
December 2016 | Volume 7 | Article 5821

Review
published: 14 December 2016

doi: 10.3389/fimmu.2016.00582

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Gilles Blancho,  

University of Nantes, France

Reviewed by: 
Thomas Wekerle,  

Medical University of Vienna, Austria  
Marcella Franquesa,  

Institut d’Investigació Germans  
Trias i Pujol, Spain

*Correspondence:
Gilles Benichou  

gbenichou@partners.org

Specialty section: 
This article was submitted to 

Alloimmunity and Transplantation,  
a section of the journal  

Frontiers in Immunology

Received: 15 September 2016
Accepted: 24 November 2016
Published: 14 December 2016

Citation: 
Marino J, Paster J and Benichou G 

(2016) Allorecognition by 
T Lymphocytes and  
Allograft Rejection.  

Front. Immunol. 7:582.  
doi: 10.3389/fimmu.2016.00582
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Recognition of donor antigens by recipient T cells in secondary lymphoid organs initi-
ates the adaptive inflammatory immune response leading to the rejection of allogeneic 
transplants. Allospecific T cells become activated through interaction of their T cell 
receptors with intact allogeneic major histocompatibility complex (MHC) molecules on 
donor cells (direct pathway) and/or donor peptides presented by self-MHC molecules on 
recipient antigen-presenting cells (APCs) (indirect pathway). In addition, recent studies 
show that alloreactive T cells can also be stimulated through recognition of allogeneic 
MHC molecules displayed on recipient APCs (MHC cross-dressing) after their transfer 
via cell–cell contact or through extracellular vesicles (semi-direct pathway). The specific 
allorecognition pathway used by T cells is dictated by intrinsic and extrinsic factors to the 
allograft and can influence the nature and magnitude of the alloresponse and rejection 
process. Consequently, various organs and tissues such as skin, cornea, and solid 
organ transplants are recognized differently by pro-inflammatory T cells through these 
distinct pathways, which may explain why these grafts are rejected in a different fashion. 
On the other hand, the mechanisms by which anti-inflammatory regulatory T cells (Tregs) 
recognize alloantigen and promote transplantation tolerance are still unclear. It is likely 
that thymic Tregs are activated through indirect allorecognition, while peripheral Tregs 
recognize alloantigens in a direct fashion. As we gain insights into the mechanisms 
underlying allorecognition by pro-inflammatory and Treg cells, novel strategies are being 
designed to prevent allograft rejection in the absence of ongoing immunosuppressive 
drug treatment in patients.

Keywords: allorecognition, T cells, regulatory T cells, allograft rejection, T cell tolerance, major histocompatibility 
complex, exosomes

iNTRODUCTiON

Allorecognition relates to the detection of genetically encoded polymorphisms between individual 
organisms of the same species by the immune system. Allorecognition has been described in nearly 
all multicellular phyla, including invertebrates that are devoid of an adaptive immune system (1). 
Indeed, certain cells of the innate immune system such as NK cells and macrophages are capable of 

Abbreviations: MHC, major histocompatibility complex; APC, antigen-presenting cell; Treg, regulatory T cell; tTreg, thymic 
regulatory cell; pTreg, peripheral regulatory T cell; γIFN, gamma interferon; TNFα, tumor necrosis factor alpha; DST, donor-
specific transfusion; DTR, diphtheria toxin receptor; TMEM, memory T cell; CTL, cytotoxic T lymphocyte; DC, dendritic cell.
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self–non-self discrimination (2, 3). In vertebrates, the adaptive 
immune response to allogeneic cells is initiated through recogni-
tion of polymorphic proteins by T lymphocytes through their 
antigen receptors. Subsequent activation of pro-inflammatory 
allospecific T cells initiates a cascade of reactions leading to rejec-
tion of transplanted allogeneic tissues and organs. Alternatively, 
under particular circumstances, deletion or inhibition of alloreac-
tive effector T cells can result in allograft acceptance or tolerance 
(4, 5). In this article, we review current knowledge of the different 
pathways underlying alloantigen recognition by different T cells 
subsets and examine their contributions to rejection or tolerance 
of allografts.

DiFFeReNT MeCHANiSMS iNvOLveD  
iN T CeLL ReCOGNiTiON OF 
ALLOANTiGeNS

The following section describes the three known pathways (direct, 
indirect, and semi-direct) by which recipient T cells recognize 
donor alloantigens [major histocompatibility complex (MHC) 
and minor antigens] after allotransplantation.

Direct Allorecognition
Seminal studies in skin-grafted rodents support the view that 
early after transplantation intra-graft dendritic cells (DCs) (pas-
senger leukocytes) migrate through lymphatics to host regional 
lymph nodes (LNs) (6, 7). Naïve T cells located in these LNs 
become activated through recognition of allogeneic MHC mol-
ecules displayed on these donor passenger leukocytes (8). This 
phenomenon, known as direct T cell allorecognition, initiates 
an inflammatory immune response leading to rapid and acute 
cellular rejection of skin allografts (9). Unlike conventional 
T cell responses to nominal protein antigens, the direct T cell 
alloresponse is polyclonal in that it involves a large portion of the 
T cell repertoire (1–10%) (10–13). Two non-mutually exclusive 
mechanisms have been proposed to explain this unique feature 
of the T cell response against allogeneic MHC molecules: the 
high determinant density and the multiple binary complex models 
(14–16). The high determinant density model postulates that each 
allogeneic MHC molecule on a foreign cell can be recognized by a 
single T cell receptor (TCR), which is focused on exposed amino 
acid polymorphisms of the allogeneic MHC molecule independ-
ent of the peptide bound to it. Likewise, various T cells may be 
activated even if each individual receptor on a given clone displays 
a low affinity for its ligand. The multiple binary complex model 
is based on the principle that each individual alloreactive T cell 
clone interacts with allogeneic MHC molecules bound to a defined 
peptide. Allo-MHC molecules being occupied by a multitude of 
different peptides can create many new pMHC complexes that 
can serve as ligands for various T cell clones. The prevalence of 
either model in T cell allorecognition presumably depends upon 
the degree of heterogeneity (structural and/or conformational) 
between recipient and donor MHC molecules. Unlike conven-
tional immune responses, T cell responses to allogeneic MHC 
antigens can be observed in vitro with T cells isolated from naïve 
animals cultured with allogeneic irradiated cells. This so-called 

mixed allogeneic reaction [mixed lymphocyte reactions (MLR)] 
is believed to rely on the high frequency of precursor T cells capa-
ble of recognizing allogeneic MHC molecules. It is also possible, 
however, that the MLR may reflect the presence of alloreactive 
memory T cells generated after infections through cross-reactive 
recognition of self-MHC molecules bound to microbial peptides 
mimicking an allogeneic MHC–peptide complex, a phenomenon 
called heterologous immunity (17, 18). For instance, T cells from 
individuals sensitized to EBV peptides presented by self-MHC 
class I HLA-B8 also recognize the HLA-B4402 allogeneic MHC 
molecules (19). Consequently, HLA-B8 individuals display 
memory T cells directed to HLA-B4402 allogeneic subjects as a 
result of an EBV infection. The same phenomenon has also been 
shown in mice after exposure to LCMV and Leishmania parasites 
(17, 20, 21).

indirect Allorecognition
Seminal studies by Singer showed that allogeneic MHC 
class I antigens could be presented by self-MHC class I on 
antigen-presenting cells (APCs) and trigger the activation of 
some CD8+ cytotoxic T cells in vitro, a phenomenon referred 
to as cross-presentation (22). Most importantly, Lechler and 
Batchelor provided evidence for an alternative pathway of 
T cell alloresponse in  vivo in the early 1980s (23, 24). It was 
observed that allosensitization could occur in the absence of 
donor passenger leukocytes following retransplantation of 
kidney grafts in rats (23, 24). Based on the assumption that 
donor parenchymal cells were not capable of sensitizing 
naïve T cells, it was proposed that host MHC class II+ bone 
marrow-derived professional APCs could present alloantigens 
and initiate an alloresponse. In 1992, our laboratory provided 
definitive evidence showing that allogeneic MHC peptides were 
regularly presented by self-MHC class II molecules on recipi-
ent APCs and triggered the activation of CD4+ T cells in the 
LNs of skin-grafted mice (25). The relevance of this process, 
called indirect allorecognition, in solid organ transplantation 
was documented the same year in two subsequent studies by 
Fabre and Suciu-Foca’s groups in rats and humans, respectively 
(26, 27). Subsequent studies documented indirect activation of 
CD8+ T  cells after skin transplantation; the relevance of this 
phenomenon in the rejection process is discussed later in this 
article (28–30). Determinant mapping and TCR repertoire 
studies showed that the initial indirect response to an allograft 
was oligoclonal and followed the rules of immunodominance 
in that it was mediated by a discrete set of T cell clones directed 
to a few dominant determinants usually located within poly-
morphic regions of allogeneic MHC proteins (31, 32). However, 
progressively, indirect alloresponse by T cells tend to spread to 
new formerly cryptic allo-MHC peptides (33). Cryptic deter-
minants correspond to peptides that are not processed and/or 
presented efficiently enough to trigger a T cell response after 
protein immunization (34). However, T cell responses to these 
determinants can be elicited upon peptide immunization (34). 
Secondary responses to formerly cryptic determinants also 
called antigen spreading has been documented in autoimmune 
disorders (35, 36) and after allotransplantation and could be 
involved in chronic rejection (37).
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In addition to its role in allo-MHC recognition, indirect T cell 
recognition is considered as the main driving force being T cell 
responses to minor antigens (mH), which are peptides usually 
derived from housekeeping proteins displaying some degree of 
polymorphism (38). The contributions of mH to the overall indi-
rect alloresponse by T cells and to allograft rejection are discussed 
later in this article. Finally, it is important to note that it is still 
unclear where and through which process donor antigens are 
taken up and processed by recipient APCs and presented to T cells 
after transplantation. Acquisition of donor antigens by recipient 
APCs may occur in the graft itself or in the host lymphoid organs 
through pinocytosis of shed donor proteins, phagocytosis of dead 
donor cells and apoptotic bodies, or via transfer of donor antigens 
through cell–cell contact or phagocytosis of extracellular vesicles 
secreted by donor cells.

Semi-Direct Allorecognition
It is now well established that leukocytes exchange molecules, 
including RNA and proteins, either via cell–cell contact (tro-
gocytosis), nanotubes, or through the release of extracellular 
vesicles such as exosomes (39–41). For instance, T cells were 
shown to acquire surface immunoglobulin molecules from 
B  cells (42) and antigens from macrophages (43). Likewise, 
the transfer of MHC molecules between hematopoietic cells 
was originally documented by Frelinger et  al. (44). Acquired 
peptide–MHC complexes have been shown to remain at the cell 
surface of APCs for more than 48 h, providing ample opportuni-
ties for T  cell activation (45). There is accumulating evidence 
suggesting that this process plays a key role in the initiation and 
regulation of immunity to microbes and tumors (46). Recent 
studies have documented the transfer of MHC class I and II 
molecules (MHC cross-dressing) between recipient and donor 
DCs after solid organ and bone marrow transplantation (40, 
47, 48). At the same time, DCs that have acquired allogeneic 
MHC proteins in vitro via cell–cell contact have been shown to 
stimulate allospecific T cells in vitro, through a mechanism often 
referred to as semi-direct allorecognition (Figure 1) (49–51). It 
is conceivable that allo-MHC cross-dressing of APCs after 
transplantation could occur via cell–cell contact and through 
secretion of extracellular vesicles. Lechler et al. have shown that 
DCs and endothelial cells can acquire MHC complexes in vitro 
and in  vivo (after DC injections) through cell–cell contact in 
a temperature- and energy-dependent manner. In these stud-
ies, allo-MHC cross-dressed cells induced proliferation of 
Ag-specific T cells in vitro (49–51). On the other hand, a recent 
study by Marino in our laboratory shows that recipient APCs 
having acquired donor MHC from donor exosomes trafficking 
from skin and heart to host lymphoid organs are involved in 
T cell antigen recognition and activation after allotransplanta-
tion. Most exosomes expressed preferentially allogeneic MHC 
class II and were derived from donor DCs and B cells, i.e., bone 
marrow-derived professional APCs. However, it is important to 
note that a significant number of MHC class II+ vesicles involved 
in MHC cross-dressing were not derived from these cells and 
could potentially be secreted by activated endothelial cells, as 
suggested by a previous report from Lechler’s laboratory (50). 

Altogether, these studies involving transfer of MHC antigens 
provide a different view of the process by which donor passenger 
leukocyte cells can trigger T cell alloresponses after transplan-
tation. It is now crucial to investigate whether exosomes and 
allo-MHC cross-dressing are essential elements of the overall 
alloresponse and allograft rejection processes.

ReLATiONSHiPS BeTweeN  
DiFFeReNT PATHwAYS

Direct and indirect allorecognition represent distinct mechanisms 
involving different APCs, T cells, and antigen determinants. 
Each of these pathways can sufficiently and exclusively lead to 
acute rejection of fully allogeneic skin allografts (52). In certain 
circumstances, T cells activated directly and indirectly could 
either cooperate or suppress each other, a process influencing 
the survival of allografts. It is plausible that in recipients of MHC 
class I-disparate allografts, CD4+ T cells activated exclusively 
through indirect allorecognition provide help [via IL-2 and 
gamma interferon (γIFN) secretion] for the direct activation of 
other CD4+ T cells (three-cell cluster model) or the differentia-
tion of CD8+ cytotoxic T cells recognizing donor MHC class I 
peptides in a direct fashion (four-cell cluster model) (Figure 1). 
Likewise, in the absence of bone marrow-derived donor profes-
sional APCs, T cells recognizing donor MHC class I or II directly 
on parenchymal cells can receive costimulatory signals via 
interaction with CD80/86 or CD40 located on recipient profes-
sional APCs (activated through indirect presentation to T cells) 
(trans- costimulation) (Figure 1). At the same time, early inflam-
matory direct alloresponses associated with γIFN and tumor 
necrosis factor alpha production and subsequent induction of 
donor MHC class II expression on endothelial cells presumably 
enhances allo-MHC antigen processing by recipient APCs and 
indirect activation of T cells. Therefore, the direct and indirect 
alloresponses can act synergistically to reject an allograft.

T CeLL ReCOGNiTiON PATHwAYS 
iNvOLveD iN ALLOGRAFT ReJeCTiON

Many factors either intrinsic or extrinsic to the graft influence 
the nature and magnitude of the T cell response induced by a 
defined pathway of allorecognition. Consequently, the contribu-
tion of each T cell allorecognition pathway (direct or indirect) 
to the rejection process varies upon the nature of the tissue or 
organ transplanted, the site of the body where it is placed, and 
the immunological status of the recipient. This section describes 
some of the factors governing the initiation of direct and indirect 
alloresponses by CD4+ and CD8+ pro-inflammatory T cells and 
the rejection of allogeneic skin, corneal, and heart grafts.

T Cell Allorecognition in Skin 
Transplantation
Potent direct and indirect alloresponses by CD4+ T cells are 
induced after transplantation of fully MHC-mismatched skin 
allografts (13). The direct alloresponse to donor MHC class II 
antigens by inflammatory CD4+ T cells is polyclonal and leads 
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acquired MHC class I) (B) and enhance cooperation between CD4+ T cells activated directly (via recognition of acquired donor MHC class II) and indirectly (recipient 
MHC class II+ donor peptide) (D).
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to the rapid rejection of skin allografts (53). Yet, studies from 
Auchincloss’ laboratory using MHC class II-deficient skin 
allografts have demonstrated that the CD4+ T cell indirect 
alloresponse was sufficient on its own to cause acute skin graft 
rejection by providing help for the activation/differentiation of 
CD8+ cytotoxic T cells recognizing donor MHC class I directly 
(54, 55). This conclusion was further confirmed by experiments 
using recipient mice adoptively transferred with CD4+ T cell 
clones recognizing donor antigens indirectly (56). In addition, 
indirect responses by CD8+ T cells are also detectable after skin 
transplantation (28). Studies by Valujskikh and Heeger support 
the view that indirectly activated CD8+ T cells can reject skin 
allografts following recognition of self-MHC class I+ allopep-
tides present on vascular endothelial cells after replacement 
of donor graft vessels by recipient ones (30, 57). Therefore, 
both CD4+ and CD8+ T cells activated directly and indirectly 
are elicited after skin grafting and can lead to acute rejection 
of these allografts. Recent articles by Marino et al. and Smyth 
et al. support the view that T cells activated through direct and 

possibly indirect pathway after skin transplantation recognize 
donor MHC molecules and peptides acquired and displayed by 
recipient APCs (58, 59). However, the precise contribution of 
this phenomenon to acute rejection of these grafts remains to 
be evaluated. Finally, it is important to note that skin allografts 
that are vascularized at the time of their placement are acutely 
rejected at the same pace as their conventional (non-primarily 
vascularized) counterparts, but they do not induce an indirect 
alloresponse (60). This shows that graft vascularization influ-
ences the nature of the allorecognition by T cells after skin 
transplantation.

T Cell Allorecognition in Corneal 
Transplantation
In contrast to skin transplants, corneal allograft rejection is 
slower and is driven by minor antigens instead of MHC dispari-
ties between the host and recipient (61). This unusual feature of 
corneal transplantation is attributed to the facts that (1) corneal 
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allografts are devoid of MHC class II+ APCs at the time of trans-
plantation and (2) they are placed in the eye that is an immune-
privileged site of the body (62, 63). These grafts induce indirect 
but no direct alloresponses by CD4+ T cells, a feature presumably 
associated with the lack of donor MHC class II expression in the 
cornea (64). In addition, the indirect CD4+ T cell alloresponse 
is directed almost exclusively to minor antigens (61). Such 
dominance of minor antigens is likely to rely on the low expres-
sion of MHC antigens in the cornea [absence of MHC class II 
and reduced MHC class I expression (65)]. Additionally, in the 
absence of CD4+ T cell direct alloreactivity, indirect alloresponse 
may be biased toward mH antigens, as observed in the rejection 
of APC-depleted thyroid grafts (66). On the other hand, CD8+ 
T cells activated directly against donor MHC class I are readily 
detected after corneal transplantation (67, 68). Although these 
CD8+ T cells produce γIFN, they do not display cytotoxic func-
tions (67, 68).

Only indirectly activated CD4+ T cells then drive the rejec-
tion process. Interestingly, while no MHC class II+ cells were 
originally detected in the cornea, studies by Dana’s laboratory 
have documented the presence of DCs in the cervical LNs 
draining corneal allografts (69). Indeed, CD11c+ DCs and 
CD11b+ macrophages are present in the corneal epithelium 
(70). Interestingly, in “high-risk” recipients of corneal trans-
plants placed in an inflamed eye bed environment (71), corneal 
DCs express MHC class II molecules as well as CD40, CD80, 
and CD86 co-receptors at the time of transplantation (71). 
Consequently, these allografts trigger vigorous direct allore-
sponses by host CD4+ T cells against intact donor MHC class 
II molecules and are acutely rejected in a few days similar to 
skin grafts (71). Therefore, lack of immunogenicity of corneal 
DCs is not an intrinsic property of these cells, but it is due to 
the microenvironment of the eye. This view is supported by 
Niederkorn’s studies showing that heterotopic corneal allografts 
elicit bona fide cytotoxic T cell (CTL) responses (72). Likewise, 
we have shown that corneal allografts placed subcutaneously in 
mice trigger CD4+ T cell direct alloresponses (68). Altogether, 
these studies demonstrate that both intrinsic (APC contents) 
and extrinsic (site of placement) factors determine the fate of 
corneal allografts by influencing the allorecognition pathway 
and the nature of target  alloantigens involved in the T cell 
response against these grafts.

T Cell Allorecognition and Rejection of 
vascularized Solid Organ Transplants
Early acute rejection of cardiac and kidney allografts is essen-
tially initiated by CD4+ T cells recognizing donor MHC class 
II molecules in a direct fashion (73, 74). These transplants 
differ from skin allografts in that they are vascularized at the 
time of their placement (75). This is associated with a rapid 
trafficking of graft DCs to the host spleen presumably occur-
ring via reverse transendothelial vascular migration (76, 77). 
In addition, some studies suggest that these allografts could be 
rapidly infiltrated with recipient endogenous alloreactive effec-
tor memory T cells (78, 79). These pre-existing memory T cells 
are present at low frequencies (5–10%) in laboratory rodents 

(80, 81). In contrast, primates display much higher frequencies 
(>50%) of alloreactive memory T cells before transplantation 
(82, 83). These memory T  cells may be generated through 
mimicry with microbial antigens or prior exposure to allogeneic 
MHC  molecules  following events such as pregnancy or blood 
transfusion. We and others have shown that these memory 
T  cells account for resistance to allograft tolerance induction 
in primates (82–85). Therefore, primarily naïve and presumably 
endogenous memory T cells activated in a direct fashion mediate 
early acute rejection of solid organ transplants. Suppression of 
this response by calcineurin inhibitors and other immunosup-
pressive agents is regularly achieved in transplanted patients, 
thereby allowing large-scale clinical transplantation of organs 
such as kidneys and livers. However, many of these transplants 
are ultimately lost due to chronic rejection, a process associated 
with progressive graft tissue fibrosis and blood vessel occlusion 
(86, 87). There is strong circumstantial evidence suggesting 
that T cells activated indirectly are responsible for chronic 
allograft rejection, either on their own or through the induction 
of alloantibody production by B cells (86–89). The relevance 
of this concept in clinical transplantation is supported by the 
detection of donor HLA DR peptide-reactive T cells in kidney-
transplanted patients with chronic rejection (90). Additionally, 
studies by Baker et al. showed the loss of direct and maintenance 
of indirect alloresponses in renal allograft recipients and its 
implications in chronic allograft nephropathy in patients (87). 
Finally, recent studies by Benichou and Morelli’s laboratories 
suggest that activation of recipient T cells through semi-direct 
allorecognition might represent an essential element of the 
immune response to and rejection of cardiac allografts in mice 
(58, 91). Both studies show that T cells activated via this pathway 
recognized allo-MHC molecules transferred to recipient APCs 
by donor exosomes released either in the heart transplant or in 
the recipient’s lymphoid organs (58, 91). Ongoing studies are 
underway to assess the role of semi-direct alloreactivity in acute 
and chronic rejection of heart and other solid organ transplants 
in animal models and patients.

T CeLL ALLOReCOGNiTiON PATHwAYS 
iN ReGULATORY TOLeRANCe

Allograft tolerance, defined as long-term survival of allogeneic 
transplants in the absence of ongoing immunosuppressive 
drug treatment, can occur via deletion or inhibition of allo-
reactive T  cells. This process can occur naturally, as seen in 
the tolerance of paternal alloantigens expressed by the fetus 
during pregnancy (92, 93). In addition, immune-privileged 
tissues such as the central nervous system and the testis are 
tolerogenic in that they elicit systemic tolerance to foreign 
antigens to which they are exposed (94–96). Various cells and 
mediators of the innate and adaptive immune systems have 
been implicated in the process of allograft tolerance (4, 96–99). 
Among them, regulatory T cells (Tregs) play an essential role 
by suppressing inflammatory responses (100–102). Tregs are 
CD4+CD25high T lymphocytes expressing FoxP3 transcription 
factor either constitutively (thymic Tregs or tTregs) or after 
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peripheral recognition of antigens (peripheral Tregs or pTregs) 
(100, 103, 104). In addition to their role in self-antigen toler-
ance, both Treg subsets can suppress inflammatory alloreactive 
T cells in vitro and in vivo. They inhibit alloreactivity in MLR 
in vitro (4, 96, 99, 105) and are thought to mediate transplant 
tolerance elicited via leukocyte costimulation blockade, donor-
specific transfusion (4). This is supported by experiments in 
which inoculation of Tregs from tolerant mice to naïve mice 
could prolong allograft survival and even transfer tolerance 
(4). In addition, studies from Colvin’s laboratory using FoxP3-
diphtheria toxin receptor mice showed that in vivo deletion of 
Tregs abrogated ongoing tolerance to kidney allografts in mice 
(106). tTRegs are positively selected in the thymus medulla 
based on their high affinity for self-antigen pMHC complexes 
(107). While tTregs require TCR interaction with self-MHC 
class II molecules to mediate their suppress functions, they 
are thought to be non-antigen specific. Indeed, tTregs isolated 
from naïve mice can suppress T cells responding to polyclonal 
stimulators (anti-CD3/anti-CD28 mAbs or PMA/ionomycin) 
and MLR regardless of the nature of the allogeneic stimulators. 
The nature of the self-peptide determinants recognized for 
tTregs is not known. Studies from LeGuern’s laboratory suggest 
that tTreg recognition is biased to self-MHC class II peptides 
bound with self-MHC class II molecules themselves (referred 
to as Tlo) (108). Tolerance of solid organ transplants in swine 
and rodents via allo-MHC class II transgenesis support this 
view (109–113). In contrast to tTregs, pTregs presumably 
acquire FoxP3 expression and suppressor functions through 
recognition of donor antigens (MHC and/or minor antigens) 
presented by selected APCs (immature DCs and plasmocytoid 
DCs) in an appropriate cytokine milieu (4, 114–117). Although 
activation of pTregs may be antigen specific, it is not clear 
whether their suppressive function follows the same rules. 
Therefore, both Treg subsets involved in allograft tolerance 
are presumably activated through recognition of peptides 
presented by self-MHC class II on recipient APCs, i.e., in an 
indirect fashion. However, the mechanisms by which they sup-
press alloreactive T cells and induce and/or maintain allograft 
tolerance are still unknown.

CONCLUDiNG ReMARKS

It is now firmly established that the mechanisms by which 
T cell recognize and respond to alloantigens greatly vary upon 
the nature of the transplanted organ or tissue, the site of ana-
tomical placement, and the immunological status of the host. This 
explains why certain transplants, such as skin allografts, which 
induce potent inflammatory responses by both CD4+ and CD8+, 
activated directly and indirectly, are highly immunogenic and 
thereby resistant to tolerance induction. In contrast, corneal allo-
grafts that elicit only indirect alloresponses by CD4+ T cells are 
tolerogenic and often spontaneously accepted. On the other hand, 
early acute rejection of solid organ allografts such as hearts and 
kidneys is mediated essentially by T cells activated directly. While 
this immune response results in a potent inflammatory reaction, 
it is readily inhibited by calcineurin inhibitors. This explains why 
these drugs have been effective at achieving prolonged survival 
of organ allografts in patients. These treatments do not, however, 
efficiently suppress alloreactive memory T cells, thus precluding 
transplantation in patients sensitized to their potential donors 
(10% of patients). Most importantly, many transplanted organs 
are progressively lost due to chronic rejection, a process presum-
ably initiated by indirectly activated T cells and subsequent 
production of cytotoxic anti-donor antibodies. For reasons that 
are still unclear, this response is not always efficiently suppressed 
by current immunosuppressive drugs. Therefore, future chal-
lenges in clinical transplantation will be to suppress or eliminate 
allospecific memory T cells and to prevent the development of 
indirect alloresponses.
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