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Abstract

The human major histocompatibility complex (MHC), also known as human leukocyte antigen (HLA), plays an important role in the
adaptive immune system by presenting non-self-peptides to T cell receptors. The MHC region has been shown to be associated with
a variety of diseases, including autoimmune diseases, organ transplantation and tumours. However, structural analytic tools of HLA
are still sparse compared to the number of identified HLA alleles, which hinders the disclosure of its pathogenic mechanism.
To provide an integrative analysis of HLA, we first collected 1296 amino acid sequences, 256 protein data bank structures, 120 000
frequency data of HLA alleles in different populations, 73 000 publications and 39 000 disease-associated single nucleotide poly-
morphism sites, as well as 212 modelled HLA heterodimer structures. Then, we put forward two new strategies for building up a
toolkit for transplantation and tumour immunotherapy, designing risk alignment pipeline and antigenic peptide prediction pipeline
by integrating different resources and bioinformatic tools. By integrating 100 000 calculated HLA conformation difference and online
tools, risk alignment pipeline provides users with the functions of structural alignment, sequence alignment, residue visualization
and risk report generation of mismatched HLA molecules. For tumour antigen prediction, we first predicted 370 000 immunogenic
peptides based on the affinity between peptides and MHC to generate the neoantigen catalogue for 11 common tumours. We then
designed an antigenic peptide prediction pipeline to provide the functions of mutation prediction, peptide prediction, immunogenicity
assessment and docking simulation. We also present a case study of hepatitis B virus mutations associated with liver cancer that
demonstrates the high legitimacy of our antigenic peptide prediction process. HLA3D, including different HLA analytic tools and the
prediction pipelines, is available at http://www.hla3d.cn/.
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Introduction
The human major histocompatibility complex (MHC),
also known as human leukocyte antigen (HLA), is indis-
pensable in the adaptive immune system by deliver-
ing non-self-peptides for capture by T cells. The MHC
region has been shown to be associated with a variety
of diseases and therapies, including autoimmune dis-
eases [1], tumour [2] and organ transplantation [3]. Some
pathogenic MHC associations have been uncovered by
genome-wide association study (GWAS), such as psoria-
sis, myasthenia gravis and ankylosing spondylitis. How-
ever, compared with the number of pathogenic variants

of MHC, little progress has been made in the study of its
pathogenesis and immune mechanisms [4]. In addition
to the high degree of polymorphism in this region, its
complexity is also reflected in the genetic heterogene-
ity among different populations. Explore the change of
MHC–peptide binding pattern could help to reveal the
pathogenesis of MHC-related diseases. As for the meth-
ods for predicting the binding affinity between HLA-I
molecules and peptides, there are some excellent tools
available in recent years [5, 6], but there is still a lack of a
comprehensive platform, which can directly analyse the
interaction between HLA molecules and peptides based
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on their structures. This may be due to the structural
data of HLA that is still sparse compared to the num-
ber of identified HLA alleles, and most published HLA
structural databases focus on some prevalent HLA alleles
[7–10]. In addition, previous homologous modelling of
HLA molecules mostly used the basic local alignment
search tool (BLAST) software to find structures with high
sequence similarity as templates. However, we found
that the sequence similarity between the top structures
calculated by BLAST was very high, so it was difficult to
determine which template was most suitable for mod-
elling. As we know, the high sequence polymorphism of
HLA is mainly consistent with its non-overlapping anti-
gen binding groove, where individual amino acid substi-
tutions may even alter the immunogenicity of the entire
molecule. Therefore, the selection of template should
consider not only the similarity of HLA sequences but
also the similarity of their functional grooves.

In order to provide a comprehensive analysis of
HLA molecular mechanism for different populations,
we established HLA3D, an integrated toolkit including
different types and dimensions of data around HLA
and several useful tools, and we also collected tumour-
associated mutations of significantly mutated genes
(SMGs), HLA, and hepatitis B virus (HBV). For HLA, at
the sequence level, HLA3D contains 1296 amino acid
sequences and nucleotide sequences of MHC alleles,
which included all the common and well-documented
MHC class I alleles in the American, European and
Chinese populations. At the structural level, HLA3D
includes 256 HLA structures collected from protein data
bank (PDB) and 212 predicted heterodimers obtained
through homologous modelling and protein docking.
Differently, apart from the norm of sequence similarity
and structure resolution, the selection of the modelling
template was also based on the knowledge of HLA
antigen serological characteristic [11], the classification
of supertype [12] and the prediction results of MHC
peptide affinity by MHCcluster [13]. Moreover, HLA3D,
combining the data of 120 000 frequencies, 73 000
literature and 39 000 single nucleotide polymorphism
(SNP) sites from public datasets, provides the users with
comprehensive HLA information query. For mutation,
we collected 1743 tumour-related mutations by mining
the literature, including 213 tumour-associated HLA
mutations, 989 hotspot mutations of SMGs and 402
hepatitis B virus mutations associated with chronic
hepatitis B or liver cancer in the Chinese population.

In order to promote the application of HLA structure
data in the field of immunotherapy, we established a
risk alignment pipeline for organ transplantation and
an antigenic peptides prediction pipeline for the design
of tumour vaccine. On the one hand, we quantified the
structural differences of all HLA molecules in HLA3D,
obtained more than 100 000 root mean square deviation
(RMSD) records, and manually collected 26 amino acid
mismatch sites associated with acute graft versus
host disease (aGVHD) to construct the risk alignment

pipeline. This platform provides the users with the
functions of structure alignment, sequence alignment,
residue visualization and risk report generation of
mismatched HLA donors. By integrating the knowledge of
immunogenicity of sequence and structure differences of
HLA, we provide a reference for the priority of irrelevant
HLA mismatched donors during hematopoietic stem cell
transplantation. Also, we predicted more than 370 000
high-affinity mutated peptides and generated a cata-
logue of candidate neoantigens for common tumours. In
addition, we took HBV mutations as an example to build
a complete process of antigenic peptide prediction in
HLA3D. Here, we took into account the key characteristics
that affect the immunogenicity of the peptide and
designed the antigenic peptide prediction pipeline
by incorporating open source and our software. It
provides users with the functions of mutation prediction,
peptide prediction, immunogenicity assessment and
docking simulation, which aims to narrow down the
immunogenic peptides used in peptide-based vaccine
design.

HLA3D toolkit does not only provide a convenient,
user-friendly interface for users to search, browse, pre-
dict and download information about HLA genes but also
provides users with useful pipelines to accomplish per-
sonalized prediction. We believe that the HLA3D toolkit
will contribute to the further exploration of structure-
based epitope prediction and the pathogenesis of MHC-
related diseases and promote the application of HLA
molecules in the field of immunotherapy. The HLA3D
toolkit is publicly available at http://www.hla3d.cn/.

Methods and materials
The process of constructing HLA3D is depicted in
Figure 1. The data of HLA3D were obtained from public
datasets, literature and our laboratory. The detailed
procedure is explained in the following sections.

Collection and collation of HLA basic information
In HLA3D, the sequence, frequency and literature
information of HLA class I genes were obtained from
public databases. We collected all common and well-
documented HLA class I genes from The American
Society for Histocompatibility and Immunogenetics
(ASHI) CWD 2.0.0 catalogue [14], The European Fed-
eration for Immunogenetics (EFI) catalogue [15] and
Chinese HLA CWD catalogue [16], and a total of 1296
HLA alleles were collected after the removal of alleles
that did not encode proteins. Amino acid sequences and
nucleotide sequences of 1296 HLA class I genes reported
in the above three HLA-CWD catalogues were manually
collected from IMGT/HLA (https://www.ebi.ac.uk/ipd/
imgt/hla/). In all 120 000 pieces of HLA frequency data
around the world were derived from the allele frequency
net database (AFND) (http://www.allelefrequencies.
net/default.asp). The detailed information of a total
of 73 000 literature, covering hot research topics on
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Figure 1. Pipeline for construction of the HLA3D toolkit.

immunotherapy, HLA matching and so on, was collected
from PubMed (https://pubmed.ncbi.nlm.nih.gov/). And
we also collected 39 000 HLA SNP sites associated with
the diseases from CAUSALdb (http://mulinlab.tmu.edu.
cn/causaldb).

Collection and construction of HLA structure data
The construction process of the HLA structure is shown
in Figure 2. The structure data were retrieved from the
PDB database or developed by homology modelling and
protein docking. For HLA alleles with structures, we
used the mmseq2 method to query in PDB according
to the sequences of HLA molecules and collected all the
matching structures [17], and a total of 256 structures
were collected. For HLA molecules without structure
information, 3D structures of 212 common HLA I genes
were constructed by homology modelling, protein struc-
ture alignment and necessary quality tests. As shown in
Figure 2, the complete HLA class I alpha chain amino acid
sequences were collected from IPD-IMGT/HLA database

(https://www.ebi.ac.uk/ipd/imgt/hla/). Then, we selected
the most suitable template for modelling according to
the sequence similarity and functional similarity of
HLA molecules. The selection of templates following
four criteria: (i) select the structure with high sequence
similarity and high resolution in the same serological
group based on antigenicity of HLA [11]; (ii) if no template
is available in the serological group, choose the equal in
the same supertype group based on the peptide binding
specificity [12]; (iii) use MHCcluster for HLA functional
clustering [13], and pick out the structure with the
closest peptide binding specificity (Figure 3) and (iv) for
structures that do not meet the above criteria, the most
suitable template was elected according to the sequence
similarity and resolution. After the modelling work was
accomplished, 212 predicted structures were submitted
to SAVES (https://saves.mbi.ucla.edu/) for reliability
test. Ramachandran plots of modelled structures were
done and validated in PROCHECK [18]. Stereo-chemical
excellence and overall quality was tested by Verify 3D
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Figure 2. The process of HLA structure construction. The complete HLA I class alpha chain amino acid sequences were collected from IPD-IMGT/HLA
database (https://www.ebi.ac.uk/ipd/imgt/hla/). The structure with high sequence similarity, high structural resolution and belonging to the same
serological group or supertype group were used as template. We used the Advanced protein modelling function of Schrodinger (2020–24 release) to
construct the 3D structure of the alpha chain of HLA molecule. Then, these predicted structures were submitted to SAVES (https://saves.mbi.ucla.edu/)
for reliability test. Then, refined HLA class I alpha chains and the beta chains from templates were docked by CoDockPP software. Considering ligand
RMSD and docking scores together, the best conformation was preserved. Finally, the heterodimers were uploaded to Molprobity (http://molprobity.
biochem.duke.edu/) for quality test. The modelling information and quality parameters of each model structure are all recorded in HLA3D.

and ERRAT analysis [19, 20]. Then, the refined HLA class
I alpha chain model were docked with the beta chain in
the template by CoDockPP [21]. Considering ligand RMSD
and docking scores together, the best conformation was
preserved. Finally, the heterodimers were uploaded to
Molprobity for quality test [22].

Acquisition and curation of mutation datasets
Mutation data in HLA3D were manually collected from
the recent literature. We first screened the literature
that met our standards in public databases, and then
annotated the key information from it. Now, mutations
in HLA3D are made up of three types of data, including

https://www.ebi.ac.uk/ipd/imgt/hla/
https://saves.mbi.ucla.edu/
http://molprobity.biochem.duke.edu/
http://molprobity.biochem.duke.edu/


HLA3D | 5

Figure 3. The clustering results of unclassifiable HLA-A(A), HLA-B(B) and HLA-C(C) genes.

213 tumour-associated HLA mutations, 989 hotspot
mutations of significant mutated genes and 402 HBV
mutations associated with chronic hepatitis B or liver
cancer in the Chinese population. To ensure the accuracy
of collected data about HBV, we manually collected a
total of 1267 publications from Embase (https://www.
embase.com), PubMed (https://pubmed.ncbi.nlm.nih.
gov/) and other public databases. First, we filtered
259 publications based on four criteria: (i) removal of
studies with duplicated results; (ii) removal of studies
unrelated to HBV mutations; (iii) removal of studies
involving HCV infection and (iv) removal of the review.
Second, we reviewed the full text of these publications
in detail and extracted the general information of HBV
mutations related in liver cancer, and we obtained
HBV mutations. Then, these mutations were annotated
according to mutation, region, gene, gene type, disease
and publication, which can be used as a reference panel
to study the interaction mechanism between HBV virus
and MHC immune system in the Chinese population.
In addition, we collected 985 hotspot mutations based
on a systematic analysis of 3281 tumours from 12
cancer types, covering 127 SMG involved in different
signal pathways and enzyme processes [23]. Since HLA
mutations may cause immune escape in tumours,
213 possible HLA functional mutations, including loss
of function events (nonsense, frame-insertion loss),
were identified from a WES (whole exome sequencing)
analysis of 7930 cancer patients [24].

Acquisition of HLA differential immunogenicity
data
We provided a reference for the preferable selection
of recipient-donor pairs based on HLA structure and
sequence differences. On the one hand, we calculated
the differential immunogenicity of HLA structures
in HLA3D. The distinction in peptide-binding groove
between all structures was quantified with the protein
structure alignment facilities of Prime (Schrödinger
2020–24 release). It uses double dynamic programming
to align secondary structure elements and an iterative
rigid body superposition that minimizes the RMSD of

Cα atoms. In particular, amino acid residues (AAR) used
for the calculation did not include residues that are
not involved in antigen presentation or T-cell receptor
(TCR) recognition, such as random curls. The region of
AAR used for RMSD calculations were aa3-13, aa20-
38, aa45-85, aa92-103, aa109-127 and aa132-178 [25].
A total of over 100 000 RMSD records were obtained
and organized in HLA3D. On the other hand, at the
sequence level, we manually collected 26 amino acid
mismatch sites reported in the literature that are related
to immune rejection after transplantation [2, 26–31]. The
active sites of amino acid in HLA antigen-binding pocket,
which interacted with peptide or TCR, were annotated, as
well [32]. Moreover, the common and well-documented
(CWD) status of the HLA gene in European, American and
Chinese populations [14–16] was incorporated to provide
the information of the distribution and frequency of
candidate donors.

Acquisition of high affinity neoantigen data
We predicted the binding affinity between mutated
peptides generated from 989 hotspot mutations in
11 common tumours and 250 common HLA class I
alleles in the HLA3D toolkit, and more than 370 000
predicted immunogenic peptides were obtained and
organized. Firstly, we collected the amino acid sequences
of the 127 SMGs in the Uniprot database (https://www.
uniprot.org/). Then, we used Java language to write a
script for batch generation of overlapping peptides, and
by setting the original residue, position, new residue
and length, we could get the overlapping peptides
containing mutations. Secondly, we used NetMHCpan4.0
[33] to predict the binding affinity of 8–11 amino acid
peptides to HLA molecules, and only strong binders
(SBs) or weak binders (WBs) were retained according
to the rank. Considering that the presentation and
recognition of antigenic peptides is a complex process,
we collected some key parameters to facilitate the
screening of antigenic peptides. The key parameters
controlling tumour immunogenicity in the tumour
epitope immunogenicity model proposed by the tumour
neoantigen selection alliance include MHC binding
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affinity, tumour abundance, MHC binding stability,
agretopicity and foreignness [34].

Results
Toolkit contents
The HLA3D toolkit includes 1296 amino acid sequences
of HLA alleles (Figure 4A), 256 PDB structures and 212
modulated structures (Figure 4B), 120 000 frequency
data, 73 000 references, 39 000 SNP sites and 1743
mutations associated with tumorigenesis. In addition,
we calculated the structural differences in HLA antigen
binding grooves and obtained more than 100 000 RMSD
records. RMSD data of HLA-A molecules are concentrated
in the range of 0.4–0.7. Values lower than 0.4 are
considered relatively ‘low’ in the overall range, and
values higher than 0.8 are relatively considered ‘high’.
The structural difference data of HLA-B molecules are
distributed evenly, and the structural difference data of
HLA-C class molecules are mostly concentrated in the
two ranges of 0–0.2 and 0.5–0.8 (Figure 4C). We also took
hotspot mutations in common tumours as an example
and predicted more than 370 000 neoantigens with
high affinity. We classified and counted the predicted
antigenic peptides according to different tumour types
(Figure 4D) and sorted the top 20 genes and HLA alleles
with the highest number of predicted antigens in
different tumours (Figure 4E and F).

Website interface
The main components of the HLA3D web server are
interrelated tables, datasets, pipelines and tools for
immunotherapy based on HLA structural data. Figure 5
shows the user interface of HLA3D website and describes
the functions of main page.

Searching and browsing
The data collection module provides users with concise
pages to search, download and visualize information
about HLA class I molecules and tumour-associated
mutations (Figure 5A). The HLA section provides five
types of HLA data: (i) Sequence: users can search by HLA
allele to get the amino acid sequence and nucleotide
sequence; (ii) Structure: users can search by HLA allele
to get the structural information of HLA (Figure 5B).
For the structures derived from PDB, we annotated
the PDB ID, resolution, description and literature of
each. For structures through modelling, we annotated
the templates for their alpha chains, the beta chains
and the quality information of each HLA molecules
(Figure 5C). We also integrated the 3Dmol tool to provide
the visualization of the protein structures and peptide
epitopes. You can download the PDB structure files
from the download tab; (iii) Frequency: the frequency
information of HLA around the world is provided,
including population, sample size, allele frequency and
other information; (iv) Publication: HLA-related research
literature, including title, author, keywords and other

information was provided and (v) GWAS SNP: HLA SNP
information related to GWAS was provided according to
14 traits such as anatomy, organism and disease. While
the Mutation section provides users with mutations
in the case of SMGs, HLA and HBV viruses. For HLA
and significant mutated genes in common tumours,
interested mutations can be retrieved by searching the
gene or the cancer type. As for HBV, two web pages
are designed: (i) Publish: HBV mutations related to liver
cancer or chronic hepatitis B in the Chinese population
are provided here. Interested mutations can be retrieved
by searching the gene and gene type; (ii) Predict: the
analysis process of HBV hotspot mutations associated
with liver cancer in American and Chinese populations
is shown.

The data application module provides data that
we have calculated or simulated using bioinformatic
tools based on HLA structure or sequence data. For
the tumour vaccine part, we have designed two web
pages: neoantigen and standard (Figure 5A). Neoantigen
provides the information of predicted antigen peptides,
which can be identified by searching by the keywords
of cancer, gene, mutation, HLA allele and peptide. Users
can also view the information of the mutation state wild
type or mutant type (WT or MUT), position and bind level
(SB or WB) of antigenic peptides. To help users to verify
the antigenicity of antigenic peptides, we also provide an
immune epitope database and analysis resource (IEDB)
browser (https://www.iedb.org/). The standard subpage
provides detailed descriptions of the key parameters
controlling tumour immunogenicity: MHC binding
affinity, tumour abundance, MHC binding stability,
agretopicity and foreignness. For the transplant part,
we have designed three pages: 3DHLAMatch, risk site
and HLA CWD catalogue (Figure 5A). The 3DHLAMatch
page provides data on the structural differences of all
HLA structure antigen-binding pocket in HLA3D. Users
can search for RMSD scores of common HLA molecular
structure antigen-binding pockets by HLA allele, aligned
allele or gene pair. Risk site page demonstrates the amino
acid mismatch sites associated with acute rejection after
transplantation. HLA CWD catalogue page provides the
prevalence and sample information of HLA in America,
Europe and China.

Functionality
We integrated different types of data and tools and
established two pipelines to promote the application
of HLA molecules in the biomedical field (Figure 5D).
Details of the usage of tools can be found in the
tool manual in HLA3D (listed in the Supplementary
Data).

For stem cell therapy and organ transplantation, we
have built the risk alignment pipeline to help users assess
the transplant risk of mismatched HLA donors. We inte-
grated the structural difference data of HLA molecules
and the collected HLA sequence mismatch sites as data
resources. Then, we integrated ClusterW2 and 3Dmol [35]

https://www.iedb.org/
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Figure 4. Statistical analysis of the data in HLA3D toolkit. (A) The collection of HLA class I alleles from ASHI CWD2.0.0 Catalogue (ASHI), EFI CWD
catalogue (EFI) and Chinese CWD catalogue (Han). (B) The collection of HLA structures in HLA3D. Blue bars represent crystal structure from PDB. Orange
bars represent structure obtained through homologous modelling and protein docking. (C) The range of RMSD records of HLA-A, HLA-B and HLA-C
structures in HLA3D. (D) The predicted neoantigens in common tumours. Blue bars represent WBs and orange bars represent SBs. The definition of WB
and SB is based on the Rank calculated in NetMHCpan4.0. The top 20 HLA alleles (E) and genes (F) with the most neoantigens in lung squamous cell
carcinoma.

tool to provide users with the function of sequence align-
ment and 3D visualization. Finally, a risk assessment
report would be generated for users.

For tumour vaccine, we established the antigenic
peptide prediction pipeline to help users to predict
and screen immunogenic peptides. We integrated the
PSRPRED4.0 [36] to provide the users with sequence

secondary analysis to narrow the range of candidate
mutations. Then, we provide the users with the function
of peptide prediction. Users can not only query on the
Neoantigen page to access the information of predicted
antigenic peptides with high affinity in common tumours
but also obtain overlapping peptides containing the
candidate mutations using our own Proto-peptide tool.
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Figure 5. The interface of HLA3D toolkit. (A) Home page: users can search different types of data on HLA molecules and tumour-associated mutations
here. (B) Browse page: users can browse specific entries via search on different page. The query condition of HLA structure page is shown here. Users
can search for HLA structure by entering the name of HLA allele. (C) Query detail page: shown here is the response for searching for HLA structure,
including annotation information and structural visualization results. (D) Analysis page: two constructed Pipelines are presented here, namely Risk
Alignment and Antigenic Peptides Prediction. Users can flexibly choose tools to realize different predictions. (E) Predict result page: users can download
the predicted results here. (F) Statistic page: the statistical details of the data in the HLA3D toolkit are shown here. (G) Submission page: users can upload
structural data of HLA molecules in this page. (H) Help page: this page contains a description of the HLA3D toolkit, including toolkit background, data
sources, tool sources, data feature and detailed description of the pipelines and tools usage.

We also integrated the MHCflurry [37] package and
designed convenient interface to provide the function
of immunogenicity assessment based on peptide-HLA
affinity. Finally, the function of docking simulation is
provided for users to realize the molecular docking
of peptide and HLA. We integrated the PeptideBuilder
package [38] and designed the input page to provide
users with two ways to generate peptide conforma-
tion (Figure 5D). Users can input a peptide sequence,
generate an extended structure with default values
for the backbone dihedral angles (φ = −120◦, ψ = 140◦,
ω = 180◦), and can also use their custom bond angles
and bond lengths for every residue to create a specific

conformation (Figure 5E). Moreover, we integrated our
own CoDockPP software [21] and modified the site
constraints of the software according to the binding
characteristics of the peptide and HLA to provide the
function of peptide–HLA docking. Users can upload
the peptide and HLA structure through CoDockPP and
predict the initial docking conformation for subsequent
dynamic simulation and so on. Thus, users can dock
the peptide to the HLA in Ambiguous type without
any site constraints, and multiple docking between
peptide and HLA molecule can be performed by inputting
several sites (total sites < 8) on HLA molecule and peptide
as well.
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Example use case: predicting the differential
immunogenicity of HLA mismatched donors
by risk alignment pipeline
The risk alignment prediction process is shown in the
Figure 6A. It provides users with the following functions:
(i) structure alignment, which provides information
about the conformational differences of HLA antigen
binding groove; (ii) sequence alignment, which aims
to provide users with the function of HLA sequence
alignment; (iii) 3D-view, which aims to provide users with
the function of structural visualization of HLA sequence
mismatch sites and (iv) risk report, which aims to provide
users with a transplant risk assess according to the
function of mismatch sites. Here, we give an example
of a transplant with a single allele level mismatch in
HLA-B: B∗35:01/B∗35:08, to illustrate how to use the Risk
Alignment pipeline to evaluate the aGVHD severity of
mismatched donors.

Structure alignment

For example, typing ‘HLA-B ∗35:01’ on HLA Allele and
‘HLA-B ∗35:08’ on aligned allele. Since there are multiple
PDB structures in these two HLA genes, the search results
show that the antigen binding pocket difference between
the two HLA genes is 0.174–0.313.

Sequence alignment

Amino acid sequences of ‘HLA-B∗35:01’ and ‘HLA-
B∗35∗08’ were uploaded for sequence alignment through
ClustalW2, and the mismatched amino acid was high-
lighted in yellow. According to the output results, the
180th amino acid of HLA-B∗35:01 and HLA-B∗35∗08 is
inconsistent.

3D view

Upload the structure of HLA-B∗35:01 (PDB ID: 4PRB) and
locate the 180th amino acid on the 3D structure by
3Dmol [35]. The results showed that the site is located
in the alpha helix of HLA and may be related to antigenic
peptide or TCR recognition [39].

Risk report

The risk report generated the structural annotation infor-
mation of amino acid mismatch sites of HLA-B∗35:01
and HLA-B∗35:08. This mismatch site is located in the
α-helix of HLA and participates in the composition of
HLA antigen binding pockets D and E and interacts with
peptide ligands. It is a previously reported risk site [40].

Example use case: predicting the immunogenic
peptides by antigenic peptide prediction pipeline
The Antigenic Peptide Prediction process is shown in the
Figure 6B. It provides users with the following functions:
(i) mutation prediction, which aims to help users
narrow the range of candidate mutations; (ii) peptide
prediction, which aims to help users obtain the sequence
of the mutated peptides; (iii) immunogenicity assess-
ment, which aims to help users obtain the potential

immunogenic peptides and (iv) docking simulation,
which aims to help users get the initial conformation of
peptide–HLA docking. Users can flexibly choose different
tools to meet their own research needs.

Mutation analysis

PSIPPRED4.0 provides users with the secondary structure
prediction of the sequence [36]. Users can also refer to
the HBV Predict page for HBV virus hotspot mutation
analysis process, including sequence conservatism anal-
ysis, hydrophobicity analysis and transmembrane anal-
ysis and select other online tools to identify the hotspot
mutations [41].

Peptide prediction

There are two ways for users to obtain mutated peptide
sequences of interest. One is that, on the neoantigen
page, it provides a catalogue of 11 common tumour
neoantigens predicted with high affinity, and users can
search for tumour antigen peptides of interest. We also
provide users with histograms of the top 20 genes and
HLA alleles to predict the number of antigenic peptides
in each tumour (Figure 5E and F). And the other way is
that the users can use the Proto-peptide tool to obtain
the overlapping peptides containing mutations by setting
up the parameters. It can be used as input for tools, such
as NetMHCpan, to predict the affinity of 8–11 peptides
to MHC molecules [33]. In addition, users can choose
PeptideBuilder to generate the default extended peptide
conformation or customize a specific peptide conforma-
tion [38].

Immunogenicity assessment

Here, we designed a user-friendly interface based on the
key features of MHCFlurry [37]. It provides users with two
methods to predict the binding affinity of mutated pep-
tides. Users can choose ‘MHCFlurry predict’ method to
predict the binding affinity of individual peptides to MHC
molecules, or select ‘MHCFlurry predict scan’ method
to scan protein sequences for epitopes. A more detailed
tutorial can be found in the tools manual in HLA3D
(listed in the Supplementary Data).

Docking simulation

According to the binding characteristics of HLA and pep-
tide, we provide users with the tools to generate peptide
conformation and to complete docking simulation. First,
users can use PeptideBuilder [38] to generate any peptide
structure based on the peptide sequence and the dihe-
dral Angle of the backbone. Then, users can upload the
structure of peptides and HLA to CoDockPP to obtain the
initial docking conformation by defining the constraint
sites on the peptide and HLA molecules [21].

Discussion
HLA is characterized by high polymorphism, high
disease correlation and genetic heterogeneity, and its
prevalence frequency varies greatly among different
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Figure 6. Pipeline design for immunotherapy in the HLA3D toolkit. (A) The workflow of Risk Alignment pipeline. The prediction process of this pipeline
consists of four steps, and the prediction results of mismatched donor HLA-B∗35:01 and HLA-B∗35:08 are show. (B) The interpretation of tumour
vaccine design process. For tumour antigens, the first step is to get candidate mutations from source material, which contains the sequencing data
of the tumour and normal cell. The HLA3D toolkit provides users with three types of candidate mutation data: HLA, SMG and HBV virus. Users
can choose by themselves or upload their own mutation data for prediction. Then, these mutations could be analysed in the Antigenic Peptide
Prediction pipeline. The grey line represents the information flow. This platform provides users with four types of prediction: mutation analysis,
peptide prediction, immunogenicity assessment and docking simulation. Users can flexibly choose different tools or source to meet their research
needs.

populations [42]. These sequence characteristics empha-
size the importance of studying disease-related MHC
genes in population-specific reference panels. Thanks to
the establishment of sequence reference panels in recent

years [4], many susceptible MHC genes were discovered
in different populations, but little was understood about
their pathogenesis. Exploring the change of MHC–peptide
binding pattern is the key to revealing the pathogenesis
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of MHC-related diseases. However, the number of HLA
structures available is still small compared with the
number of identified HLA alleles, and the published HLA
structural databases focused more on HLA alleles that
are prevalent in the population.

Here, we developed a comprehensive toolkit of
HLA, HLA3D, to provide different resources and useful
pipelines and tools for different populations. The current
version of HLA3D includes sequences and structures
of all common MHC class I alleles in the American,
European and Chinese populations. The structural data
of the HLA include not only the PDB structures available
in public databases but also those obtained by homology
modelling and molecular docking. Some excellent HLA
modelling tasks have been accomplished in the past,
but the problem of how to choose the best template
to retain the antigenicity and immunogenicity of the
HLA structure has not been resolved. Here, we consider
both functional similarity and sequence similarity
between the template and the model. Structures with
high sequence similarity, high structural resolution and
belonging to the same serological group or supertype
group were used as templates [11, 12]. Notably, the
results of the three classification methods we used
were basically the same. In most cases, the results of
supertype classification follow the serological grouping.
The clustering results of MHCcluster are also the
same as the classification of supertype definition.
Serological classification focuses on the antigenicity
of HLA molecules, while supertype and MHCcluster
both focus on the immunogenicity of HLA molecules,
which are two basic characteristics of antigens. The
modelling information and quality parameters of each
model structure are recorded in HLA3D to ensure the
accuracy of the structure.

The HLA3D web server not only provides an integrative
resource for users who are interested in HLA but also
aims to promote structure-based immunotherapy. We
have designed the ‘Risk Assessment’ pipeline for organ
transplantation and the ‘Antigenic Peptide Prediction’
pipeline for the design of tumour vaccine.

During the process of hematopoietic stem cell trans-
plantation (HSCT), HLA compatibility between donor
and recipient is closely related to the severity of acute
graft-versus-host disease (aGVHD) [43]. However, some
primary structure differences of HLA proteins do not
lead to clinical allograft rejection [26]. This is because
certain amino acids are not directly involved in the
contact between MHC and antigenic peptides and
TCR. For example, it is reported that the mismatches
C∗03:03/C∗03:04 are the most common (68.7%) in grafts
with a single-allele-level mismatch in HLA-C [30].
Virtually, structure-based predictions are superior to
sequence-based ones because the binding feature of
MHC–peptide hinges on the conformation, hydropho-
bicity and charge distribution of the groove. Here, we
combined the knowledge of HLA structural differences
and sequence differences to design a risk alignment

pipeline to help users comprehensively evaluate the
differential immunogenicity of HLA mismatched donors.
Notably, the RMSD score is a quantitative indicator
of HLA conformational differences, which provides
a quick query method for assessing the severity of
aGVHD before transplantation. A donor with a higher
RMSD value is considered to have a higher risk of
postoperative aGVHD and is not recommended as a
transplant donor. Moreover, additional considerations
regarding the position and function of HLA sequence
mismatch sites in the 3D structure make the prediction
more accurate. We believe that, in the future, HLA
matching data in HLA3D toolkit could complement other
immunogenicity prediction methods to provide more
convenient and precise predictions for patients in urgent
need of transplantation.

HLA molecules also play a crucial role in tumour
immunotherapy. Tumour neoantigen is an abnormal pro-
tein that is not expressed in normal cells but is expressed
in tumour cells and can activate the immune system. By
obtaining immunogenic tumour antigens, personalized
tumour vaccines can be prepared. However, the experi-
mental method for detecting immunogenic peptides is
very time-consuming. In fact, not all mutated antigens
are immunogenic, only those antigens that bind to the
MHC and are stably presented on the cell surface meet
the requirements [3]. Therefore, we used bioinformatic
approaches to predict the antigenic peptides of common
tumour, thereby narrowing the range of candidate
neoantigens and promoting subsequent experimental
verification. In addition, the success of neoantigen
identification lies not only in the identification of
candidate antigenic peptides, but also in the evaluation
of immunogenicity of antigenic peptides. At present,
there are many tools available to predict immunogenicity
of peptides using a single indicator, such as binding
affinity or binding stability, which may lead to high
false positive rates. We previously screened candidate
mutations of HBV virus through conservative analysis,
hydrophobicity analysis and transmembrane analysis.
Then, molecular docking and molecular dynamics
simulation were used to study the changes of affinity
induced by these mutations. The final results explained
the role of 11 HBV mutations in immune escape of
liver cancer, including V351A and V354A, which are S
region mutations of HBV subtype A [41]. We synthesized
the mutant peptide and HLA-A∗02:01 protein in vitro
and measured the affinity using biofilm interference
technology. The results showed that the mutant peptide
had no affinity with HLA-A∗02:01 protein, while the
WT had affinity (Supplementary Figure 1, see Supple-
mentary Data available online at https://academic.oup.
com/bib). This is consistent with the results of our
molecular dynamics simulation, indicating that our
antigenic peptides analysis process is accurate. Here,
in the case of HBV virus mutation, we integrated this
prediction process into HLA3D toolkit and designed an
antigenic peptide prediction pipeline for users to realize

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac076#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
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de novo prediction of immunogenic peptides. We have
integrated different tools to design four functions for
users, including mutation analysis, peptide prediction,
immunogenicity assessment and docking simulation.
Users can flexibly combine tools according to actual
needs to complete the prediction and analysis of
immunogenic peptides.

Currently, the structures and pipelines in HLA3D are
all about the modelling and docking of MHC class I
molecules and peptides. However, in the cellular immune
response, the activation of TCR is essential. In the future,
we will further understand the modelling and dynamic
changes of TCRs and develop MHC–peptide-TCR docking
benchmarks to promote the application of HLA molecu-
lar structure data in the field of immunotherapy.

Key Points

• To provide comprehensive analysis of HLA for differ-
ent populations, we developed HLA3D, a comprehensive
toolkit that collected 1296 sequences, 256 PDB structures,
212 modelled structures, 120 000 frequency data, 73 000
associated literature, 39 000 disease-associated SNP of
HLA and 1604 oncogenic mutations.

• Based on common HLA molecules in HLA3D, we quali-
fied the HLA structure differences and obtained 100 000
RMSD records. In addition, we predicted 370 000 anti-
genic peptides with high affinity in common tumours,
which helps to narrow the range of candidate neoanti-
gens and promote subsequent experimental verification.

• By integrating the knowledge of differential immuno-
genicity in HLA sequences and structures, HLA3D estab-
lished a risk alignment pipeline, providing users with the
functions of structure alignment, sequence alignment,
3D-View and risk report, to help users predict the severity
of aGVHD of mismatch HLA donors before transplanta-
tion.

• In view of the key characteristics that affect the immuno-
genicity of mutated peptides, HLA3D established an anti-
genic peptide prediction pipeline to provide users with a
series of applications, such as mutation prediction, pep-
tide prediction, immunogenicity assessment and dock-
ing simulation, to help users complete the prediction and
analysis of immunogenic peptides.
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