMO.

Neuromyelitis optica (NMO) is an autoimmune disease of the central nervous system (CNS) characterized by 
inflammatory lesions in the spinal cord and optic nerve, which can lead to acute transverse myelitis1. The preva-
lence of NMO is approximately 1–5 per 100,000 individuals2. And most of these patients show severe neurological 
dysfunction including limb weakness or acute attacks of optic neuritis leading to visual loss1. NMO is character-
ized by the presence of the serum autoantibody NMO-immunoglobulin G (IgG)3. NMO-IgG is detected in the 
majority of individuals with NMO and has high selectivity in binding the extracellular domain of aquaporin-4 
(AQP4), a water channel found in astrocyte-foot processes in the brain4. Indeed, AQP4-IgG is the most widely 
recognized biomarker for NMO to date5. Because of its association with this disease, passive transfer of NMO-IgG 
has been used to develop rodent models of NMO6,7.

Because both NMO and multiple sclerosis (MS) are immune-mediated neurodegenerative diseases with 
broadly comparable symptoms, they may share some underlying molecular mechanisms. Recently, repulsive 
guidance molecule-a (RGMa) has been identified as an immune-system related protein associated with MS8. 
RGMa is upregulated around lesions after injuries to the CNS in both rats and humans9,10. Inhibiting RGMa with 
its antibody has been shown to promote axon growth and motor recovery after spinal cord injury in rats9, as well 
as improve disease scores, enhance axon growth, and reduce immune-cell invasion in the CNS of commonly used 
mouse and rat models of MS (i.e., experimental autoimmune encephalomyelitis)11,12. Recent work shows that 
interleukin 17A-expressing CD4+ T cells (Th17 cells) strongly express RGMa, and that Th17 cells induce neuronal 
cell death via RGMa-neogenin13, further support a role for RGMa in immune regulation and disease.

These findings prompted us to study whether inhibiting RGMa is also effective in treating NMO. The previous 
animal model of NMO generally produces disseminated lesions and causes damage to multiple neuronal circuits14,15, 
making it difficult to determine if the clinical deficits can be directly caused by a defined neuronal tract system. Here, 
we establish a localized model of NMO that displays the characteristic motor deficit. This procedure produces a sin-
gle well-demarcated inflammatory lesion on the dorsal side of the spinal cord. The results suggest that humanized 
anti-RGMa monoclonal antibody (mAb) may help in preventing and attenuating the neurological symptoms of NMO.
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Results
Establishment of a new rat model of NMO.  As the first step in producing our rat model of NMO, we 
injected the NMO-IgG into 10th thoracic vertebrae (T10) of Wistar rats (Fig. 1A). Injection of NMO-IgG (20 μg 
or 40 μg) revealed neurological deficits that we presume resulted from disruption of the motor circuit (Fig. 1B), 
although injection of Control-IgG showed no apparent deficit (data not shown). Rats with different dosages of 
NMO-IgG demonstrated a dose-dependent day of onset (20 μg: 11.25 ± 0.49; 40 μg: 9.5 ± 0.29; p = 0.0203; n = 4; 

Figure 1.  Anti-RGMa antibody alleviates symptoms in a rat model of NMO. (A) Schematic of the experimental 
procedures. A micro-syringe attached to a pulled micro-capillary needle was inserted 1 mm into the spinal 
cord and NMO-IgG 20 μg (human IgG from NMO patients) was infused at spinal level T10 (10th thoracic 
vertebrae). Arrows represent treatment days. (B) Comparative dose efficacy of NMO-IgG injection. Both 20 μg 
and 40 μg NMO-IgG treatment induces pathological features. n = 4. (C) Mean onset of symptoms and (D) 
maximum clinical score. (E) Longitudinal spinal cord section from the NMO-injected rat. Note the lack of 
GFAP expression only within the lesion site (*). Scale bars: 1 mm for the low-magnification images; 50 μm for 
the high-magnification images. (F) Specificity of anti-RGMa Ab was confirmed by western blot. (G–I) Average 
onset day (G) and average maximum clinical score (H) for NMO model rats given Control IgG or anti-RGMa 
Ab. Clinical disease score in NMO-IgG injected rats treated with either Control-IgG or anti-RGMa Ab (I). 
n = 10 Statistical analyses were performed using two-way ANOVA followed by Bonferroni test for B and I, and 
an unpaired two-tailed t test for C, D, G, and H. ns = not significant, *p < 0.05 **p < 0.01, ***p < 0.001. Error bars 
represent the SEM.
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Figure 2.  Anti-RGMa antibody ameliorates the loss of astrocyte in a rat model of NMO. (A–K) Colocalization of 
AQP4 and GFAP at the thoracic level of rat spinal cord tissue. (A,D,G). Representative fluorescence-microscopy 
images. Boxes are expanded in (B,C,E,F,H, and I). (A–C) Double labeling of AQP4 and GFAP was observed 
along the entire glia limitans, astrocytic processes, and end-feet (arrows in B), around capillaries and encircling 
of the blood vessels (arrows in C) in non-NMO control rats. (D–F) Co-expression of AQP4 and GFAP was 
lost in NMO rats that did not receive anti-RGMa mAb. Arrowheads represent the loss of co-staining along glia 
limitans I. Colocalization around capillaries and encircling of the blood vessels in non-NMO rats (arrows in C) 
was virtually absent in control-IgG-NMO rats (F). The arrowheads in F indicate expression of the few remaining 
astrocytes. (G–I) AQP4 and GFAP double-positive cells were increased in NMO rats treated with anti-RGMa mAb 
as compared to Control-IgG-treated NMO rats. Arrows indicate the double staining of AQP4 and GFAP in the 
dorsal white matter (H), astrocyte processes, and endfeet (I). (J,K) Quantitative analysis of fluorescence intensity of 
AQP4-(J) and GFAP- (K) positive cells from the high magnification images (B,C,E,F,H,I). Statistical analysis was 
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Fig. 1C) but no difference in peak clinical score (20 μg: 2.5 ± 0; 40 μg: 2.38 ± 0.13, p = 0.3559; n = 4; Fig. 1D). A 
single 20-μg NMO injection induced a well-demarcated single inflammatory lesion in the spinal cord (Fig. 1E); 
thus, we consider this model appropriate for modeling the development of human NMO.

Inhibition of RGMa ameliorates the severity of NMO in model rats.  For further tests, we chose 
to use 20-μg NMO-IgG injections (Fig. 1E–I) because low dose treatment could avoid unexpected side effects 
and reduce the costs of therapy. We confirmed the specificity of anti-RGMa mAb by western blot analysis using 
spinal cord lysate (Fig. 1F). In the NMO rats that did not receive anti-RGMa mAb, disease onset occurred after 
11.9 ± 0.82 days (Fig. 1G), with the disease progressing to hind limb paresis and a mean maximum clinical score 
of 2.2 ± 0.08 (Fig. 1H). Compared to these rats, symptom onset for the NMO model rats that received anti-RGMa 
mAb was significantly later (day 17.67 ± 1.08; p = 0.005; Fig. 1G) and the mean peak clinical score was signifi-
cantly lower (1.05 ± 0.09; p < 0.0001; Fig. 1H), indicating facilitated recovery. Importantly, weekly injections of 
anti-RGMa mAb significantly attenuated the severity of the clinical signs after day 12 (Fig. 1I).

Anti-RGMa Ab partially restores AQP4 and GFAP expression in NMO model rats.  Previous 
reports demonstrated that lesion sites of human NMO show the loss of AQP4 and GFAP16,17. We therefore 
assessed whether anti-RGMa mAb could ameliorate the decreased distribution of AQP4 and GFAP in the lesion 
sites of rat NMO model. The spinal cord tissues were prepared 21 days after NMO induction. Strong AQP4 
expression was observed in the white and gray matter of the non-NMO rats (Fig. 2A–C), consistent with previ-
ous results7. Intense AQP4 immunoreactivity was found in GFAP-positive astrocytes in the edge of white matter 
(Fig. 2B), and the end-feet surrounding the blood vessels (Fig. 2C) of these rats. In contrast, a massive loss of 
AQP4 and GFAP expression was observed in NMO rats (Fig. 2D–F). The decreased co-localization of AQP4 
and GFAP in Control-IgG-treated NMO rats was restored in anti-RGMa mAb treated-NMO rats (Fig. 2G–I). 
Quantification analysis revealed that signal intensity of AQP4 and GFAP double-positive area was increased 
in NMO rats receiving anti-RGMa mAb treatment compared with Control-IgG-treated NMO rats (Fig. 2J,K). 
Furthermore, we examined demyelination in NMO rats. However, our rat model of NMO had no obvious loss 
of myelin basic protein (MBP)-immunofluorescence when compared to intact rats (Fig. 2L). This observation 
is consistent with the findings of a previous study18. Taken together, these results suggest that anti-RGMa mAb 
treatment prevents the loss of astrocytes in the spinal cord, which corresponds to the delay and attenuated clinical 
symptoms observed in the NMO-model rats.

Anti-RGMa mAb reduces immune responses in NMO rats.  Further, because NMO-IgG-treated rats 
accumulated ionizing calcium-binding adaptor molecule (Iba1)-positive microglia and macrophages around 
their injury sites14, we also analyzed the immunoreactivity of Iba1 (Fig. 3A–D) and CD45 (Fig. 3E–H). Iba1+ 
cells displayed resting state (ramified) morphology in non-NMO rats (Fig. 3A). The abundance of activated cells 
(amoeboid morphological feature) in NMO rats without the antibody treatment (Fig. 3B) was much more than 
that in the NMO rats treated with anti-RGMa mAb (Fig. 3C,D). To identify these infiltrating cells, FACS sort-
ing was used to distinguish microglia from macrophage/neutrophil. This CD11b+ CD45 population, defined 
by microglia, was detected in all three groups (Fig. 4A–C). Surprisingly, in NMO rats, there was a low number 
of CD11b+ CD45hi macrophages (Fig. 4B,C). Thus, it is likely that the immunochemically labeled Iba1+ cells 
were microglia and that anti-RGMa mAb treatment reduced the accumulation of activated microglia in NMO 
rats. Moreover, the lateral column of spinal cord white matter in the Control-IgG injected-NMO rats displayed 
a strong accumulation of leukocyte common antigen CD45 (Fig. 3F). Cell infiltration in NMO rats receiving 
anti-RGMa mAb treatment was less (Fig. 3G), albeit still more than the very low levels of cell infiltrations in the 
non-NMO control rats (Fig. 3E,H). The loss of normal astrocyte function might lead to the continual entry of 
infiltrating cells that we observed in the NMO rats.

RGMa inhibition attenuates the infiltration of IL-17A+ T-cells.  Activation of T-cells is involved in 
NMO pathogenesis2. To obtain a deeper insight into the mechanism of the alleviated symptoms after inhibition 
of RGMa in NMO rats, we investigated the effect of RGMa inhibition on IL-17A+ T-cells in this NMO model. 
Flow cytometry (FACS) analysis of freshly isolated CD3+ CD45+ T-cells from spinal cord tissue of non-NMO and 
NMO rats with or without anti-RGMa mAb was evaluated (Fig. 4D–F). In non-NMO rats, low cell counts (2.11) 
of CD3+ T-cells (Fig. 4D) were detected. Further, the density (7.70) of T-cells in anti-RGMa mAb-treated NMO 
rats (Fig. 4C) was lower than that of NMO rats without the treatment (9.01; Fig. 4B). These results suggest that 
the high level of CD45 expression in control-IgG-NMO rats (Fig. 3F) may be partially due to T-cell infiltration 
(Fig. 4E). Notably, a high population (76.9) of IL-17A+ T-cells (CD3+, CD45+; Fig. 4G) was detected in NMO rats 
without the treatment, but this population was lower (17.7) following the anti-RGMa mAb treatment (Fig. 4H). 
The data imply that the inhibitory effect of anti-RGMa mAb treatment on IL-17A+ T-cell infiltration might con-
tribute to the delayed onset and/or the progression of NMO in the rat model of NMO.

RGMa inhibition attenuates neuronal damage in NMO model rats.  A previous finding suggests that 
axon damage is an early feature of NMO pathology16. Also, in EAE mice, depletion of RGMa attenuates axonal 

performed by ANOVA followed by Bonferroni test for J and K. ns = not significant, *p < 0.05, **p < 0.01. Error bars 
represent SEM. Scale bars: 200 μm (low magnification images in A,D,G), 100 μm (high magnification images in 
(B,C,E,F,H,I). (L) Representative images of MBP expression, a marker for myelin. MBP expression did not display 
any obvious differences among the groups. Scale bar: 500 μm.
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degeneration13. Considering these findings, we stained the sections with a pan-axonal neurofilament marker 
anti-SMI-312 antibody, which specifically labels axons, to evaluate whether anti-RGMa mAb preserves axons 
of NMO rat spinal cords. Axons were distributed evenly throughout the dorsal column in the non-NMO rats 
(Fig. 5A,B). Moreover, there was a significant loss of SMI-312 expression in the control-NMO (Fig. 5C,D) when 
compared to the NMO rats receiving RGMa mAb injections (Fig. 5E–G). These results suggest that anti-RGMa 
mAb treatment presumably prevents amelioration of motor deficit in axons of our NMO rats.

Discussion
This study established a rat model that reproduced pathological characteristics consistent with human NMO and 
showed that the anti-RGMa mAb prevented disease progression.

In other NMO models, rat brains were lesioned and rats received intraperitoneal injections of NMO-IgG 
(1 mg) for consecutive days14. In contrast, rats in our model received a single 20-μg injection of NMO-IgG in the 
dorsal column of the thoracic spinal cord, which induced a well-demarcated single inflammatory lesion in the 
spinal cord (Fig. 1E). This model enabled us to more clearly correlate the lesion with the deficit in motor function 
disrupting the corticospinal tract, the main regulator of voluntary movement. Therefore, we can determine more 
precisely the neuronal tract disruption by assessing the EAE score. Indeed, our NMO model rats exhibited paresis 
of hind limbs (Fig. 1G) accompanied by the loss of astrocytes (Fig. 2D–F), axon damage (Fig. 5C,D), high density 
of IL17-A+ T-cell infiltration (Fig. 4G), and the accumulation of activated microglia (Fig. 3B) into the thoracic 
spinal cord, which resemble the pathological features of human NMO16,17,19. In a mouse model of NMO, the loss 
of GFAP and AQP4 signals have been reported to occur before demyelination18. Hence, our model might repre-
sent an early stage of NMO, which explains the absence of demyelination (Fig. 2L), as well as why astrocytes were 
preserved at a wider distance in NMO rats that received anti-RGMa mAb (Fig. 2G–I).

Recently, a role for RGMa in the immune system has become apparent8,11–13. Bone marrow-derived dendritic 
cells express RGMa, which has been shown to bind to neogenin on the surface of CD4+ T-lymphocytes12. Binding 
RGMa to neogenin induces activation of the small GTPase Rap1, thereby increasing adhesion to intracellular 
adhesion molecule-112. An antibody blocking RGMa was able to improve disease scores in commonly used mouse 
models of MS, and reduce inflammatory cell invasion into mouse CNS. It also lessened T cell proliferation and 
cytokine production in a mouse model of MS and in isolated peripheral blood mononuclear cells from individ-
uals with MS12. Further, systemically treating rat models of experimental autoimmune encephalomyelitis with 
RGMa-specific antibodies significantly improved function, reduced microglial lesion size, enhanced axon regen-
eration into the lesion, and produced signs of remyelination11.

As the presence of active T-cells is considered an important factor in the progression of NMO2, we examined 
the involvement of RGMa in T-cells in order to understand the mechanism of alleviated symptoms observed in 
our NMO rat. Interestingly, anti-RGMa mAb-treated NMO rats displayed a sharp reduction in the IL17A+ T-cell 
population (Fig. 4H). The treatment might have brought about this effect by suppressing the enhanced produc-
tion of IL17A+ T-cells, which subsequently reduced axonal and astrocyte loss. Furthermore, the inhibition of 
RGMa promotes restoration of injured neural networks, presumably leading to a delay in the progression of the 
secondary phase of NMO.

Figure 3.  Cellular infiltration of Iba1+ and CD45+ cells in NMO rats. (A–H) Microscopic images of fluorescence 
intensity in rat spinal cord sections at the site of injury in order to show the distribution of Iba1+ cells (A–C) or 
CD45+ cells (E–G). Quantitative analysis of fluorescence intensity showed that anti-RGMa reduced the infiltration 
of Iba1+ cells (D) and CD45+ cells (H) at the injury site. Statistical analysis was performed by ANOVA followed by 
the Bonferroni test. *p < 0.05, **p < 0.01. Error bars represent SEM. Scale bars: 100 μm (A–C), 50 μm (D–F).
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In summary, we propose that humanized anti-RGMa mAb might be a valid therapeutic approach that may 
result in attenuated pathological features of preliminary human NMO.

Materials and Methods
NMO-IgG preparation.  Human IgGs were purified from individuals with NMO who tested positive for 
AQP4-Ab7. Informed consent was obtained from all individuals and/or their legal guardians. All methods involv-
ing humans were performed in accordance with the relevant guidelines and regulations of the ethical committees 
of Osaka University Hospital. All experimental protocols involving humans were approved by the ethical com-
mittees of Osaka University Hospital (11298–9).

Surgical procedures.  Wistar rats (age: 8 weeks; body weight: 200–250 g) purchased from SLC (Tokyo, 
Japan) were used in the experiments. Rats were anesthetized with isoflurane inhalation, and a laminectomy was 
performed at the thoracic 9/10 (T9/T10) vertebral level where the spinal cord was exposed. A micro-syringe 
(Hamilton) was attached to a pulled-glass micro-capillary needle, inserted 1 mm, and used to infuse NMO-IgG 7 

Figure 4.  Anti-RGMa antibody reduces IL17A+ T-cell infiltration in a rat model of NMO. (A–C) Flow 
cytometry sorting of CD11b+ CD45low (microglia) and CD11b+ CD45hi (macrophage) from rat spinal cords 
at injury sites. In all groups, microglia were detected, but very few or no macrophages were detected. (D–H) 
Flow cytometry gating strategy of T-cells (CD3+, CD45+; D–F). Higher IL17A+ T-cell density was observed in 
Control-IgG-treated NMO rats (G) than in NMO rats injected with anti-RGMa mAb (H).
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or Control-IgG (20 μg, except where otherwise noted) at T10. Rats were randomly and evenly divided into three 
groups (n = 10 per group): non-NMO rats (control-IgG-injected rats with no treatment), Control mAb-treated 
NMO model rats, and anti-RGMa mAb-treated NMO model rats. For the NMO group with the treatment, we 
used the humanized anti-RGMa mAb (developed by Mitsubishi-Tanabe Pharma Co., Osaka, Japan), which neu-
tralizes the effect of RGMa. Anti-RGMa mAb or Control-IgG (Mitsubishi-Tanabe Pharma Co) was injected intra-
venously (10 mg/kg) after the NMO-IgG injection within the spinal cord (day0) and then every 7 days (Fig. 1A). 
All procedures complied with the Osaka University Medical School Guidelines for the Care and Use of Laboratory 
Animals. All experimental protocols involving animals were approved by the institutional committee of Osaka 
University.

Clinical evaluation.  The severity of NMO in the rats was evaluated using clinical score as described previ-
ously20. 0: no symptoms; 1: flaccid tail; 2: hind limb paresis; 3: hind limb plegia, complete dragging of hind limb; 
4: forelimb paresis; 5: forelimb plegia or moribund; 6: death. Appearance of a flaccid tail was considered disease 
onset20.

Western blot.  Rat spinal cords were lysed using 150 mM NaCl, 1% Triton X-100, 20 mM HEPES (pH 7.4), 
10% glycerol, 5 mM EDTA, and complete protease inhibitor cocktail (Roche Applied Science). The lysates were 
clarified by centrifugation at 15,000 g at 4 °C for 30 min, and the supernatants were collected and subjected to 
SDS-PAGE. They were subsequently transferred onto polyvinylidene fluoride (PVDF) membranes (Millipore). 
The membranes were blocked with 5% bovine serum albumin in PBS containing 0.05% Tween-20 for 1 h and 
incubated with anti-RGMa antibody in blocking solution. After washing, the membranes were incubated with a 
horseradish peroxidase-conjugated secondary antibody (1: 3,000, Cell Signaling Technology) for 1 h. Detection 
was performed using Pierce Western Blotting Substrate Plus (Pierce) and RAS-3000 (Fuji Film).

Immunohistochemistry.  Non-NMO, control-IgG-treated NMO, and anti-RGMa mAb-treated NMO rats 
were transcardially perfused using 4% PFA on day 21. Immunohistochemistry was performed using primary anti-
bodies that marked cell type, including anti-AQP4 (1:50, Santa Cruz), anti-CD45 (1:20, BD) as a pan-leukocyte 
marker, anti- glial fibrillary acidic protein (GFAP; 1:100; Sigma-Aldrich) as a marker for astrocytes, anti-Iba1 
(1:1000, Wako) as a marker for microglia and macrophages, anti- myelin basic protein (MBP; 1:500; Dako), and 
anti-SMI-312 (1:1000; Covance). Images were acquired using a FV-1200 laser-scanning confocal microscope or 
a BX51 fluorescence microscope (Olympus). The signal intensity of AQP4 and GFAP double-positive area was 
quantified by setting the threshold with Image J software (NIH). The number of preserved axons in the dorsal 
columns of the spinal cord were counted using Image J software (NIH).

Figure 5.  Anti-RGMa antibody reduces axonal loss in a rat model of NMO. (A–F) Representative confocal 
images of SMI-312-positive axonal staining in the dorsal column of rat spinal cords. Boxes are expanded in 
(B,D, and F). Number of axons was significantly less in Control-IgG-NMO rats (C,D) when compared to 
non-NMO rats (A,B). However, SMI-312 labeled axons were preserved in the NMO rats that received anti-
RGMa mAb (E,F). (G) Quantitative analysis of preserved axonal counts (SMI-312+ axons/mm2) from A, C, 
and E (n = 3). Statistical analysis was performed using ANOVA followed by the Bonferroni test. *p < 0.05, 
**p < 0.01. Error bars represent SEM. Scale bars: 150 μm for low-magnification images (A,C,E,); 20 μm for high-
magnification images (B).
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Flow cytometry analysis.  All rats were transcardially perfused using ice-cold PBS on day 21, and dissec-
tions of their spinal cord lesion sites were performed. Tissues were minced with a scalpel and digested with 0.1% 
collagenase D (Roche Applied Science) containing 2.5 mM calcium chloride at 37 °C for 30 min. After trituration, 
the cells were resuspended in 30% Percoll (GE Healthcare), under which 70% Percoll was layered, and centri-
fuged at 770 g for 30 min at room temperature. We isolated the cells from the interface of the 30%/70% Percoll 
gradients. Cells were treated with an FcR blocking reagent (Milteny Biotec) on ice for 10 min, and stained with 
fluorescent-conjugated antibodies: PerCP/Cy5.5 anti-rat CD45 (1:100, OX-1; Biolegend), PE anti-rat CD11b/c 
(1:100, OX-42; Biolegend), and APC anti-rat CD3 (1:100, 1F4; Biolegend). For intracellular cytokine staining, 
cells were stimulated with PMA (phorbol 12-myristate 13-acetate, 100 ng/mL, Sigma-Aldrich), ionomycin (750 
ng/mL, Calbiochem), and Brefeldin A (1 μg /mL, Sigma-Aldrich) for 4 h at 37 °C. Cells were subsequently treated 
with Fixation/Permeabilization solution (BD Biosciences), and stained with FITC anti-rat IFN-γ (1:100, DB-1; 
Biolegend), PE anti-IL-17A (1:100, eBio17B7; Thermo Fisher Scientific), PerCP/Cy5.5 anti-rat CD45, and APC 
anti-rat CD3 on ice for 30 min. We collected the data with a FACSVerse fluidics system (BD Biosciences) and 
analyzed it with FlowJo software (Tree Star).

Statistical analysis.  Data are presented as the mean ± SEM (standard error of the mean). Comparisons 
between groups were performed either by two-way ANOVA followed by post-hoc Bonferroni test or by unpaired 
two-tailed t test. Statistical significance was set at p < 0.05. Graphpad Prism 7 was used for the statistical analyses.
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