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The Influence of Blue Light Exposure on
Reconstructed 3-Dimensional Skin Model:
Molecular Changes and Gene Expression Profile

Juliana Carvalhães Lago1, Melissa Dibbernn Ganzerla1, Ana Luisa Abrahão Dias1 and
Joice Panzarin Savietto1
Recent studies have provided information about digital eye strain and the potential damage that blue light from
digital devices can cause to the eyes. In this study, we analyzed the influence of blue light exposure on
reconstructed 3-dimensional skin model using RNA sequencing to identify the expression of transcripts and
abnormal events. Three-dimensional skin was exposed to visible light spectrum and isolated blue wavelength
for 1, 2, and 4 hours to represent acute exposure and 1 hour over 4 sequential days to represent repeated
exposure, respectively, in this in vitro model. We compared gene expression levels with those of unexposed
control. Samples submitted to repeated exposure showed reduced AK2 and DDX47, whereas they showed
increased PABPC3 gene expression, revealing a significantly negative impact. RT-PCR validation assay with
exposed 3-dimensional skin compared with unexposed control regarding 1 and 4 days of incubation showed
increased IL-6 signaling mechanism activation and signal transducer and activator of transcription 3 gene STAT3
gene expression, whereas it showed decreased peroxisome proliferatoreactivated receptor signaling mecha-
nism activation, suggesting an influence on inflammatory pathways. We also demonstrate upregulated gene
expression of KIT, MAPK2, and PI3KC in samples from exposed condition, corroborating previous findings
related to pigmentation signaling stimuli. These results reveal, to our knowledge, previously unreported data
that enable studies on molecular response correlation of in vitro digital blue light exposure and human skin
studies.
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INTRODUCTION
Blue wavelength light is part of the visible light spectrum and
is referred to as high-energy visible light (Bernstein et al,
2021). The principal source of human exposure to blue
light is the sun, although we receive a significant dose from
electronic devices and indoor lighting (Bao et al, 2021), given
a workday context of hours of exposure in front of computers
and personal devices such as cellphones, television, etc.

Studies with blue light exposure have demonstrated evi-
dence of eye damage (Marek et al, 2018; Vicente-Tejedor
et al, 2018). On the other hand, blue light plays a critical
role in the maintenance of health, being responsible for
circadian cycle regulation in humans (Brown, 2020;
Lawrenson et al, 2017; Tähkämö et al, 2019; Wahl et al,
2019). Blue light also increases humor and helps in
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cognitive functions and memory (Alkozei et al, 2017;
Motamedzadeh et al, 2017). Regarding skin conditions, blue
light can induce both beneficial and adverse effects,
depending on the dose and the spectrum width of the
exposure (Bonnans et al, 2020; Serrage et al, 2019).

Over the past several years, new evidence of blue light’s
contribution to effects on healthy human skin (Falcone et al,
2018), including hyperpigmentation (Campiche et al, 2020;
Duteil et al, 2020; Regazzetti et al, 2018) has emerged, but it
is still inconclusive whether this evidence can be generalized
as a skin photoaging hazard, given no evidence of negative
effects in real life (Ceresnie et al, 2023). Concerns about the
harmful effects of blue light on the skin have increased, and
knowledge about this topic is also increasing (Coats et al,
2021). For example, in 2010, a clinical study revealed that
UVA and visible light could induce pigmentation in skin
types IVeVI but not in light-skinned subjects, with different
qualities and quantities of pigment (Mahmoud et al, 2010). In
2019, a study showed that epidermal skin cells could sense
light and control their clock gene expression (Dong et al,
2019).

To properly study blue light effects on the skin, it is
necessary to take both indoor and outdoor approaches
because sunlight and digital devices emit blue light. Biolog-
ical effects caused by blue light have been mapped (Kumari
et al, 2023; Mahmoud et al, 2010; Regazzetti et al, 2018),
although the nature of alterations in the biological
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mechanism remains unclear. Given its proximity to the UVA
wavelength, studies suggest that blue light contributes to
cutaneous alterations by ROS production, similar to UVA
(Nakashima et al, 2017; Vandersee et al, 2015). Moreover,
shorter wavelengths of visible light seem to induce long-
lasting hyperpigmentation in melanocompetent individuals,
mainly reported in melanocytes studies (Regazzetti et al,
2018). In contrast, information about longer blue wave-
lengths showed antifibrotic activity and may represent a
suitable approach to treating fibrotic skin diseases (Krassovka
et al, 2020).

Blue lighteinduced hyperpigmentation in dark-skinned
subjects is known to be mediated by opsin 3 (Regazzetti
et al, 2018); however, whether blue light also induces other
molecular alterations in the skin is unknown. In this work,
using next-generation sequencing (RNA-seq) and real time
reverse transcriptase PCR (real time RT-PCR) validation, we
identify biological pathways modulated differently during
digital light exposure, including blue wavelength, suggesting
a significantly negative impact on molecular events in a 3-
dimensional (3D) skin model.
RESULTS AND DISCUSSION
We exposed 3D skin to 8 different conditions of light-
emitting diode (LED) light exposure to simulate acute and
repeated exposure. In addition, we compared the RNA-seq
transcripts with those of unexposed 3D skin control to eval-
uate the role of blue wavelength on biological mechanisms of
the skin, irradiated by visible light from a LED source in
different exposure conditions.

Histological analysis

Samples from 8 groups of 3D skin, 3 replicates, irradiated
using LED light and compared with unexposed control for 1
and 4 days of incubation were examined histologically.
Three groups were simulating acute exposure (1, 2, and 4
hours), whereas the 3D skin samples irradiated for 1 hour
over 4 sequential days were simulating repeated exposure
for both blue wavelength and the full visible spectrum of
digital light. Each sample of the replicate was analyzed
within 10 histological sections, and Figure 1 represents a
typical finding of the total number of replicates performed.
The developed reconstructed 3D skin model exhibited high-
quality histology and cytoarchitecture consistency. A critical
hallmark of tridimensional skin maturation, including the
dermis and epidermis, is the formation of the cornified en-
velope in the epidermis corneal layer (Sriram et al, 2018). As
shown in Figure 1, all samples exhibited well-differentiated
and multiple-layered epidermis. In addition, a well-
differentiated collagen 1 matrixebased dermis with pattern
morphology fibroblasts is shown. H&E staining displayed the
characteristic basal columnar keratinocytes located at the
basal layer and a visible stratum corneum. As a result, all 3D
skin models demonstrated a high quality of the expected
epidermal and dermal structure (Figure 1), suggesting that
the biological difference associated with the transcript ob-
tained in this study, when compared with those of unex-
posed control, is not directly related to morphological
alterations on 3D skin.
JID Innovations (2024), Volume 4
RNA-seq and transcript analysis

The aging of the skin is a complex biological mechanism. The
influence of the external environment is well-described in the
literature (Lago and Puzzi, 2019). It is characterized by al-
terations in the physiology and morphology of the skin
caused by sunlight exposure, yet little is known about the
influence of digital light exposure on the skin. In this study,
through RNA-seq and real-time RT-PCR validation, we eval-
uate the influence of blue wavelength and the full visible
spectrum of digital light on skin biological mechanisms.

After isolation of total RNA, we performed RNA-seq assay
(Gene Expression Omnibus identification GSE190106). Data
analysis was performed using likelihood ratio test statistical
method (Chen et al, 2020) in addition to Ingenuity Pathway
Analysis software for pathway analysis. A representative im-
age of differential gene expression in all digital light exposure
models can be found in Figure 2a. The spectrum of colors
indicates activation of the biological mechanism, with un-
exposed 3D skin being used as a control. For example, blue
indicates downregulation of mechanism activation, whereas
orange indicates upregulation.

Briefly, 8 groups of 3D skin samples were irradiated using
LED light, and 3 replicates for each condition were pooled to
identify the influence of digital blue light on skin biological
mechanisms, compared with unexposed control (Table 1).
Differential gene expression analysis was normalized using
unexposed 3D skin as a control, for 1 day of incubation, and
the pathway analysis was performed using Ingenuity Pathway
Analysis software to determine the molecular damage caused
in 3D skin exposed in each experimental condition
(Supplementary Table S1). The heat map (Figure 2a) displays
the z-scores from comparison analysis of canonical pathways
activity (orange and blue rectangles). The z-score statistical
method measures how close gene expression data in dataset
compare with the pattern expected on the basis of the liter-
ature (Krämer et al, 2014).

One of the surprising findings of this study was that the 3D
skin samples exposed to blue wavelength LED light in all 3
groups simulating acute exposure—1, 2, and 4 hours—
exhibited mostly downregulation of mechanism activation,
whereas the 3D skin samples irradiated for 1 hour over 4
sequential days simulating repeated exposure showed mostly
upregulation of mechanism activation (Figure 2a and
Supplementary Table S1). The same behavior was observed in
samples exposed to the full visible spectrum (Figure 2a and
Supplementary Table S1). Bonnans et al (2020) reported that
blue light exposure could induce beneficial and adverse ef-
fects, depending on the dose, and the findings mentioned
earlier suggest that continuous exposure to electronic devices
emitting digital light can contribute to increasing molecular
damage on skin biological mechanisms.

The impact of digital blue wavelength on repeated expo-
sure conditions can be observed when we compare the same
RNA-seq data obtained from blue wavelength exposure with
data from full visible spectrum exposure (Figure 2b). The
results from these 2 radiation conditions are similar, although
with differing intensity of mechanism activation. Shorter-
wavelength radiations are more energetic than longer ones,
and blue wavelength ranges between approximately 400 and
500 nm (Bernstein et al, 2021). The skin samples directly



Figure 1. The 3D skin morphology analysis. H&E-stained cryopreserved sections of reconstructed 3D skin model are shown. Magnification ¼ �40. Comparison

between samples simulating acute exposure (1, 2, and 4 h) and 1 group exposed for 1 h over 4 sequential days, simulating repeated exposure (1 h), both blue

wavelength light and full visible light spectrum, was performed. In addition, 2 unexposed control samples with 1 and 4 days of incubation and 3 replicates

were used. Each sample of the replicate was analyzed within 10 histological sections, and this figure represents a typical finding of the total number of

replicates performed. All samples exhibited well-differentiated and multiple-layered epidermis and a well-differentiated collagen 1 matrixebased dermis with

pattern morphology fibroblasts. H&E staining displayed the characteristic basal columnar keratinocytes located at the basal layer and a visible stratum

corneum. 3D, 3-dimensional; h, hour.
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exposed to blue wavelength light showed more intense
damage than those exposed to the full visible spectrum.
Observing the data, we can suggest that when skin is exposed
to the full visible spectrum, the intensity of the high-energy
visible wavelength is distributed over all the wavelengths
and thereby diluted, which possibly decreases the ability to
modulate but does not inhibit the gene expression.

Two additional experiments of RNA-seq assay were per-
formed, and the tendency shown in the first experiment was
confirmed (Gene Expression Omnibus identification
GSE190106). In this study, 2 individual experiments with
three 3D skin replicates were irradiated using LED light, for
each condition pooled, and compared with unexposed
control. Differentially expressed genes were defined as genes
that were considered to have an increased or decreased
expression when P < .1 and absolute values of log2 fold
change > 0.4 were achieved in 1 or more treatments, relative
to those of the unexposed control with 1 day of incubation. A
4-day incubation of unexposed control was included as a
sample to evaluate the influence of incubation time progress.
In this study, it was possible to observe reduced AK2 gene
expression of samples from 3D skin simulating repeated
exposure compared with those of nonexposure 3D skin
control (Figure 3a). AK2 is critical to the control of energy
metabolism, regulating intracellular adenosine triphosphate
levels. Previous studies demonstrated that patients with no
detectable AK2 protein demonstrated increased production
of ROS and decreased adenosine triphosphate production
(Ghaloul-Gonzalez et al, 2019), alterations well-described
during aging as well (Sreedhar et al, 2020). Besides, the
www.jidinnovations.org 3
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Figure 2. Comparison between samples exposed to both blue wavelength light and full visible light spectrum regarding differently modulated biological

mechanisms; RNA-seq assay. Eight groups of 3D skin samples from experiment 1 were irradiated using LED light to identify the influence of digital light on 3D

skin compared with unexposed control. (a) Three groups simulating acute exposure (1, 2, 4 h), whereas 1 group was exposed simulating repeated exposure (1 h),

with both blue wavelength light and full visible light spectrum, regarding differently modulated biological mechanisms. (b) Samples simulating repeated

exposure from experiment 1 of RNA-seq assay were compared regarding differently modulated biological mechanisms. Analysis of the activation of selected few

pathways, with close relation with skin biological mechanisms, regarding z-score analysis. A complete table showing the values of z-scores from pathway

activity analysis was added as Supplementary Table S1. The heat map displays the z-scores from pathway activity analysis: the blue color indicates

downregulation of mechanism activation, whereas the orange color indicates upregulation. The z-score is a statistical method to measure how close gene

expression data in a dataset compare with the pattern expected, on the basis of the literature. 3D, 3-dimensional; Akt, protein kinase B; h, hour; PI3K,

phosphoinositide 3-kinase; PPAR, peroxisome proliferatoreactivated receptor; RNA-seq, RNA sequencing; STAT, signal transducer and activator of transcription.
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gene expression of DDX47, whose encoded protein is
believed to be involved in preeribosomal RNA processing
and cell cycles pathway (Sekiguchi et al, 2006), is also
reduced in samples from 3D skin simulating repeated expo-
sure (Figure 3b).

Shen et al (2020) identified several novel genes, including
PABPC3, mutated under different UVR conditions, suggesting
that these genes are highly susceptible to UV-induced pho-
todamage. Notably, our data reveal an increase of PABPC3
gene expression (log2 fold change ¼ 2.6, adjusted P ¼ 1.3e-
04) regarding samples of 3D skin simulating both acute and
repeated exposure compared with that of nonexposed 3D
skin control (Figure 3c). Taken together, these results provide
potential means to study the correlation of molecular events
in a 3D skin model and general damage to human skin in
blue lighteinduced studies.

Real-time RT-PCR validation

To validate the findings, a real-time RT-PCR was performed
comparing 3D skin samples irradiated with blue wavelength
LED light for 1 hour over 4 sequential days, simulating
JID Innovations (2024), Volume 4
repeated exposure, with unexposed controls regarding 1 and
4 days of incubation. Likewise, results exhibited upregulated
mechanism activation of samples from repeated exposure
compared with samples from both unexposed 3D skin con-
trols (Figure 4). These data reinforce the initial observation,
indicating that repeated exposure to digital blue light can
play an essential role in enhancing the molecular damage
caused to the skin, in agreement with previous data evi-
denced in recent studies (Mahmoud et al, 2010; Regazzetti
et al, 2018).

The real-time RT-PCR assay was performed to validate blue
wavelengtherepeated exposure results. Two identical indi-
vidual experiments were performed in 2 replicates, with
three 3D skin replicates for each condition pooled. A total of
184 genes (Supplementary Table S2) were selected from
RNA-seq assay after Ingenuity Pathway Analysis software
analysis evaluation. We analyzed samples from 3D skin
repeatedly exposed to blue wavelength LED light and 2
different conditions of nonexposure control, regarding 1 and
4 days of incubation, using TaqMan Array Fast 96-well Plate
and 2(-Delta Delta C[T]) method (Livak and Schmittgen,



Table 1. Time of Exposure Using LED Light

Time
Blue Wavelength
LED Light [lx]

Full Visible Spectrum
LED Light [lx]

Mobile Phone Exposure
[lx] (Reference)

Acute1 1 h 6,000 lm/m2 5,880 lm/m2 5100 lm/m2

2 h 12,000 lm/m2 11,760 lm/m2 10,200 lm/m2

4 h 24,000 lm/m2 23,520 lm/m2 20,400 lm/m2

Repeated2 1 h � 4 d (1 h) 24,000 lm/m2 23,520 lm/m2 20,400 lm/m2

Abbreviations: 3D, 3-dimensional; h, hour; LED, light-emitting diode.
1The 3D skin samples exposed to both blue wavelength light (400e450 nm) and full visible light spectrum (380e780 nm) simulating acute exposure.
2The 1, 2, and 4 h and 1 h over 4 sequential days simulating repeated exposure, all in 3 replicates. Illuminance is the total luminous flux incident on a
surface per unit area. It has the lux (lx) as its unit of measurement, which is equal to 1 lumen per square meter (lm/m2). Illuminance quantification was
performed using a luxmeter.
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2001) with GAPDH housekeeping gene used to calculate the
relative fold gene expression of samples when performing
real-time RT-PCR assay.

Concerning gene expression data, it is possible to observe
differences in expression on the same gene by comparing
these 2 experiments (Supplementary Table S2). The differ-
ences observed between experiments 1 and 2 are probably
derived from individual response variations of the 3D skin
samples. Although data from RNA transcripts are slightly
different, the z-score statistics analysis demonstrated a similar
activation of the mechanism. On the basis of this information,
we can consider an equivalent response regarding molecular
damage caused by blue lighteinduced exposure on 3D skin.

The samples from repeated exposure showed upregulated
mechanism activation compared with those from unexposed
3D skin control with 1 and 4 days of incubation. The heat
Figure 3. Comparison between samples exposed to both blue wavelength light an

h) and repeated exposure (1 h) from experiments 2 and 3 were compared and ver

of log fold change� 0.4. (a) Reduced AK2 gene expression of samples from 3D sk

control, regarding 1 and 4 days of incubation. (b) Reduced DDX47 gene expressio

in nonexposed 3D skin control, regarding 1 and 4 days of incubation. (c) Increa

acute and repeated exposure compared with that of nonexposed 3D skin control,

boxes represent blue wavelength, full visible spectrum, and unexposed samples,

25the75th percentiles. The whiskers quartile ranges represent the minimum and

differentially expressed gene; h, hour; RNA-seq, RNA sequencing. *Samples sim

exposed control.
map (Figure 4) displays the z-scores from Pathway Activity
Analysis. Blue indicates downregulation of mechanism acti-
vation, whereas orange indicates upregulation (Krämer et al,
2014).

Among many modulated biological mechanisms, we
selected 3 Ingenuity Pathway Analysis canonical pathways to
explore: IL-6 signaling, peroxisome proliferatoreactivated
receptor (PPAR) signaling, and melanocyte development
and pigmentation signaling. The inflammatory process is
widely known as a premature skin aging signaling inductor
(Pilkington et al, 2021). A consequence of this modulation
can be hyperpigmentation (Mattos et al, 2017), a common
symptom of aging skin (Choi et al, 2017; Lee, 2021; Ortonne,
1990). Therefore, we evaluated the gene expression behavior
of pattern biomarkers for these mechanisms regarding tran-
script data.
d full visible light spectrum; RNA-seq assay. Samples simulating acute (1, 2, 4

ified by Boxplot. DEGs are calculated as those with P � .1 and absolute values

in simulating repeated exposure compared with that from nonexposed 3D skin

n in samples from 3D skin simulating repeated exposure, compared with that

se of PABPC3 gene expression regarding samples of 3D skin simulating both

regarding 1 and 4 days of incubation. The black, white, and checkered pattern

respectively. The center line denotes the median value; the box contains the

maximum gene expression in each sample. 3D, 3-dimensional; DEG,

ulating repeated exposure; **samples simulating acute exposure; and ***un-
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Figure 4. Comparison between samples exposed to blue wavelength LED light regarding IL-6 signaling, PPAR signaling, and melanocyte development and

pigmentation signaling; real-time RT-PCR assay. Comparison between samples exposed for 1 h over 4 sequential days with blue wavelength light

simulating repeated exposure (1 h), compared with nonexposure 3D skin control regarding 1 and 4 days of incubation was performed. Analysis of the activation

of the mechanism regarding z-score analysis was conducted. The heat map displays the z-scores from pathway activity analysis: the blue color indicates

downregulation of mechanism activation, whereas the orange color indicates upregulation. Only samples that reached the 1.3-fold upregulated or

downregulated threshold were included for statistical analysis. The z-score is a statistical method to measure how close gene expression data in a dataset

compare with the pattern expected, on the basis of the literature. 3D, 3-dimensional; h, hour; LED, light-emitting diode; PPAR, peroxisome

proliferatoreactivated receptor.
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IL-6 signaling. IL-6 is considered a regulator of the acute
phase of inflammatory responses (Millrine et al, 2023; Xing
et al, 1998). It is involved in the growth and differentiation
of numerous cell types, and in the skin, it is critically involved
in barrier repair after injury (Wang et al, 2004). In this study,
we found gene expression related to IL-6 signaling differently
modulated from unexposed samples. This signaling showed
increased activation of the biological mechanism during
repeated exposure condition. Observing IL-6 signaling
mechanism activation on real-time RT-PCR validation assay
for samples exposed to blue wavelength LED light, this
signaling was upregulated in 3D skin samples simulating
repeated exposure (Figure 4). Previous studies have shown
that activation of IL-6 signaling increases signal transducer
and activator of transcription 3 gene STAT3 expression
(Wang et al, 2004). In this study, it is possible to observe the
increase of IL-6 signaling mechanism activation on 3D skin
exposed to blue wavelength. Interestingly, the initiation of IL6
and IL6R transcript synthesis occurred in exposed 3D skin,
and the signal transducer and activator of transcription 3 gene
STAT3 expression was upregulated in all conditions
(Supplementary Table S3), suggesting a possible feedback
control and influence of IL-6 signaling (Figure 4).

PPAR signaling. The PPAR family consists of PPARa,
PPARd, and PPARg. They act as ligand-activated transcrip-
tional regulators (Adhikary et al, 2011; Sauer, 2015), and
changes in the transcriptome indicate influence in cutaneous
inflammatory signaling (Konger et al, 2021; Ramot et al,
2015). In this study, we found that gene expression profiles
related to PPAR signaling (Supplementary Table S4), con-
cerning 3D skin samples exposed to blue wavelength light,
were differently modulated from unexposed samples. Ac-
cording to initial results and considering results from real-time
RT-PCR validation assay, when individually observing PPAR
signaling activation, 3D skin samples exposed to blue wave-
length exhibited downregulation of mechanism activation
compared with samples from unexposed 3D skin control
(Figure 4). Furthermore, when compared with repeated
exposure of 3D skin regarding blue wavelength, we identified
downregulation of PPAR signaling activation, whereas we
JID Innovations (2024), Volume 4
observed upregulation of IL-6 signaling activation. These re-
sults suggest an influence of inflammatory pathways of the
skin on PPAR signaling, corroborating previous findings that
PPARs appear to be essential for regulating skin inflammation,
and the function is suppressed by cytokines (Ramot et al,
2015; Sauer, 2015).

Melanocyte development and pigmentation signaling. This
biological pathway is regulated in large part byMITF activation,
and its activity is controlledby2 signalingpathways:melanocyte-
stimulating hormone andKIT signaling pathways (Kawakami and
Fisher, 2017; Phung et al, 2011; Wu et al, 2000). Furthermore,
studies showed that stimulationof theKIT receptor tyrosinekinase
activates MAPK and phosphatidylinositol 3-kinase gene PI3K
pathways (Todd et al, 2014). In this study, according to real-time
RT-PCR assay results, we demonstrate data related to gene
expression upregulation of KIT, MAPK2, and PI3KC
(Supplementary Table S5) in 3D skin samples from repeated
exposure compared with samples from unexposed condition,
corroborating the previous finding. These results suggest that
repeated exposure to 3D skin, regarding blue wavelength LED
light, can potentially explain the mechanistic process leading to
an increased hyperpigmentation profile (Figure 4).

In conclusion, on the basis of the results of this study, we
demonstrated that repeated exposure to LED light could
represent a comparably adverse factor on molecular damage
of skin biological mechanisms, influenced by blue wave-
length. Gene expression levels in 3D skin were differently
modulated during repeated exposure to LED light, repre-
sented by 4 consecutive days of 1-hour exposure. However,
the biological difference associated with transcript was not
directly related to morphological alterations on 3D skin.
These findings suggest that this in vitro method can provide a
potential means to correlate the molecular response of digital
blue lighteinduced studies from LED light devices as well as
a screening method for cosmetic formulations.

MATERIALS AND METHODS
Reconstructed 3D skin models

Primary cells were from Lonza (Normal Human Neonatal Dermal

Fibroblasts e Catalog #: CC-2509 and Human Neonatal Epidermal
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Keratinocytes, pooled e Catalog #: 00192906). The reconstructed

skin was prepared in 2 steps. Briefly, the dermal compartment was

prepared using rat tail type I collagen gel (Corning) and 1.5 � 105

primary human dermal fibroblasts per construct. After polymerizing

the collagen gel for 2 hours, 2.5 � 105 primary human epidermal

keratinocytes were seeded on top of each construct and kept sub-

merged in RAFT: KGM-Gold Bullet Kit Medium (1:1) for 24 hours.

The inserts were then raised and maintained at the aireliquid

interface for 10 days for stratification of the skin. The 3D skin was

maintained in a 5% carbon dioxide incubator with low humidity

(w50%).

Exposure to blue wavelength and full spectrum of visible
light

To demonstrate the potential influence of blue wavelength caused by

digital exposure, the 3D skin was exposed to LED light, applying

both blue wavelength and full visible light spectrum separately and

using a dark box for radiation and a 100 W LED RGB spotlight, 20

cm from the light source. Illuminance quantification was performed

using a luxmeter. Illuminance is the total luminous flux incident on a

surface per unit area. It has the lux (lx) as its unit of measurement,

which is equal to 1 lumen per square meter (l m/m2).

In this study, 10 groups of 3D skin samples were defined: 3 groups

of acute exposure and 1 group of repeated exposure with both blue

wavelength light (400e450 nm) and full visible light spectrum, in

addition to 2 unexposed control with 1- and 4-day incubation,

respectively, all in triplicate, analyzed separately as shown in

Table 1. After 10 days of stratification of the skin, the 3D skin was

exposed to blue wavelength and a full visible light spectrum for 1, 2,

and 4 hours to represent acute exposure and for 1 hour on 4

sequential days to represent repeated exposure, defined as the

maximum period of exposure with gene expression alterations and

no cell viability compromise. No temperature variation was

observed inside the dark box during the exposure period. After

performing the last exposure, the 3D skin was maintained in a 5%

carbon dioxide and 37 �C incubator overnight before total RNA

extraction.

Histological analysis

Samples from 8 groups of 3D skin, 3 replicates, irradiated using LED

light and compared with unexposed control, regarding 1 and 4 days

of incubation, were examined histologically. Each sample of the

replicate was analyzed within 10 histological sections, and Figure 1

represents a typical finding of the total number of replicates per-

formed. After LED light exposure, samples of 3D skin were frozen by

cryopreservation. For morphological evaluation, preserved tissues

from each group were sectioned and stained with H&E (Pedrosa

et al, 2017) and then examined microscopically under a Zeiss Axi-

oskop 40 FL microscope. All images of tissues were obtained using

Zen blue 2.5 white. Magnification ¼ �40.

RNA-seq assay

Three individual experiments of RNA-seq assay were performed, and

three 3D skin replicates were irradiated using LED light; each con-

dition was pooled and compared with unexposed control. Differ-

entially expressed genes were defined as genes that were considered

to have an increased or decreased expression when P < .1 and

absolute values of log2 fold change > 0.4 were achieved in 1 or

more treatments, relative to the unexposed control regarding 1 and 4

days of incubation. According to the manufacturer’s instructions, the

total RNA from 3D skin was extracted using Mini kit PureLink Purific
RNA 50 Preps (Invitrogen) (Rump et al, 2010). The RNA-seq analysis

was performed using the next-generation sequencing platform (ION

chef e ION5S) and specific reagents for RNA-seq assay (library

construction protocol: A26325 Ion AmpliSeq Transcriptome Human

Gene Expression Kit; Q32852 Qubit RNA high sensitivity, broad

range and extended range Assay Kits; 468802 Ion Library TaqMan

Quantitation Kit; A27759 ION 540 kit-Chef) and likelihood ratio test

statistical method (Chen et al, 2020) while keeping 3D unexposed

samples as a control (Figure 3).

Real-time RT-PCR validation

A real-time RT-PCR assay was performed to validate the results

shown from the RNA-seq assay. Two individual experiments were

performed in 2 replicates, with three 3D skin replicates for each

condition pooled. We analyzed samples from 3D skin repeatedly

exposed to blue wavelength LED light and 2 different conditions of

nonexposure control, regarding 1 and 4 days of incubation. The total

RNA from the 3D skin was extracted using the Mini Kit PureLink

Purific RNA 50 Preps (Invitrogen) (Rump et al, 2010) according to

the manufacturer’s instructions. The cDNAwas synthesized utilizing

a High-Capacity cDNA Reverse Transcription Kit (Applied Bio-

systems), and a real-time RT-PCR analysis was performed according

to the TaqMan protocol (Applied Biosystems) using TaqMan Array

Fast, 96-well Plate, and Thermal Cycler StepOne (Thermo Fisher

Scientific). Gene expression levels were estimated using Expres-

sionSuite software and 2(-Delta Delta C[T]) method for differential

gene expression analysis (Livak and Schmittgen, 2001) with GAPDH

housekeeping gene, using 3D skin unexposed samples as control

(Supplementary Table S2).

Statistical analysis

The statistical comparisons between groups were performed by 2(-

Delta Delta C[T]) method (Livak and Schmittgen, 2001) and likeli-

hood ratio test statistical method (Chen et al, 2020). Differentially

expressed gene analysis was performed using the Ion Torrent

ampliSeqRNA plugin to alignment and raw read counts generation,

followed by the R package DESeq2 (version 1.36.0) pipeline (Love

et al, 2014). Genes with less than 10 normalized read counts were

filtered out, and adjusted P � .1 and absolute values of log2 fold

change � 0.4 were used to screen for genes for RT-PCR validation.

The likelihood ratio test was used to contrast conditions when testing

all interactions together supplemented with Wald test when ignoring

wavelength differences. Adjusted P-values were obtained using the

BenjaminieHochberg method implemented in DESeq2.

Comparison Analysis from Canonical Pathways was performed,

and the heat map of the z-scores from pathway activity analysis was

displayed (orange and blue rectangles). Only samples that reached

the 1.3-fold upregulated or downregulated threshold were included

for statistical analysis. Conceptually, the z-score statistical method

measures how close gene expression data in dataset compare with

the pattern expected, on the basis of the literature (Krämer et al,

2014).

DATA AVAILABILITY STATEMENT

The data discussed in this publication have been deposited to the National
Center for Biotechnology Information’s Gene Expression Omnibus (Edgar et
al., 2002) and are accessible through Gene Expression Omnibus Series
accession number GSE190106 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc¼GSE190106).

ORCIDs
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Tähkämö L, Partonen T, Pesonen AK. Systematic review of light exposure
impact on human circadian rhythm. Chronobiol Int 2019;36:151e70.

Todd JR, Scurr LL, Becker TM, Kefford RF, Rizos H. The MAPK pathway
functions as a redundant survival signal that reinforces the PI3K cascade in
c-Kit mutant melanoma. Oncogene 2014;33:236e45.
Vandersee S, Beyer M, Lademann J, Darvin ME. Blue-violet light irradiation
dose dependently decreases carotenoids in human skin, which indicates
the generation of free radicals. Oxid Med Cell Longev 2015;2015:
579675.

Vicente-Tejedor J, Marchena M, Ramı́rez L, Garcı́a-Ayuso D, Gómez-
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