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Abstract

The incidence of Crohn’s disease is increasing in many Asian countries, but consid-

erable differences in genetic susceptibility have been reported between Western

and Asian populations. This study aimed to fine-map 23 previously reported Crohn’s

disease genes and identify their interactions in the Chinese population by Illumina-

based targeted capture sequencing. Our results showed that the genetic polymor-

phism A>G at rs144982232 in MST1 showed the most significant association

(P = 1.78 9 10�5; odds ratio = 4.87). JAK2 rs1159782 (T>C) was also strongly asso-

ciated with Crohn’s disease (P = 2.34 9 10�4; odds ratio = 3.72). Gene-gene inter-

action analysis revealed significant interactions between MST1 and other

susceptibility genes, including NOD2, MUC19 and ATG16L1 in contributing to

Crohn’s disease risk. Main genetic associations and gene-gene interactions were ver-

ified using ImmunoChip data set. In conclusion, a novel susceptibility locus in MST1

was identified. Our analysis suggests that MST1 might interact with key susceptibil-

ity genes involved in autophagy and bacterial recognition. These findings provide

insight into the genetic architecture of Crohn’s disease in Chinese and may partially

explain the disparity of genetic signals in Crohn’s disease susceptibility across differ-

ent ethnic populations by highlighting the contribution of gene-gene interactions.
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1 | INTRODUCTION

Crohn’s disease is one of the two major forms of inflammatory

bowel diseases (IBD) characterized by chronic and relapsing

inflammation in the gastrointestinal tract. Crohn’s disease has long

been thought to be uncommon in Asian countries. However, the

incidence of Crohn’s disease has been rapidly increasing in Asian

countries as seen in many recent epidemiological studies.1,2 In this

regard, China has the highest incidence of IBD in Asia within the

Asia-Pacific Crohn’s and Colitis Epidemiologic Study Group.1WKKW, RS, TZ and YT contributed equally.
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Genetic susceptibility, gut microbiota and environmental factors

act synergistically in the pathogenesis of Crohn’s disease. Although

more than 140 susceptibility loci of Crohn’s disease in Caucasians

have been identified by genome-wide association studies (GWASs)

and meta-analyses,4-9 considerable differences in genetic susceptibil-

ity to Crohn’s disease have been reported between Western and

Asian populations. Moreover, the heritability of Crohn’s disease in

Asian populations has not been fully explained.5,6 In particular, the

well-established Caucasian Crohn’s disease susceptibility genes, such

as NOD2, ATG16L1 and PTPN, showed a lack of association in the

Asian populations.6,8,10-15 Inconsistent results on IL23R and IRGM

were also reported.16,17 Recent genetic studies in Korean and Japa-

nese populations further revealed new Crohn’s disease susceptibil-

ity loci (eg rs11235604 in ATG16L2 and rs7329174 in ELF1) that

were not significantly associated with disease status in Western

populations.18-20 This may be in part related to heterogeneity in

effect size (eg TNF-SF15 and ATG16L), differences in risk allele

frequency in some of the loci (eg CARD15/NOD2) or altered

gene-microbiota and gene-gene interactions across different popu-

lations.21 Collectively, these findings underpinned different genetic

architectures in different ethnicities in determining genetic risk for

Crohn’s disease.

The impact of new loci underlying susceptibility to Crohn’s dis-

ease cannot be determined until causal variants are identified by fine

mapping via directed sequencing. Moreover, it is imperative to deter-

mine whether Crohn’s disease susceptibility genes identified in Euro-

peans are also associated with disease state in non-European

ancestry populations.22 To address whether genes previously

reported in Caucasian populations contribute to Crohn’s disease in

the Chinese population and their effect sizes, we performed fine-

mapping analysis using next-generation targeted capture sequencing.

Moreover, as interactions among multiple genes could impact on the

patients’ disease phenotype, we aimed to identify interactions

among the targeted captured genes to provide insight into the

genetic of Crohn’s disease.

2 | METHODS

2.1 | Study participants

Crohn’s disease patients of Han Chinese ethnicity and healthy individ-

uals were recruited at the Prince of Wales Hospital, Hong Kong, and

the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou.

Both hospitals are geographically located in the Guangdong Province

of China. Inclusion criteria of cases included (i) age >18 years old and

(ii) diagnosis of Crohn’s disease established in accordance with clinical,

radiological, endoscopic and histological features criteria. Inclusion cri-

teria of controls included (i) age >18 years and (ii) asymptomatic indi-

viduals participating in colonoscopy screening or healthy volunteers or

students from the Chinese University of Hong Kong. The study was

prospectively reviewed and approved by the Joint CUHK-NTEC Clini-

cal Research Ethics Committee and the clinical ethics committee of

Sun Yat-Sen University. All participants had provided written informed

consents. Controls were excluded if they had previously been diag-

nosed with IBD or if they had one or more first- or second-degree rel-

ative with IBD. Clinical phenotype data were collected and stored in a

database: age, sex, family history, smoking history, surgery and date of

first surgery, extraintestinal diseases, disease location and behaviour

(Montreal classification).

2.2 | Targeted gene capture and next-generation
sequencing

The chip-based gene capture technology coupled with next-genera-

tion sequencing was employed for comprehensive genotyping of 23

Crohn’s disease susceptibility genes and their promoters. Genomic

DNA was extracted from blood lymphocytes (250 lL) of Crohn’s dis-

ease patients and healthy individuals using Gentra Puregene Blood

Kit (Gentra Systems, Inc., Minneapolis, MN) and stored at �20°C in

the Prince of Wales Hospital. Twenty micrograms of genomic DNA

from each sample was sheared by nebulizer (Roche Applied Science,

Hong Kong) to fragments around 500 bp. After ligation with linkers

at both ends, small fragments <300 bp were removed with AMPure

DNA purification beads (Agencourt, Beverly, MA). The linker-ligated

DNA fragments were then hybridized to the custom-designed Nim-

bleGen Sequence Capture 2.1M Array and the enriched captured

DNA fragments were eluted from the array and amplified by

ligation-mediated PCR. Quantitative PCR was used to estimate the

magnitude of enrichment. Twenty-three genes captured for next-

generation sequencing are listed as follows: PTPN22, IL23R, ITLN1,

ATG16L1, PTGER4, MST1, IRGM, IL12B, CDKAL1, CCR6, JAK2,

TNFSF15, ZNF365, NKX2-3, C11orf30, LRRK2, MUC19, NOD2,

ORMDL3, STAT3, PTPN2, ICOSLG and VDR.

The captured DNA fragments were first randomly ligated by DNA

ligase to sizes ranged from 1 to 8 kb, then sheared to 200 bp on aver-

age, and finally ligated with Illumina-compatible adapters and subject

to standard library preparation. Resulting DNA libraries were

sequenced on Illumina 2000 with the target sequencing depth of

509, which was more than sufficient for genotyping heterozygous

loci with high confidence. Real-time image analysis and base calling

were performed by the Genome Analyzer Pipeline version 1.3.1 using

standard parameters. Reads with ≥ 12-bp adapter or linker sequences

or reads <29 bp, or with >6 missing bases, or 40 continuous identical

bases were discarded. SOAP aligner was used to align the remaining

reads to the human reference genome (human NCBI Build 36) with

maximum two mismatches. Only unique matched reads were

retained. A Bayesian statistics-based algorithm was used for base

calling.

2.3 | ImmunoChip data set

The design and genotyping of the ImmunoChip have been previously

described.21 In brief, the ImmunoChip is an Illumina Infinium microar-

ray comprising 196 524 single nucleotide polymorphisms (SNPs) and

small indel markers selected based on results from GWASs of 12

different immune-mediated diseases. The ImmunoChip enables
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replication of all nominally associated SNPs (P < .001) from the index

GWAS scans and fine mapping of 186 loci associated at genome-

wide significance with at least 1 of the 12 index immune-mediated

diseases. The chip also contains around 3000 SNPs added as part of

the Wellcome Trust Case Control Consortium 2 (WTCCC2) project

replication phase. The genotype data were extracted for 531 Hong

Kong Chinese subjects on the ImmunoChip data set. Quality control

was performed as described.21 The cohort includes 235 controls and

531 IBD cases, including 388 patients with Crohn’s disease.

2.4 | Statistical analysis

The SNPs from targeted sequencing had low to rare minor allele

frequencies (MAFs). The sequence kernel association test (SKAT) is

an effective method to detect association of the sequencing data

to disease phenotypes.23,24 The method uses a linear mixed model

and performs variance component score test.24 For epistasis evalu-

ation, a robust W-test was used to evaluate SNP-SNP interac-

tions.25 The W-test is testing for the difference in genotype

distributions formed by a SNP pair in case and control groups. The

test follows a chi-squared distribution of which the degrees of free-

dom is bootstrap-estimated from the data. Therefore, the method

is able to correct for bias in distributions due to complicated

genetic architecture and return robust estimates.25 The SKAT and

W-test were conducted using R packages.23,25 The LocusZoom tool

was used to draw SNPs Manhattan plot in a specific region and

provided a detailed view of the P-value distribution within a

gene.26 A SNP or an interaction pair was significant if its P-value

was smaller than Bonferroni-corrected alpha of 5%. Expression

quantitative trait loci (eQTL) analysis was carried out using the

Genotype-Tissue Expression database.27

2.5 | Power calculation

The power of an association study depends on the sample size,

effect size of a variant and its allele frequency. Assuming findings

from a previously validated SNP (rs2241880) in ATG16L1 with an

odds ratio of 0.69 and a minor allele frequency of 45%, our study

had 86.2% power to detect such a variant with an a-error rate of

5%. Alternatively, our study had at least 80% power to detect a vari-

ant with odds ratio of 1.5 at a MAF of 20%.

3 | RESULTS

3.1 | Patient characteristics, quality control and
SNP calling

A total of 262 patients with Crohn’s disease and 323 controls were

included. The mean age was 43.6 and 55.9 years in the case and

control groups, respectively. About half of the subjects were female

(45.9%). Table S1 summarizes the basic characteristics of the cases

and controls. DNA samples were collected from all patients for tar-

geted capture sequencing, generating a genotype data set of 2046

SNPs. Four subjects were excluded because of empty data files. Tar-

geted capture of all DNA samples was completed with an average

sequencing depth (on target) of >50 and a coverage of >99.7%

(Table S2). When calling the genotype, missing value was coded if

genotype quality was less than 20. Quality control of the genotype

data was conducted, and we excluded samples whereby (i) the per-

centage of missing genotypes was greater than 5%, (ii) SNPs had no

variance, and (iii) P-values of test on Hardy-Weinberg equilibrium

(HWE) were smaller than 0.05 after Bonferroni correction28

(Table S3).

3.2 | Novel associations of MST1 rs144982232 with
Crohn’s disease

Sequence kernel association test analysis identified one locus,

namely the rs144982232 in MST1 (A>G, P = 1.78 9 10�5, odds

ratio = 4.87), which was significantly associated with Crohn’s disease

after controlling for multiple testing by Bonferroni method (Tables 1

and S6). The susceptibility to the disease was 4.87 higher for individ-

uals with a G allele at this locus than those with an A allele (odds

ratio = 4.87). The regional association plot of MST1 is shown in Fig-

ure 1. There were 26 SNPs sequenced in this gene in our fine-

mapping study. The distribution of three genotypes (GG, AA and

GA) at MST1 rs144982232 was in accordance with HWE. Two more

SNPs showing strong effect were rs1159782 in JAK2 (T>C,

P = 2.34 9 10�4, odds ratio = 3.72; Figure 2) and rs2111234 in

NOD2 (G>A, P = 7.59 9 10�4, odds ratio = 5.09). The large odds

ratios indicated a strong risk effect in the MST1, JAK2 and NOD2

gene to Crohn’s disease.

3.3 | Interactions of MST1 with MUC19, JAK2, VDR
and other Crohn’s disease susceptibility genes

A robust and powerful epistasis analysis tool known as W-test was

performed to detect SNP-SNP interactions.25 From the total 2046

SNPs in this study, 202 SNPs had P-value less than 0.1 and passed

the first-stage filtering. Among these SNPs, 20 301 SNP pairs were

formed, and a total number of 95 pairs had P-values passed the Bon-

ferroni-corrected significance level at 2.46 9 10�6. Top interacting

pairs identified are shown in Tables 2 and S7. The significant SNP

pairs producing an 18-gene interaction network are visualized in

Figure 3, in which MST1, MUC19, JAK2 and VDR play central roles.

Interestingly, except MST1, none of the 18 genes showed significant

main effect. The top pairs include interactions of MST1-JAK2 (A>G

at rs144982232, T>C at rs1159782, P = 9.44 9 10�11, odds

ratio = 4.34), MST1-NOD2 (A>G at rs144982232, G>A at

rs2111234, P = 1.79 9 10�9, odds ratio = 4.69) and MST1-MUC19

(A>G at rs144982232, T>C at rs116937891, P = 1.01 9 10�8, odds

ratio = 4.89). For the interaction pair MST1-JAK2, the susceptibility

to Crohn’s disease was 4.34 higher for genotypes with allele G at

rs144982232 in MST1 or with allele C at rs1159782 in JAK2 than

those with allele A at rs144982232 and T at rs1159782 (odds

ratio = 4.34).

2370 | WU ET AL.



3.4 | MST1, JAK2, MUC19 and VDR acted in
concert with NOD2 to alter risk for Crohn’s disease

From the regional association plots, rs144982232 in MST1,

rs1159782 in JAK2, rs11564247 in MUC19 (Figure S1) and

rs11574129 in VDR (Figure S2) were the most significant SNPs

within the genes, but none of these SNPs was associated with gene

expression by eQTL analysis (data not shown). Further analysis

found that all of these four SNPs interacted with rs2111234 in

NOD2 directly or indirectly. Most interestingly, this polymorphic vari-

ant of NOD2 was strongly associated with altered NOD2 gene

expression in multiple tissue types, including whole blood and liver

(Figure 4), indicating that MST1, JAK2, MUC19 and VDR have syner-

gistic reinforcing action in Crohn’s disease development in the

Chinese population through interacting with NOD2.

3.5 | Validation of main genetic associations and
gene-gene interactions using ImmunoChip data set

We performed validation analysis of the main genetic effects and

gene-gene interactions identified by target capture sequencing using

data from the Hong Kong Chinese ImmunoChip data set comprising

TABLE 1 Top 10 SNPs identified by SKAT among 23 Crohn’s disease susceptibility genes. The total number of SNPs is 2046, and the
Bonferroni-corrected significance threshold is 2.4 9 10�5

Rank Chr Pos SNP P-value Gene Description MAF Odds ratio 95% CI

1 Chr3 49723141 rs144982232 1.78E-05 MST1 A>G 0.038 4.87 2.25, 10.54

2 Chr9 5078117 rs1159782 2.34E-04 JAK2 T>C 0.053 3.72 2.03, 6.82

3 Chr16 50734033 rs2111234 7.59E-04 NOD2 G>A 0.034 5.09 2.24, 11.58

4 Chr9 117569046 rs7848647 1.46E-03 TNFSF15 T>C 0.448 0.69 0.55, 0.87

5 Chr10 64418656 rs7915131 1.34E-03 ZNF365 C>T 0.343 0.68 0.54, 0.87

6 Chr1 114377148 rs1970559 3.29E-03 PTPN22 T>C 0.041 0.39 0.21, 0.72

7 Chr1 114396955 rs2476602 4.09E-03 PTPN22 G>A 0.039 0.38 0.20, 0.73

8 Chr10 64426056 rs4746516 2.03E-03 ZNF365 G>T 0.200 0.63 0.47, 0.84

9 Chr9 5069837 rs7869668 3.29E-03 JAK2 G>A 0.417 1.44 1.15, 1.82

10 Chr10 64418089 rs10822044 4.33E-03 ZNF365 T>C 0.231 0.68 0.52, 0.89

MAF, minor allele frequencies; SKAT, sequence kernel association test; SNP, single nucleotide polymorphisms.

F IGURE 1 Regional association plot of MST1. The A>G
polymorphism at rs144982232 corresponding to synonymous
H425H increased the risk for Crohn’s disease in the Chinese
population (P = 1.78E-05; odd ratios: 4.87). Grey colour indicates
that the information of linkage disequilibrium (r2 values) for the
points was not available in reference genome

F IGURE 2 Regional association plot of JAK2. Subjects with allele
T>C at rs1159782 had a higher risk for Crohn’s disease (P = 2.34E-
04, odds ratio: 3.72). The r2 was estimated by the LocusZoom
software from HapMap Phase II JPT + CHB population. It measures
the linkage disequilibrium of each SNP with the most significant SNP
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235 controls and 531 patients with IBD, including 388 patients with

Crohn’s disease, In the ImmunoChip data set, there was no MUC19

gene marker. Therefore, its main and interaction could not be calcu-

lated. For MST1, after quality control, there was only 1 SNP in the

validation data set, which was restrictive for our analysis. For main

effects, JAK2, TNFSF15, ZNF365 and PTPN22 showed consistent

small P-values in the original sequencing data as well as the valida-

tion with IBD and Crohn’s disease data sets (Table S4). For gene-

gene interactions, the top pair MST1-JAK2 had significant P-values in

the original and validation data set (original: P = 9.44 9 10�11; vali-

dation IBD: P = 7.28 9 10�5; validation Crohn’s disease:

P = 4.81 9 10�3). The remaining three pairs that exhibited consis-

tent small P-values were NOD2-JAK2, IL23R-MST1 and MST1-

PTGER4 (Table S5).

4 | DISCUSSION

Although the prevalence and incidence of Crohn’s disease are higher

in Western countries, they continue to rise in Asia, especially in

China. It is anticipated that the number of cases of IBD in Asia might

overtake that of the Western world by 2025.29 In this study, we

fine-mapped 23 known Crohn’s disease susceptibility genes to iden-

tify the causal variants and delineate the relative contribution of

these variants to Crohn’s disease in the Chinese population. Identifi-

cation of causal variants is key to understanding the molecular

mechanism by which disease susceptibility genes contribute to

pathogenesis as well as formulating novel therapeutic strategies. A

major advantage of using targeted capture sequencing for fine map-

ping is the directed focus on genes of interest. Therefore, unlike

GWAS, our study was not restricted by the conventional genome-

wide significance threshold as a result of fewer multiple testing.

In the targeted captured regions, the synonymous SNP (ie

rs144982232) in MST1 was most significantly associated with

Crohn’s disease in the Chinese population. Although synonymous

SNPs have long been regarded as inconsequential as the primary

sequence of the protein is retained, studies have demonstrated that

synonymous SNPs can affect mRNA splicing, stability and structure

as well as protein folding.30 Through in silico RNA folding prediction

(http://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Fold/Fold.

html), we found that although the SNP A>G at rs144982232 did not

significantly affect the secondary structure of MST1 mRNA, the cor-

responding nucleotide change occurred in the loop region of the pre-

dicted RNA stem-loop structure (Figure S3), which is implicated in

the control of RNA-protein complex formation.31,32

MST1, also known as MSP, is involved in regulating the innate

immune response to infections and cellular stress. It binds to the

receptor RON to trigger macrophage chemotaxis and activation.31

MST1 is a serum protein that circulates in the blood as an inactive

single-chain precursor (pro-MST1) comprising two chains, a and b.34

MST1 was first recognized as a Crohn’s disease risk gene (odds

ratio = 1.20) in a GWAS where a single non-synonymous SNP

rs3197999 corresponding to the amino acid substitution R689C in

the b-chain was identified.35 The mechanism of this potential causal

variant for Crohn’s disease was controversial.36,37 One study showed

that R689C polymorphism had no impact on the ability of MST1 to

bind to or signal through RON, whereas carriers of the 689C poly-

morphism had lower concentrations of MST1 in their serum, which

could possibly increase Crohn’s disease risk.36 However, another

study showed that the affinity to RON of MST1 with the 689C poly-

morphism was approximately 10-fold lower than that of the wild-

type MST1 and the thermal stability of the mutant MST1 was

slightly lower than that of wild-type MST1.37 However, rs3197999

did not show up as a significant SNP in our study. Instead, the SNP

A>G at rs144982232 showed the strongest association with Crohn’s

disease in our cohort (odds ratio = 4.87; P = 1.78 9 10�5). Early

GWASs showed that with the exception of NOD2, the typical effect

size of Crohn’s disease susceptibility locus was modest (odds

F IGURE 3 Gene-gene interaction
network visualizing the results of W-test.
MST1 had extensive interactions with
other Crohn’s disease susceptibility genes.
JAK2, NOD2, MUC19 and VDR also
interacted widely. An arrow indicates
interactions between two or more SNPs
within the same gene
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ratio < 1.3).38,39 Herein, we reported for the first time a new Crohn’s

disease susceptibility SNP with a high odds ratio in the Chinese pop-

ulation. Moreover, our data suggested that different causal variants

of MST1 might be operative in the Western and the Chinese popula-

tions. Nevertheless, it is important to note that our ImmunoChip

data set did not cover MST1 rs144982232 and its association with

Crohn’s disease has to be consolidated with an independent Chinese

cohort.

The genetic heterogeneity between East Asians and Europeans

at alleles of large effect could be exemplified by NOD2. The contri-

bution of NOD2 rare variants to risk and site of Crohn’s disease was

well studied and explained in Caucasians, with 4 mutations (P268S,

R702W, G908R and 3020insC) showing the strongest association.40-42

However, a previous study demonstrated no association of NOD2

R702W and G908R with IBD in Chinese patients.43 In line with pre-

vious genetic studies of Crohn’s disease in Asians,1 a recent study

showed that the three coding variants in NOD2 in Europeans did

not exist in East Asians.21 Furthermore, no SNP within NOD2 even

attained a suggestive evidence of association in the East Asian

cohort, indicating that different genetic factors are operative in the

Western and East Asian populations to contribute to Crohn’s dis-

ease. All these findings prompted us to examine whether NOD2

could interact with other genes to influence Crohn’s disease risk in

the Chinese cohort. In this study, by SKAT analysis and W-test, even

though NOD2 SNPs individually were not significantly associated

with Crohn’s disease, co-occurrence of NOD2 rs2111234 and MST1

rs144982232, JAK2 rs1159782 or VDR rs11574129 attained a sig-

nificant association. eQTL analysis further substantiated this

F IGURE 4 eQTL analysis revealing the association between NOD2 rs2111234 genotypes and NOD2 mRNA expression in multiple tissue
types
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discovery by showing the strong association between NOD2

rs2111234 and NOD2 gene expression, especially in whole blood

and spleen. It is tantalizing to postulate that when combined with

other IBD SNPs, NOD2 SNPs could synergistically influence the risk

for Crohn’s in the Chinese population. It also suggests that the

pathogenesis of IBD, in both the West and the East, is likely to be

driven by the interplay of an abnormal immune response to gut

microbes.

Another example of genetic heterogeneity in different ethnic

groups in Crohn’s disease pathogenesis is JAK2. A recent meta-

analysis demonstrated that JAK2 rs10758669 was significantly

associated with Crohn’s disease in Caucasians but not Asians.44 Con-

sistently, rs10758669 did not exhibit association with disease status

in our cohort. In contrast, another SNP rs1159782 was fine-mapped

to be the most strongly associated SNP in JAK2 with an odds ratio

of 3.72. Given that many JAK inhibitors for IBD are now undergoing

phase 3 trials,45 it is hopeful that JAK inhibition will benefit this sub-

set of patients with genetic susceptibility in JAK2.

From epistasis analysis, we found the most connected gene with

other SNPs that synergistically conferred risks to Crohn’s disease

was MST1. In particular, MST1 rs144982232 showed interactions

with other IBD genes, including JAK2, NOD2, ATG16L, VDR and

STAT3, indicating a more complicated role of MST1 in Crohn’s dis-

ease pathogenesis. Among these pairs, the top significant interac-

tions were with JAK2, NOD2 and MUC19. To this end, MST1-JAK2

interaction has also been identified in ulcerative colitis,46 another

major form of IBD. NOD2 polymorphisms could also modulate innate

immune response47 whereas MUC19 deficiency could impair mucus

production,48 both of which are important for mucosal barrier func-

tion and the control of subsequent invasion of commensals or

opportunistic pathogens. The co-involvement of NOD2, JAK2,

MUC19 and MST1 in mucosal defence and inflammation in Crohn’s

disease therefore deserves further study.

Another noteworthy observation is that VDR was centred by

MUC19, MST1, ATG16L1 and NOD2, which synergistically contributed

to Crohn’s disease risk. The association between VDR and Crohn’s dis-

ease has been supported by multiple studies.49-50 VDR, which codes

for vitamin D receptor, is engaged in NOD2 gene transcription and

signalling through NOD2 to induce expressions of b-defensin 2 and

cathelicidin.51 Variants or deletion of VDR may also change the micro-

biota and reduce the host defence through diminishing the production

of microbicidal peptides as well as ATG16L1.52,53 However, the inter-

action network among genes of interest that leads to Crohn’s disease

needs to be elucidated in-depth in future studies.

Taken together, our data suggested that a novel locus in MST1 is

involved in Crohn’s disease in the Chinese population. Interactions

between MST1 and other Crohn’s disease susceptibility genes also

contribute to disease risk. Future research should focus on resequenc-

ing and fine-mapping analysis to identify causal variants in other

Crohn’s disease susceptibility genes. Further insights into how differ-

ent risk alleles interact with each other in different ethnic populations

may unravel the complex genetic and environmental influence on IBD

and contribute to our understanding of disease pathogenesis.
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