PVT and Vapor Pressure Measurements on Ethane*

G. C. Straty and R. Tsumura**

Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302

(October 15, 1975)

New measurements of the vapor pressures and PVT properties of ethane are reported. PVT determinations have been made from near the triple point to 320 K at pressures to 33 MPa. The density range investigated extends to more than three times the critical density. The new measurements of the vapor pressures of ethane extend from 160 K to near the critical point.

Key words: Density; ethane; vapor pressure; PVT.

1. Introduction

Liquefied fuel gases, such as LNG, are expected to play an increasing role in satisfying future energy requirements. Accurate thermophysical properties data for these liquefied gas mixtures are necessary for the design of liquefaction plants, transport equipment, shipping and receiving terminals, and for custody transfer. The near infinite variations in mixture compositions encountered with these fuel gases rule out completely experimental or strictly computational approaches for determining these properties. Calculation methods, based on accurate, wide range pure component data and selected mixtures data are being developed in a number of laboratories, and appear to offer the only reliable and economical approach for the generation of the necessary thermophysical properties.

This paper reports new measurements of vapor pressures and PVT properties of pure ethane. The measurements have been made as part of a comprehensive program to provide the required experimental data and to develop suitable calculation techniques for mixture properties determinations. PVT measurements have been made from near the triple point (90.348 K) [1]¹ to 320 K at pressures up to 33 MPa. The density range extends to more than three times the critical density. The new measurements of the vapor pressures extend from 160 K to near the critical temperature (305 K).

2. Experimental Detail

To measure single-phase densities, the gas expansion technique was used. A series of pressure-temperature observations are made on a nearly constant density sample of fluid confined in a cell of accurately calibrated volume. When either the maximum pressure or maximum temperature is reached, the fluid is expanded, to low pressure, into large calibrated volumes maintained at an accurately known temperature above room temperature. The density can then be determined from the cell volume and the compressibility factor (PV/RT) of the ethane at the conditions of the expansion volumes.

The ethane used was commercially available research grade with specified minimum purity of 99.98 percent. This purity was verified by chromatographic analysis. Temperatures were measured on the IPTS (1968) with a platinum resistance thermometer calibrated by the National Bureau of Standards. Pressures above about 3 MPa were measured by referencing to oil pressures derived from an oil dead weight gauge accurate to within 0.015 percent. Lower pressures were measured with a precision fused quartz bourdon tube gauge which had been previously calibrated against an air dead weight gauge accurate to within 0.01 percent. The apparatus and procedures were similar to those used previously in this laboratory for measurements on several other cryogenic fluids [2–5] and have been described in detail [6-8]. Slight modification to existing apparatus was necessary because of the higher critical temperature of ethane. Those external parts of the system which contained fluid during a measurement were heated to well above the critical temperature (typically 330 K) in order to reduce the relative density of the fluid residing in these parts, permitting a more accurate adjusted density to be computed.

^{*}This work was carried out at the National Bureau of Standards under the sponsorship

of the American Gas Association, Inc. **Consejo Nacional De Ciencia Y Tecnologia (CONACYT) Mexico City. Currently a guest worker with the Cryogenics Division, National Bureau of Standards, Institute for Basic Standards.

¹Figures in brackets indicate the literature references at the end of this paper.

3. Results

With the techniques used here, each experimental *PVT* "run" consists of a number of pressure-temperature observations lying along a near-isochoric path. About 50 such runs were made covering a density range of from about 1.5 to over 21.5 mol/l. Each run consisted of from 5 to 16 PVT points, depending on the density. Measurements were always made at fixed temperatures to permit direct analysis in terms of isotherms. A total of over 450 PVT data points was determined. These data are tabulated along isotherms in table 1.

TABLE	1.	PVT	data for	ethane
-------	----	-----	----------	--------

		11		1		1	
P (MPa)	ρ (mol/l)	(MPa)	ρ (mol/l)	P (MPa)	ρ (mol/l)	P (MPa)	ρ (mol/l)
T = 92	2.00 K	T = 112	2.00 K	T = 130).00 K	T = 156	5.00 K
0 7099	91 690	1 1011	20.011	2 0295	20.287	5 5078	10 360
0.7928	21.029	1.1911	20.911	2.9203	20.207	14 9946	19.309
		0.8417	20.990	13.7499	20.450	14.2840	19.545
T = 93	5.00 K	11.2851	21.041	29.7809	20.694	28.6589	19.820
		20.6898	21.163				
8.7870	21.682			T = 132	2.00K	T = 160.00 K	
		T = 114	4.00 K				
T = 94	.00 K			5.4980	20.254	0.4675	19.091
		3 8739	20.882	17 2765	20.436	8 9636	19 288
3 5870	21 500	8 8149	20.002	26 4639	20.577	20 2324	19 524
10 4090	21.333	24 0715	20.742	23,6063	20.617	25 1469	10 806
10.4960	21.004	24.9715	21.152	55.0905	20.007	55.1400	19.000
		T - 114	5 00 K		00 V	T - 16	1 00 V
T = 96	.00 K		5.00 K	T = 134	1.00 K	I = 104	F.00 K
		1.0626	20 776			4.0500	10 042
6.3091	21.555	1.9030	20.770	7.2368	20.209	4.2580	19.043
14 6217	21 641	6.3156	20.841	20.8906	20.425	14.0474	19.250
14.0211	21.041	12.0035	20.913			26.2885	19.508
		19.0660	21.009	T = 136	5.00 K		
T = 98	.00 K	29.2820	21.143			T = 160	00 K
				1 3680	20.030	I = 108	0.00 K
8.1853	21.503	T = 118	B 00 K	0.2400	20.050		10.015
19,1732	21.625	1 110		9.2490	20.107	1.7297	18.817
1011102	211020	0.0470	20 701	24.5518	20.410	7.6437	18.969
T 100	0.00 17	8.0470	20.791	34.0682	20.561	19.6507	19.230
T = 100).00 K	15.7492	20.896			32.3436	19.495
		23.2017	20.997	T = 138	3.00 K		
1.7991	21.348					//	
11.3755	21.468	T = 120	0.00 K	3 7831	20.008	T = 172	2.00 K
23.8694	21.613			12 1243	20.144		
		1 2747	20.621	29 2200	20.111	1.2449	18.650
		6 8130	20.702	20.2309	20.407	5.7607	18.768
T = 102	2.00 K	10,0000	20.102		0.00 IZ	11.8776	18,916
		10.0020	20.737	T = 140).00 K	25 3400	19 214
4.7964	21.315	19.6919	20.883			20.0100	10 499
15.4890	21.448	27.3594	20.988	6.0574	19.972	30.3722	17.402
28 5382	21 603			15.3375	20.129		
20.0002	21.000	T = 122	2.00 K	31,9091	20.400	T = 176	5.00 K
T - 104	100 K						
1 - 104	IX	3.8664	20.592	T = 142	2.00 K	1 1073	18.488
1 1000	01 100	14.2998	20.737			5 2091	18 602
1.1828	21.198	23.7193	20.873	7 6559	19.926	8 8750	18 601
6.9584	21.269	31.5310	20.979	18 7094	20 117	16.0007	18 000
19.9098	21.434			25 5000	20.117	10.9907	10.092
33.1959	21.594	T = 124	1 00 K	35.5822	20.392	31.0365	19.201
		1 - 124			0.0.17		
T = 106	5.00 K	6 9496	20 552	T = 144	4.00 K	T = 180	00 K
1 100		0.2430	20.335			1 - 100	.00 1
0.0575	01.001	11.6827	20.627	0.9387	19.722		
9.0567	21.221	18.0492	20.724	9.8460	19.890		10.007
24.4329	21.422	27.7606	20.863	22,1094	20,107	0.5247	18.295
				22.1071	_0.101	4.9583	18.442
T = 108	3.00 K	T = 120	5.00 K	77 146	0.00 V	8.2782	18.525
				I = 148	N.00 K	13.3001	18.655
1 8227	21.065	7 9236	20.505		10 41-	22 2633	18.876
6 4514	21.005	21.0553	20.000	5.4489	19.667	36 7092	19 189
0.4514	21.125	21.9000	20.712	15.7717	19.856	50.1072	17.107
12.4806	21.193	51.8410	20.000	28.9678	20.091		
29.0045	21.412	T-190	2 00 K			T = 184	.00 K
		I = 120	5.00 K	T = 150	2 00 K	1 101	
T = 110	0.00 K	0.6715	20 312	1 - 152	1.00 K	3 0725	18 253
- 110		0.0715	20.312	1 0070	10 494	7.0705	10.200
	91.024	10.4/8/	20.470	1.2079	19.424	1.9795	10.308
4 71 01	21.034	18.8911	20.597	8.9240	19.584	12.4806	18.483
4.7101	03.351					10 0/1/	111 605
$4.7101 \\ 16.4766$	21.176	25.8617	20.703	22.1746	19.836	18.2646	18.635

 TABLE 1. PVT data for ethane - Continued

		11				11		
P (MPa)	ρ (mol/l)	P (MPa)	ρ (mol/l)	P (MPa)	ρ (mol/l)	P (MPa)	ρ (mol/l)	
T = 188.	T = 188.00 K		T = 216.00 K		T = 244.00 K		T = 268.00 K	
1.9817 7.2058 11.9718 17.2059	18.021 18.186 18.323 18.463	$\begin{array}{c} 2.1043 \\ 6.4050 \\ 13.2349 \\ 17.2225 \end{array}$	16.798 16.998 17.267 17.417	3.6366 4.6703 8.5355 12.2246	15.487 15.556 15.817 16.039	3.0548 4.2654 6.5471 9.6680	$13.884 \\ 14.062 \\ 14.352 \\ 14.669$	
23.3273 32.8340	18.620 18.850	$\begin{array}{c} 22.7370\\ 29.1542\\ T = 220 \end{array}$	17.606 17.808	18.7424 23.5869 29.6476	$ \begin{array}{r} 16.375 \\ 16.595 \\ 16.842 \end{array} $	12.5033 17.8943 19.2306 24.9268	14.914 15.316 15.395 15.728	
T = 192.0	00 K	1-220	5.00 K	T = 949	0.00 V	29.6684	15.973	
0.9865 5.5964 10.6669 16.5186 22.0330 28.3464	17.815 17.977 18.128 18.302 18.447 18.607	1.4301 5.1249 8.9985 16.9669 21.1113 26.8053	$16.567 \\ 16.761 \\ 16.934 \\ 17.250 \\ 17.404 \\ 17.594 \\ 17.594 \\ 17.594 \\ 17.594 \\ 17.594 \\ 17.594 \\ 17.594 \\ 17.594 \\ 17.594 \\ 17.594 \\ 17.594 \\ 10.594 \\ 1$	I = 248 1.7380 5.9925 6.8908 11.1353 15.1129	15.078 15.449 15.508 15.788 16.023	T = 272 2.0844 3.6257 4.8506 6.0670	2.00 K 1.243 13.670 13.859 13.859	
T = 196.0	00 K	T=224	17.798 1.00 K	$21.8905 \\ 26.8798 \\ 33.1044$	16.364 16.586 16.833	8.2942 11.8077 14.8065	14.032 14.302 14.650 14.901	
$\begin{array}{c} 0.4943 \\ 4.4533 \\ 8.4330 \\ 14.9662 \\ 21.1586 \end{array}$	17.619 17.775 17.903 18.104 18.286	$\begin{array}{r} 4.3322 \\ 7.6124 \\ 12.2714 \\ 20.7255 \end{array}$	16.536 16.699 16.904 17.237	T = 252 1.5930 3.9746	2.00 K 14.811 15.056	20.4232 21.8042 27.6780 32.5542	15.306 15.385 15.719 15.964	
26.8669 33.3677	18.434 18.595	25.0127 30.8565 T = 228	17.392 17.584 8 00 K	8.0325 9.0553 13.8649 18.0296	15.392 15.457 15.771 16.011	T = 276 2.1376 3.2684	5.00 K 1.242 13.256	
T = 200.0	00 K	1 220		25.0394	$16.354 \\ 16.577$	5.3267	13.644	
0.6801 3.5738 7.3933	17.445 17.581 17.709	1.8552 6.9228 10.4762	16.198 16.483 16.654	$T=25\epsilon$	10.577 5.00 K	6.5457 7.7197 10.2212	13.824 13.983 14.275	
$\begin{array}{c} 12.2367 \\ 19.4175 \\ 25.8517 \\ 31.6945 \end{array}$	17.866 18.087 18.273 18.423	$ \begin{array}{c} 15.7164\\ 24.4895\\ 28.8946\\ 34.8859 \end{array} $	$ \begin{array}{r} 10.887 \\ 17.225 \\ 17.382 \\ 17.574 \end{array} $	3.7062 6.1397 10.3740	14.790 15.018 15.358	13.9836 17.1196 22.9462 24.3837 30.4166	14.836 14.890 15.297 15.377 15.711	
T = 204.	00 K	T = 232	2.00 K	$11.5324 \\ 16.6249 \\ 20.9491$	$15.433 \\ 15.758 \\ 16.000$	35.4306	15.957	
3.7760 6.7420 10.6983 16.4076 23.9051	17.411 17.524 17.658 17.846 18.074	1.2667 4.5825 9.4583 13.6904 19.2025 28.2402	15.950 16.167 16.428 16.633 16.874	28.1716 33.4255 T = 260	16.345 16.568	2.1904 2.9758 4.8428 6.9195	1.241 12.787 13.234 13.604	
30.2305 36.4896	18.262 18.412	T = 236	17.213 17.372	2.6858 5.7990 8.0637	14.414 14.757 14.963	8.1526 9.4890 12.2137 16.1653	13.778 13.951 14.259 14.625	
T = 208. 0.5897 6.8033 9.6616 14.6253	00 K 17.079 17.354 17.461 17.634	3.8508 7.0049 12.4747 16.9765 22.6904	15.920 16.114 16.403 16.618 16.862	12.8526 14.0783 19.3947 23.8662 31.2936	$15.340 \\ 15.417 \\ 15.747 \\ 15.990 \\ 16.336$	$ \begin{array}{r} 19.4376\\ 25.4635\\ 26.9473\\ 33.1520\\ T = 284 \end{array} $	14.880 15.288 15.368 15.703 4.00 K	
20.6552 28.3791 35.0871	17.831 18.062 18.251	31.9811 T = 240	17.205 0.00 K	T = 264 2.4038	4.00 K 14.085	2.2428 4.3982 6.3596 8.4885	$1.240 \\12.768 \\13.203 \\13.563$	
T = 212.	00 K	1.2548	15.515 15.586	4.6766	14.389 14.705	9.8840 11.3395	13.751 13.933	
3.4269 9.6570 13.3583 18.6673 24.9088 32.8419	17.048 17.293 17.434 17.619 17.819 18.051	6.3368 9.4209 15.5972 20.2787 26.1772 35.7046	$15.867 \\ 16.062 \\ 16.387 \\ 16.606 \\ 16.852 \\ 17.196$	10.2294 15.3689 16.6466 22.1619 26.7721 34.3986	14.931 15.327 15.405 15.737 15.981 16.328	11.33514.226118.355721.750527.973129.497135.8724	$\begin{array}{c} 14.247\\ 14.615\\ 14.872\\ 15.280\\ 15.360\\ 15.696\end{array}$	
				1				

TABLE 1. PVT data for ethane-Continued

		0		0			
$\frac{P}{(MPa)}$	$\frac{ ho}{(\mathrm{mol}/\mathrm{l})}$	P (MPa)	$\frac{ ho}{(\mathrm{mol}/\mathrm{l})}$	P (MPa)	ho(mol/l)	P (MPa)	ρ (mol/l)
T = 288.00 K		T = 300.00 K		T = 308	3.00 K	T = 316	.00 K
2.2951	1.239	2.4492	1.237	-			
3.0547	1.955	4.0309	2.875	2 5 400	1 996	9 6 4 0 1	1.025
3.9706	12.194	4.6932	10.611	2.3499	1.250	2.0491	1.235
5.8026	12.745	5.3970	11.196	4.5250	4 221	4.0005	2.000
7.7971	13.160	5.9485	11.485	5 1424	4.521	5.4200	4.512
10.1657	13.540	7.6275	12.109	5.1434	0.006	5.9358	0.513
11.6682	13.735	9.8845	12.652	5.6060	9.000	0.0010	9.054
13.2063	13.920	12.4490	13.102	6 9111	10.220	7.0522	9.752
16.2439	14.237	12.4489	13.102	6.4452	10.200	0.1006	10.229
20.5477	14.607	15.3377	13.504	0.4452	10.374	0.1900	10.522
24.0580	14.863	17.0906	13.704	0.0250	11.142	9.3070	11.099
30.4719	15.273	18.8621	13.892	10.0040	11.424	10.1902	11.390
32.0446	15.353	22.3018	14.211	10.0940	12.000	12.0240	12.044
		27.0931	14.583	12.7410	12.020	10.0045	12.000
T = 292	2.00 K	30.9501	14.841	19.0230	13.005	22.3004	12.472
				20 7132	13.407	24.3313	13.073
2.3466	1.239	77 004	00 V	20.7132	13.876	20.3090	13.002
3.8113	11.522	I = 304	.00 K	22.0290	14.106	30.3230	14.105
5.2158	12.173	2 4007	1 027	20.3240	14.190		
7.1396	12.707	2.4997	1.237	35 5024	14.309		
9.3105	13.131	3.4158	1.950	33.3024	14.020		
11.8771	13.525	4.1784	2.873				
13.4688	13.723	4.0828	4.325			T = 320).00 K
15.0863	13.910	4.7721	9.097	T 010	0.0 Tr		
18.2640	14.228	4.9074	9.700	T = 312	00 K		
22.7394	14.598	5.3930	10.290				
26.3645	14.855	5.5008	10.590				
32.9673	15.265	0.3940	11.175	2.5996	1.235		
T • • • •	0.0 TT	0.9980	11.400	3.5908	1.947	2.6983	1.234
T = 296	0.00 K	0.0474	12.002	4.4668	2.869	3.7629	1.945
		11.0000	12.000	5.1793	4.316	4.7483	2.864
2.3987	1.238	14.0302	13.092	5.5401	6.522	5.6574	4.307
3.2373	1.952	17.0942	13.495	6.0206	9.072	6.3309	6.503
3.8806	2.880	20.7454	13.884	6.4330	9.756	7.3064	9.032
4.3963	11.212	20.7434	14.204	7.0307	10.254	7.9172	9.710
4.8686	11.505	24.3137	14.204	7.3179	10.546	8.6869	10.211
0.4389	12.140	23 2300	14.833	8.3744	11.116	9.0937	10.506
8.4817	12.672	33.2309	14.055	9.1114	11.404	10.4137	11.087
10.8097	13.115			11.3574	12.054	11.2486	11.380
13.6040	13.514	T 0.04	6 00 IV	14.1819	12.618	13.9007	12.036
15.2773	13.713	T = 306	5.00 K	17.2177	13.075	17.0663	12.602
10.9735	13.900	1 000 1	4 9 9 9	20.5666	13.480	20.4014	13.060
20.2840	14.219	4.8094	4.323	22.5240	13.081	24.0318	13.400
24.8701	14.591	4.9441	0.533	24.5119	13.809	20.1304	13.007
20.0470	14.040	5.0757	9.092	28.3280	14.189	28.2588	13.855
35.4404	15.258	5.8014	10.290	33.5824	14.502	32.3174	14.170

Although comparison with data from other sources is, in general, impossible without multiple interpolations, the agreement has been deduced by examining the density deviations of the various data sets [9, 10] from densities calculated from an equation of state for ethane due to Goodwin [11]. The agreement is found to be, in general, within the combined experimental error. Maximum difference occur in the critical region where the equation of state representation is expected to be less satisfactory and where the experimental densities are subject to increasing uncertainty. Estimated uncertainty in the experimental densities in this work is typically ± 0.1 percent at the lowest temperatures, increasing to ± 0.2 percent at higher temperatures and lower densities, becoming as much as ± 1.0 percent in the critical region.

New vapor pressure measurements also have been made at 5 K intervals from 160 to 300 K and are given in table 2. At each temperature, the pressure was measured at least twice with some ethane being removed from the cell between measurements. Identical pressure observations indicated that the two-phase condition existed in the cell.

A vapor pressure equation of the form

$$ln(P/P_t) = A_{\chi} + B_{\chi^2} + C_{x^3} + D_{\chi^4} + E_{\chi}(1-\chi)^{3/2} \quad (1)$$

was fit to all available data for ethane [12]. Here, $\chi = (1 - T_t/T)/(1 - T_t/T_c)$, and *P* and *T* are the pressure and temperature and *t* and *c* refer to the triple and critical points. Coefficients giving the best fit were found to be the following:

A = 10.67324R = 8.33782C-3.08489D = -0.65857E = 6.04955 $P_t = 1.14 \times 10^{-5} \text{ bar}$ $T_t = 90.348 \, K \, [\text{Ref 1}]$ $T_c = 305.330 \,\mathrm{K} \,\mathrm{[Ref \, 10]}$

TABLE 2

Т	Р	Т	Р	
(K)	kPa	(K)	kPa	
160.00	21.502	230.00	700.48	
165.00	30.670	235.00	825.96	
170.00	42.870	240.00	966.60	
175.00	58.636	245.00	1124.4	
180.00	78.734	245.00	1124.8	
180.00	78.706	250.00	1300.0	
185.00	103.84	250.00	1301.9	
190.00	134.63	250.00	1302.1	
190.00	134.72	250.00	1301.8	
195.00	172.21	255.00	1495.0	
195.00	172.26	260.00	1670.3	
200.00	217.26	265.00	1947.9	
200.00	217.32	270.00	2208.0	
205.00	270.93	275.00	2493.1	
205.00	271.00	275.00	2493.2	
210.00	334.13	280.00	2804.6	
210.00	334.17	280.00	2806.2	
210.00	333.98	285.00	3144.3	
210.00	333.99	290.00	3513.5	
215.00	407.34	298.15	4190.9	
220.00	492.16	298.15	4188.9	
225.00	589.73	300.00	4353.5	

Deviations of the experimental vapor pressures from those calculated from this equation for the various data sets [9, 10, 13] are shown in figure 1.

FIGURE 1. Deviations of vapor pressures from eq. 1.

 \blacksquare This work; \bigcirc Ziegler et al. (Ref. [13]); \triangle Pal (Ref. [9]); \Box Pope (Ref. [9]); \bigtriangledown Douslin and Harrison (Ref. [10]).

4. Summarv

We have made new wide-range measurements of the vapor pressures and PVT properties of ethane. These are the only data currently available which cover the entire temperature range from the triple point to 320 K. In addition, these data are the only accurate *PVT* data available for the compressed liquid below about 190 K. The data are being used along with other available data to refine the calculation of thermodynamic functions for ethane and as input to, and as a check upon, new calculation methods for predicting liquefied natural (fuel) gas properties being studied in this and other laboratories.

5. References and Notes

- [1] Straty, G. C., and Tsumura, R., J. Chem. Phys., 64, 859 (1976).
- [2] Weber, L. A., J. Res. Nat. Bur. Stand. (U.S.), 74A (Phys. and Chem.), No. 1, 93-129 (Jan.-Feb. 1970).
- [3] Prydz R., and Straty, G. C. Nat. Bur. Stand. (U.S.), Tech. Note 392, 197 pages (Revised 1973).
- [4] Goodwin, R. D., Nat. Bur. Stand. (U.S.) Tech. Note 653, 280 pages (April 1974).
- Weber, L. A., NASA SP-3088/NBSIR 74-374 (1975).
- [6] Goodwin, R. D., J. Res. Nat. Bur. Stand. (U.S.), 65C, (Eng. and Instr.), No. 4, 231-243, (Oct.-Dec. 1961).
- [7] Straty, G. C., and Prydz, R., Rev. Sci. Inst. 41, 1223 (1970).
 [8] Goodwin and Prydz, R., J. Res. Nat. Bur. Stand. (U.S.), 76A (Phys. and Chem.), No. 2, 81-101 (Mar.-Apr. 1972).
- [9] Pope G. A., (also reports vapor pressure and PVT data of A. K. Pal). Ph.D. Thesis, Dept. of Chemical Engineering, Ric University, Houston, Texas (July 1971).
- [10] Douslin, D. R., and Harrison, R. H., J. Chem. Thermo 5, 491 (1973).
- [11] Goodwin, R. D., NBSIR 74-398 (1974). Goodwin has used a nonanalytic equation of state to correlate previously available data on ethane and to calculate provisional thermodynamic functions. Experimental data from this work are being used to fill in gaps in previously published data and to refine the equation of state to permit more accurate calculations of thermodynamic properties to be made. We defer extensive comparisons between data sets and a more elaborate analysis for inclusion in a final report in preparation.
- [12] Further refinements in the correlation are expected which will probably alter slightly the final values of the constants. The deviation plot, however, is representative of the agreement among data sets. Coefficients for this equation will be included in the final report. See also reference [8].
- [13] Ziegler, W. T., Kirk, B. S., Mullins, J. C., and Berquest, A. R., Tech. Rept. No. 2, Project A-764, Eng. Expt. Sta. Georgia Inst. Tech.; Atlanta, Georgia, December 1964.

(Paper 80A1-878)