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Abstract

RNA viruses have high mutation rates, with the majority of mutations being deleterious. We examine patterns of deleterious mutation
accumulation over multiple rounds of viral replication, with a focus on how cellular coinfection and heterogeneity in viral output affect these
patterns. Specifically, using agent-based intercellular simulations we find, in agreement with previous studies, that coinfection of cells by
viruses relaxes the strength of purifying selection and thereby increases the rate of deleterious mutation accumulation. We further find that
cellular heterogeneity in viral output exacerbates the rate of deleterious mutation accumulation, regardless of whether this heterogeneity
in viral output is stochastic or is due to variation in the cellular multiplicity of infection. These results highlight the need to consider the

unique life histories of viruses and their population structure to better understand observed patterns of viral evolution.
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Introduction

RNA viruses have high mutation rates and undergo frequent
population bottlenecks, making them particularly prone to the
accumulation of deleterious mutations. As such, these popula-
tions can experience deleterious mutation loads, which is the
burden on fitness that recurrent and persistent mutations have
on populations (Crow 1958; Agrawal and Whitlock 2012). Indeed,
the accumulation of deleterious mutations in viruses has been
repeatedly demonstrated using experimental evolution. In par-
ticular, experiments have demonstrated that serial population
bottlenecks impact rates of deleterious mutation accumulation
in viral populations (Chao 1990; Clarke et al. 1993; Escarmis et al.
1996; Elena et al. 1998; Poon and Chao 2004; Garcia-Arriaza et al.
2005). Drugs that exploit this accumulation by increasing al-
ready high mutation rates can drive viral populations extinct
(Anderson et al. 2004; Pauly and Lauring 2015; Bank et al. 2016).
Experimental studies have also shown that cellular coinfection
affects the rate of deleterious mutation accumulation in viral
populations (Wilke and Novella 2003; Novella et al. 2004). In par-
ticular, cellular coinfection leads to slower purging of deleterious
mutations because selection is relaxed: when multiple viral
genomes are present in a cell, they all share their protein prod-
ucts (Zavada 1976; Froissart et al. 2004). With multiple copies of
the same gene that have differential fitness, phenotypes and
genotypes of the offspring will not necessarily be matched.
Cellular coinfection therefore allows for “phenotypic hiding” of
deleterious mutations (Wilke and Novella 2003; Novella et al.
2004).

Several processes reduce the accumulation of deleterious
mutations in RNA viruses. One such mechanism is through the
evolution of higher fidelity polymerase proteins, thus reducing
deleterious mutation rates (Pfeiffer and Kirkegaard 2003; Coffey
et al. 2011; Cheung et al. 2014). Recombination (and its segmented
analogue, reassortment) also reduces the rate of deleterious mu-
tation accumulation through the generation of high-fitness viral
genotypes via viral sex. By limiting cellular multiplicity of infec-
tion (MOI), superinfection exclusion (Turner et al. 1999; Schaller
et al. 2007; Folimonova 2012) also reduces the opportunity for
phenotypic hiding. However, superinfection exclusion also limits
the opportunity for viral sex to occur, and thus its net effect on
the rate of deleterious mutation accumulation is unknown.

The effect of cellular MOI on the rate of deleterious mutation
accumulation is particularly interesting to consider given its
uniqueness to viral populations and that cellular coinfection is,
in effect, a double-edged sword: providing an opportunity to
purge deleterious mutations via viral sex, while relaxing selection
on deleterious mutations by increasing the extent of phenotypic
hiding. However, when phenotypic hiding dominates, the benefits
of coinfection are greatly reduced for viruses that cannot recom-
bine or reassort. Here, we develop a model to examine the effects
of cellular coinfection on deleterious mutation accumulation in
viral populations in the context of these opposing effects. We first
show that the simplest version of the model recapitulates previ-
ous findings in the literature (Wilke and Novella 2003; Novella
et al. 2004) that indicate cellular coinfection, in the absence of
genetic exchange, increases the accumulation of deleterious
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mutations. We then extend this model to include cellular hetero-
geneity in viral output, based on experimental findings that dem-
onstrate extreme cellular heterogeneity in response to viral
infection (Russell et al. 2018; Martin et al. 2020). We find that het-
erogeneity, whether due to variation in cellular MOI or intrinsic
cellular variation, increases the rate of deleterious mutation ac-
cumulation. Our findings highlight how viral life history charac-
teristics can impact deleterious mutation accumulation.

Model
Base model

We use a generalized Wright-Fisher model of the viral population
(Fig. 1), with V virions infecting a host cell population of size C.
Both V and C remain constant over time, yielding a constant aver-
age MOI of V/C. Each virion has g genes in its genome. These
genes are distributed across y freely reassorting gene segments,
with no recombination within segments. Deleterious mutations
occur at a rate of U/g per gene per generation, such that the over-
all deleterious mutation rate occurs at a rate of U per genome per
generation. In simulations of this model, we use y € {1,2,4,8} to
capture a range of reassortment potentials, with y =28 reflective
of influenza A virus genomes. For simplicity, we use g=8 in all
simulations so that genes can be evenly distributed across the
considered numbers of segments. Within each gene, we adopt an
infinite sites assumption. Thus, each genome can be character-
ized simply by how many deleterious mutations it carries at each
of its g genes.

At the beginning of each generation, the V virions are ran-
domly assigned to the C cells, resulting in a Poisson distribution
of virions across cells. Once inside the cells, the numbers of
mutations on each gene determine the aggregate fitness of the vi-
ral population within each cell. This aggregate fitness, which we
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Fig. 1. Schematic representation of the base model with a viral genome
depicted over a single generation. Each generation consists of a series of
steps (A)—-(D). (A) V virions infect C cells. Here, 2 virions infect the shown
cell. The viral genomes each have g =8 genes distributed across y =4
gene segments. Each gene is labeled 1-8. (B) Within each cell, the
fitnesses of individual gene copies are calculated using Equation (1).
These o;; values are used to calculate the group fitness for each gene.
(C) Cellular fitnesses are then calculated using Equation (3). (D) V viral
progeny are formed by selecting parental cells according to their cellular
fitnesses and then selecting gene segments at random from within the
cell. Deleterious mutations (lightning bolts) are introduced during the
formation of these viral progeny. Steps (A)-(D) are repeated for t
generations.

call “cellular fitness,” determines the relative contribution of
each cell’s virus population to the next generation of virions. To
calculate cellular fitness, we first calculate the fitness of each
gene that was delivered to a cell:

wij = (1 — S)n") (1)

where s is the constant fitness cost of a deleterious mutation and
n;; is the number of deleterious mutations on gene i delivered by
virion j. For each gene i, we calculate the mean fitness of the gene
inacell as
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where m is the MOI of the host cell. Finally, we calculate the
expected cellular fitness, W, as:
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Equations (1)—(3) make 3 key assumptions: (1) each mutation
within a gene contributes multiplicatively to the fitness of that
gene [Equation (1)]; (2) each copy of a gene i contributes equally
to ®; via incomplete dominance [Equation (2)]; and (3) each gene
segment is essential and equally important in its contribution to
cellular fitness [Equation (3)]. We make these assumptions based
on the idea that when multiple virions of differing genotypes in-
fect a cell, the produced viral proteins are treated as common
goods used in the generation of progeny virions.

At the end of each generation, we draw the V progeny virions
for the next generation from across the set of infected cells. Each
progeny virion is drawn independently, with the probability that
the virion comes from cell ¢ proportional to W.. Given that the vi-
rion comes from cell ¢, each of its y gene segments is drawn ran-
domly from the parental virions that infected the cell. As such, a
high-fitness gene segment is as likely to be drawn from a cell as a
low-fitness gene segment, reflecting our assumption that cellular
fitness depends on the aggregate of shared viral proteins that
have been produced in a cell. Once all parental gene segments
have been chosen, the mutations are added as described above.
We repeat this full process for t discrete generations. We next de-
scribe several extensions of this base model that allow us to ex-
amine the effects of cellular heterogeneity in viral output that
stem from 2 distinct sources: differences in intrinsic cellular
characteristics (see Heterogeneous Cellular Output Stemming from
Differences in Cellular Characteristics) and differences in cellular
multiplicities of infection (see Heterogeneity in Cellular Output
Stemming from Differences in Cellular Multiplicity of Infection). In
Alternative Fitness Functions, we describe alternative cellular fit-
ness functions that we consider a sensitivity analysis to the in-
complete dominance fitness function described above.

Heterogeneous cellular output stemming from
differences in cellular characteristics

Viral output from cells can be affected by host cell characteristics
such as size, cell type, and cell cycle stage (Brooke et al. 2013;
Schulte and Andino 2014; Heldt et al. 2015; Golumbeanu et al.
2018; Leviyang and Griva 2018; Russell et al. 2018; Xin et al. 2018;
Phipps et al. 2020; Sun et al. 2020). To consider the effect of hetero-
geneity in virus output on deleterious mutation accumulation,
we extend our base model described above by adapting an
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approach used by Lloyd-Smith et al. (2005) to describe
population-level viral transmission heterogeneity (superspread-
ing dynamics). Specifically, we introduce cellular heterogeneity
by making a distinction between the cellular output W/ and the cel-
lular fitness W.. We make this distinction because the amount of
virus produced by a cell is no longer solely determined by the cel-
lular fitness but now also depends on stochastic factors. For each
cell ¢, the cellular fitness W, is still determined by the genes of
the infecting viruses according to Equation (3) as above. But in
the next generation, the probability that a viral progeny is drawn
from c is no longer proportional to W, and is instead proportional
to W/, a gamma-distributed random variable with mean W, and
shape parameter k. The gamma distribution’s probability density
function is given by:

q 1 k ¢ —1,—ko,
p(W; = o W) :W<Wc> C (4)

The parameter k controls the extent of cellular heterogeneity.
As k — oo, heterogeneity driven by host cell characteristics
becomes minimal and the probability that a progeny virion
derives from cell ¢ converges to its cellular fitness, W, — W,. In
contrast, as k — 0, the probability that a viral progeny derived
from cell ¢ becomes increasingly dependent on host cell charac-
teristics and relatively less dependent on the fitness of viral genes
delivered to a cell. In our Results section, we refer to this extension
of the base model as the “stochastic heterogeneity” model.

Heterogeneity in cellular output stemming from
differences in cellular MOI

Virus output from cells can also be affected by cellular MOI
(Phipps et al. 2020; Martin et al. 2020). In particular, at low cellular
multiplicities of infection, increases in cellular MOI can increase
the average number of viral progeny from an infected cell. This
increase in viral output tends to saturate at higher multiplicities
of infection, indicating that at higher MOIs, there are likely con-
straints present on host cell machinery. In experimental studies,
the specifics of the relationship between viral input and output
appear to depend on the cell line and the viral strain examined
(Phipps et al. 2020; Martin et al. 2020). To consider the potential
for cells with higher cellular multiplicities to contribute more vi-
ral progeny than those with lower cellular multiplicities of infec-
tion, we extended the base model such that the cellular output of
a cell, W/, is given by the product of cellular fitness W, and the
cell’s MOI m.. In the absence of viral fitness differences, this cre-
ates a linear relationship between viral input and viral output
from a cell. While numerous other functional forms are possible,
this is the simplest one that allows us to assess the qualitative ef-
fect of input dependence on deleterious mutation accumulation.
In our Results section, we refer to this extension of the base model
as the “input-dependent” model.

Alternative fitness functions

To test the robustness of our results, we also consider alternative
models for how cellular fitness depends on the genetic composi-
tion of the infecting virions. Above, we assume that the realized
fitness of gene segment iis the arithmetic average of the fitnesses
of the individual gene segments i=1,...,m.. Here, we can in-
stead consider the possibility that the fitness of gene segments
depends on the fitness of the most or least-fit infecting gene seg-
ment. That is, when calculating the fitness of a gene i, we take
either o; = max{wiy,..., 0y} or w; =min{wi;,...,o;n }. These
are 2 limiting models for the “dominance” of viral mutations;

together with the original fitness function, they span most of the
biologically plausible parameter range. We proceed to calculate
W, as in Equation (3). We estimate the effects of these fitness
functions under both the base model structure and with stochas-
tic heterogeneity [Equation (4)].

Results

In our results, we focus on presenting the mean number of dele-
terious mutations accumulated in a viral population by genera-
tion t. Unless otherwise specified, data shown are from the final
generation of the simulation, t=20 or t=150. With a viral genera-
tion being approximately 5h long for viruses such as influenza
(Dou et al. 2017), this corresponds to approximately 4 and 31days,
respectively. We choose these 2 endpoints due to substantial
changes in rates of deleterious mutation accumulation over time.
Roughly, t=20 is the time to approach mutation-selection bal-
ance for many of our simulations, so changes in the number of
accumulated mutations at this time reflect shifts in the muta-
tion-selection balance distribution. At the later time t=150, we
can distinguish between populations with a slow-acting Muller’s
ratchet vs. ones with a fast-acting Muller’s ratchet.

Phenotypic hiding relaxes selection

We first show that our base model reproduces key findings on
deleterious mutation accumulation from previous work using
similar cellular coinfection modeling frameworks, in addition to
classical population genetics. That is, we establish that the sizes
of the virus and host cell populations influence the rate of genetic
drift and the extent of phenotypic hiding in the context of cellular
coinfection.

For simplicity, we begin by considering an unsegmented ge-
nome (y=1), so there is no reassortment. One key finding from
the field of population genetics is that reducing population size
increases the rate of deleterious mutation accumulation due to
an increased rate of genetic drift, particularly in asexual popula-
tions (Fisher 1930; Wright 1931; Kimura et al. 1963; Lynch et al.
1995). This effect has mostly been studied under purely
individual-level selection. This is a good approximation of our
system at low MOI, where most infected cells are infected by only
a single virion. Indeed simulations of our model reproduce this
effect of population size at low MOI (Fig. 2a).

Previous work has also shown that cellular coinfection and
the sharing of viral proteins relaxes the strength of selection on
individual virions and thus allows deleterious mutations to accu-
mulate at a faster rate in viral populations than otherwise
expected (Wilke and Novella 2003; Froissart et al. 2004; Novella
et al. 2004). Our model recapitulates this “phenotypic hiding” in
simulations where the viral population size is kept constant and
the number of cells is modified to change the overall MOI
(Fig. 2b). The monotonic increase in the number of accumulated
deleterious mutations in the population with an increase in MOI
is directly attributable to relaxed selection.

The results shown in Fig 2, a and b indicate that increases in
viral population size that are not matched by increases in the
size of the cell population could yield a nonmonotonic relation-
ship between viral population size and the rate of deleterious
mutation accumulation. Indeed, Fig. 2c shows the results of this
tension between the effects of genetic drift and phenotypic hid-
ing. At low MOI (« 1), coinfection is rare, and the primary effect
of increasing the viral population size across simulations is a re-
duction in the strength of genetic drift, thus decreasing mutation
accumulation. As MOI approaches 1, however, phenotypic hiding
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Fig. 2. Simulated patterns of deleterious mutation accumulation without cellular heterogeneity. a-c) Mean number of accumulated mutations at t =20
generations. Each data point shows the average across 20 replicate simulations with error bars showing the standard error, except for the 3 largest
population sizes in subplot (c), which have only a single replicate shown due to computational limitations. Red dashed lines show the theoretical
expectation of mutation accumulation at selective neutrality (Ut). Blue dotted lines show the expectation of mutation accumulation for an infinite viral
population size at its mutation-selection balance (U/s). Parameter values are V = 1,000, C = 1,000,U = 1,s = 0.2,g = 8,y = 1 unless otherwise indicated.
a) Mean number of mutations accumulated across a range of viral population sizes. MOI (= V/C) is kept constant at 0.1, such that cell population sizes
scale linearly with viral population sizes. Higher viral population sizes have lower rates of deleterious mutation accumulation. b) Mean number of
mutations accumulated across a range of MOI. The virus population size is kept constant at V=1,000 and cell population size C is modified to change
MOIL Here, increasing MOI increases phenotypic hiding and therefore deleterious mutation accumulation. c) Mean number of mutations accumulated
across a range of MOL. The cell population size is kept constant at C = 1,000 and the virus population size V is modified to change MOI. At low MOI,
genetic drift, whose sole effects are shown in (a), dominates and mutation accumulation rates are high because of small viral population sizes. At high

MOI (C = 1000)

MOI, phenotypic hiding, whose effects are shown in (b), dominates and mutation accumulation rates are high because of high levels of cellular

coinfection.

starts to play a more pronounced role and mutation accumula-
tion increases. At very high MOI (> 1), phenotypic hiding is es-
sentially complete and deleterious mutations accumulate at the
neutral rate U per unit time.

Existing analytical expressions for the rate of Muller’s ratchet
provide a poor match for our simulation results, even for small
MOI where phenotypic hiding is limited. For example, Gordo and
Charlesworth (2000) derived analytical expressions for the rate of
deleterious mutation accumulation via Muller’s ratchet in asex-
ual haploid populations with Ve~U/s > 1. Supplementary Fig. 1
shows the qualitative disagreement between their analytical
equations (3a) and (3b) and our results. We attribute this to our
simulations being in a parameter regime that is not often consid-
ered when modeling Muller’s ratchet, where high mutation rates
are constantly introducing large-effect mutations into small pop-
ulations. Approximations from Gordo and Charlesworth (2000)
break down in this regime; indeed, their predictions for very
small populations exceed the neutral limit of accumulation
(Supplementary Fig. 1). Gordo and Charlesworth (2000) models
Muller’s ratchet where Ve=U/s > 1, and we only approach this re-
gime at large V/C where phenotypic hiding is strong enough to
make selection ineffective. Thus, canonical models of Muller's
ratchet do not provide a sufficient basis for prediction in the bio-
logical context of viral populations undergoing phenotypic hid-
ing.

The rate of deleterious mutation accumulation should
decrease in segmented viral genomes because reassortment can
re-create high-fitness genotypes that have been lost to drift by
combining segments that have a small number of deleterious
mutations, halting Muller’s ratchet (Fisher 1930; Wright 1931;

Kimura et al. 1963; Muller 1964; Haigh 1978; Chao 1990; Chao et al.
1997). We confirm that this occurs in our base model when we
consider the viral genome of g=8 genes divided across y =
1,2,4, 8 gene segments (Fig. 3). Because reassortment does not af-
fect the approach to mutation-selection balance, it has little
effect at early times (e.g. t=20). At later times, reassortment
results in a slower “clicking” of the ratchet (Fig. 3a), such that
more highly segmented genomes end up with lower levels of ac-
cumulated deleterious mutations than genomes that have fewer
gene segments. Reassortment has the largest effect on mutation
accumulation at intermediate viral population sizes that are
large enough to effectively select against individual mutations
but small enough to be vulnerable to Muller’s ratchet, 1/s < V <
eV/s /s (Lynch et al. 1995; Barton and Otto 2005). At larger viral pop-
ulation sizes, the ratchet clicks very slowly even in nonreassort-
ing viruses, and therefore, reassortment provides little benefit
(Fig. 3b) (Muller 1964).

The higher MOI is, the more opportunities viruses have to
reassort. Even when cellular coinfection and therefore reassort-
ment is rare (MOI < 1), it can substantially slow Muller’s ratchet
(Fig. 3, a—c), consistent with findings from the population genetic
literature (Bell 1988; Charlesworth et al. 1993; Cohen et al. 2006).
Higher reassortment rates, however, are more effective at slow-
ing the ratchet. In Fig. 3c, we keep the viral population size (i.e.
drift) the same as we test different sized cell populations to mod-
ulate MOL As coinfection events become more common at mod-
erate MOI, segmented genomes accumulate fewer deleterious
mutations than their unsegmented counterparts. However, seg-
mented genomes are still vulnerable to the impacts of phenotypic
hiding. When cellular coinfection is frequent (MOI > 1) and
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Fig. 3. Genome segmentation slows the accumulation of deleterious mutations. In (a)-(d), the per genome mutation rate is U= 1 and the fitness cost of
mutations is s =0.2. Each data point is the average across 20 replicate simulations with error bars showing the standard error. Red dashed lines in (c)
and (d) show the theoretical expectation of mutation accumulation at selective neutrality (Ut). Blue dotted lines in (b)-(d) show the expectation of
mutation accumulation for an infinite viral population size at its mutation-selection balance (U/s). (a) Average number of deleterious mutations
accumulated over time at a viral population size V= 1,000 and a cell population size of C = 10,000 for varying numbers of segments. b) Mean number of
mutations accumulated across a range of viral population sizes with different numbers of gene segments. Reassortment slows mutation accumulation
in small populations subject to Muller’s ratchet. MOI (= V/C) is kept constant at 0.1 by scaling linearly the cell population size C proportionally with the
viral population size V. ¢) Mean number of mutations accumulated across a range of viral MOI. The virus population size is kept constant at V=1,000
and cell population size C is modified to change MOI. Even though phenotypic hiding grows stronger as MOl increases, populations with segmented
genomes experience a decrease in deleterious mutation accumulation at intermediate MOI. d) Mean number of mutations accumulated across a range
of MOI. The cell population size is kept constant at C= 1,000 and the virus population size V is modified to change MOI. Segmented viral populations
experience deleterious mutation accumulation when drift is strong, but benefit from reassortment as MOI increases. In both (c) and (d), mutation
accumulation is slowest at intermediate MOI ~0.3 [dashed green vertical line (d)], balancing the effects of reassortment and phenotypic hiding. At high

MOI > 1, phenotypic hiding is nearly complete and mutations accumulate at close to the neutral rate.

phenotypic hiding causes selection to be ineffective against single
mutations, mutations accumulate nearly neutrally and reassort-
ment provides little benefit (Fig. 3, c and d, right sides). Hence, co-
infection is a double-edged sword in populations with segmented
genomes because sex and phenotypic hiding change the effective
magnitude of selection in opposing directions. The opposing
effects create an optimum MOI somewhat less than 1, at which
reassortment is frequent but phenotypic hiding only mildly
reduces the effectiveness of selection.

Stochastic heterogeneity increases deleterious
mutation accumulation

As described in Heterogeneous Cellular Output Stemming from
Differences in Cellular Characteristics, we implement the effect of
heterogeneity driven by host cell characteristics by combining
individual cell heterogeneity with virus-driven differences in cel-
lular fitness using draws from a gamma distribution, parameter-
ized with dispersion parameter k. As expected, simulations with
k=1 behave like the ones described in Phenotypic Hiding Relaxes

Selection that do not incorporate stochastic heterogeneity (Fig. 4).
However, for k <« 1, more deleterious mutations accumulate,
with higher levels of stochastic heterogeneity resulting in faster
deleterious mutation accumulation (Fig. 4a and Supplementary
Fig. 2). This is because the increased stochasticity reduces the ef-
ficacy of purifying selection. This has little effect under very high
mean MOI > 1, because phenotypic hiding already weakens se-
lection such that mutations accumulate at nearly the neutral
rate, but it can greatly increase mutation accumulation at lower
MOI where selection would otherwise be strong enough to halt
mutation accumulation.

Calculations of viral effective population size show that the
impacts of stochastic heterogeneity do not impact mutation
accumulation at high MOI

The effect of stochastic cellular heterogeneity on mutation accu-
mulation can be better understood by quantifying the effective
viral population size, V. in these simulations. Stochastic hetero-
geneity in cellular virus production increases the variance in
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Fig. 4. Stochastic heterogeneity increases deleterious mutation accumulation. Stochastic heterogeneity is parameterized by k, with k < 1
corresponding to strong heterogeneity and k — oo corresponding to the base model without heterogeneity. a) Mean number of deleterious mutations
accumulated after t =20 generations across a range of MO, for different levels of stochastic heterogeneity. Here, the number of cells is kept constant at
C=1,000, while the number of virions is increased to increase MOI. Stochastic heterogeneity has the largest effect at low MOI. At high MOI phenotypic
hiding makes selection ineffective even in the absence of heterogeneity. b) Mean number of deleterious mutations accumulated by t =20 generations
across simulations according to their predicted effective viral population size V, = V/(1 + 1/k). The collapse of the different curves on the left side of
the plot shows that V, accurately captures the effect of heterogeneity on mutation accumulation in the regime where stochasticity is strong—small

populations. In both panels, each data point shown is the average of 20 replicate simulations with error bars showing the standard error (with the
exception of the 3 largest population sizes in which show only a single simulation). Red dashed lines show the theoretical expected mutation
accumulation at selective neutrality (Ut). Blue dotted lines show the average number of mutations for an infinite viral population size at its mutation-

selection balance (U/s). Parameters are C = 1,000,U = 1,s = 0.2,y = 1.

offspring number among virions and thereby decreases the viral
effective population size, given by

Ve = V/o? (5)

where ¢? is more generally the variance in the offspring distribu-
tion (Ewens 1982). We can calculate o2 at low MOI (< 1) where al-
most all cells are infected with either 0 or 1 virion. Assuming that
the viral population is large and ignoring fitness differences be-
tween virions, the offspring distribution is a gamma-Poisson mix-
ture (i.e. a negative binomial) with a mean of 1 (because V is
constant across generations) and variance ¢? = 1 + 1/k. The vari-
ance expression stems from each infected cell producing a
gamma-distributed number of virions infecting an approximately
Poisson-distributed number of cells in the next generation. When
the number of virions is small, this somewhat overestimates the
variance and thereby underestimates V., because the Poisson ap-
proximation to the binomial offspring distribution allows 1 indi-
vidual to have more offspring than there are total virions in the
population. Even when the number of virions is large, our for-
mula also overestimates the variance if MOI is large, because the
noise in cellular output is shared among coinfecting virions.
However, this effect only becomes appreciable when the number
of cells is very small.

At low MOI, we see that our calculated viral effective popula-
tion size V, is indeed the relevant predictor for evolution (Fig. 4,
a and b): viral populations with very different census sizes V but
equal effective sizes V, accumulate mutations at the same rate.
At high MOI, however, census size is the better quantity for evo-
lution (Fig. 4, a and b). This is because the primary factor reduc-
ing the effectiveness of selection is phenotypic hiding, which
depends on the census size (through MOI) rather than the
amount of stochasticity in reproduction. Note that for the small-
est simulated population sizes and k values we still see that our

approximate formula for V, collapses the different curves, even
though our approximations are breaking down and the formula
is giving biologically unrealistic values of V, < 1.

Input dependency in viral production results in
slightly more deleterious mutation accumulation
at intermediate MOI

We next performed simulations under cellular heterogeneity
that stems from differences in viral input. At both high and low
MOlIs, there was no appreciable difference between these simu-
lations and those observed of the base model (Fig. 5). In con-
trast, at intermediate MOI we found slightly more mutations
accumulated by t=20 generations in these simulations
compared to those of the base model (Fig. 5 and Supplementary
Fig. 3). To understand these results, note that at low MOI (« 1),
almost all infected cells are infected by only a single virion, so
the input-output relationship is irrelevant (Supplementary Fig.
3a). At very high MOI (> 1), phenotypic hiding is nearly com-
plete and mutations accumulate near the neutral rate in both
models (Supplementary Fig. 3b). At intermediate MOI, however,
there is a mix of singly infected cells, where virions do not expe-
rience phenotypic hiding, and multiply infected cells, where
virions experience phenotypic hiding. With viral output scaling
linearly with viral input, the multiply infected cells contribute
more viral progeny to the next generation, thereby increasing
the representation of viral genomes that have experienced
relaxed selection.

Relaxed selection under phenotypic hiding is
robust to the form of the fitness function

Above, we assume that the cellular fitness at gene iis determined
by the average fitness of the infecting virions at the gene
[Equation (2)]; here, we consider alternative models. If we think of
the virions infecting a cell as being analogous to the homologous
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Fig. 5. Mean number of deleterious mutations accumulated across a
range of MOIs. Here, the number of cells is kept constant at C = 1,000 and
the number of virions is increased to increase MOL Input dependency
increases the rate of deleterious mutation accumulation only at
intermediate MOIs, and only slightly at those MOIs. Parameters are
U=1,5=0.2,and y=1. Each data point shown is the average across

20 replicate simulations with error bars showing the standard error. Red
dashed lines show the theoretical expectation of mutation accumulation
at selective neutrality (Ut). Blue dotted lines show the expectation of
mutation accumulation for an infinite viral population size at its
mutation-selection balance (U/s).

chromosomes of a polyploid individual, our model above
assumes that there is no “dominance.” Here, we consider the 2
limiting possibilities of completely “recessive” or completely
“dominant” deleterious mutations, in which the overall fitness of
a gene is equal to the fitness of the fittest or least-fit infecting
copy of the gene, respectively.

Our qualitative results on the effects of phenotypic hiding are
robust to the form of the fitness function (Fig. 6). At low MOI, co-
infection is rare, so the alternative fitness functions necessarily
produce results that are essentially identical to the base case
(Fig. 6, a and b, MOI « 1; Supplementary Figs. 4 and 5). At very
high MOI, simulations assuming either recessive or dominant
mutations both undergo phenotypic hiding and accumulate at
nearly the neutral rate, as in the base case (Fig. 6, a and b, MOI
> 1). At intermediate MOI, the primary quantitative difference
appears to be that the reduced selection on recessive mutations
allows them to accumulate more rapidly (Fig. 6, a and b, MOI ~1).
Interestingly, selection against dominant mutations is also less
effective than in the base case for somewhat large MOI ~30. The
different fitness functions also do not change the qualitative ef-
fect of stochastic heterogeneity in increasing mutation accumu-
lation (Supplementary Figs. 4 and 5).

While the qualitative patterns of mutation accumulation are
unchanged, the fitness function can have a large effect on the
distribution of mutations within the population. For recessive
mutations, the distribution of the number of mutations across
virions is more prone to transient bimodality, with 1 cluster of
high-fitness virions and another of low-fitness ones that rely on
coinfection to reproduce themselves (see Fig. 6¢ for an example).
We think that transient bimodality occurs because phenotypic
hiding allows highly loaded individuals to cheat and occasionally
rise to high frequencies. Simulations where deleterious muta-
tions are recessive are more likely to allow this phenomenon be-
cause the least-fit individuals are hidden from selective forces
when they coinfect with individuals near the most-fit peak of the
distribution of mutations. However, these dynamics are not the
focus of the present work, as more investigation of these bimodal

events requires a deeper analysis at longer time scales across a
range of MOI.

Discussion

Here, we consider how cellular coinfection in simulated viral pop-
ulations impacts deleterious mutation accumulation using an in
silico simulation model. Using our model, we were able to reca-
pitulate previous results of relaxed selection under regimes of
phenotypic hiding (Wilke and Novella 2003; Froissart et al. 2004;
Novella et al. 2004). We then extended these findings by showing
that heterogeneities experienced by viral populations, including
cellular heterogeneity and differences in production of virions
due to variation in number of infecting viral particles, can in-
crease the rates of deleterious mutation accumulation.
Reassortment reduces the rate of deleterious mutation accu-
mulation by allowing the re-creation of high-fitness viral geno-
types through assembly of gene segments that each contain only
a small number of deleterious mutations (Turner 2003). However,
our simulations indicate that phenotypic hiding can drastically
reduce this reassortment-derived benefit of segmented genomes
(Fig. 3c). We show that intermediate levels of coinfection (MOI
~0.3) are optimal for segmented viral populations since they al-
low sex to occur frequently enough to reduce mutation accumu-
lation without significant levels of phenotypic hiding. While we
focused on a genetic architecture based on influenza virus and
therefore did not incorporate recombination into our model, we
expect that recombination would give the same qualitative
results as those we report for reassortment. Our parameteriza-
tion of mutation rate (U= 1 per genome per viral generation) was
also loosely based on influenza virus (Pauly et al. 2017). Double-
stranded and DNA viruses tend to have lower mutation rates
than single-stranded RNA viruses such as influenza viruses (Peck
and Lauring 2018), such that overall we expect deleterious muta-
tions to accumulate less rapidly in populations of these viruses.
The 2 primary findings from our simulation study are that del-
eterious mutations accumulate rapidly in viral populations at
high MOI when phenotypic hiding relaxes the efficacy of purify-
ing selection and that fitness-independent heterogeneities in vi-
ral output from infected cells exacerbates rates of deleterious
mutation accumulation. Both of these predictions can be tested
through experimentation. To mirror our simulation design, these
experiments would ideally maintain constant viral population
sizes between generations. This can be done, for example, in se-
rial transfer experiments by implementing single-cycle replica-
tion conditions within each dish and transferring the same
amount of infectious virus at each sequential transfer (e.g. Chao
et al. 1992; Clarke et al. 1993). Quantifying deleterious mutation
accumulation following a given number of transfers can be done
using plaque assays. Deep sequencing of viral populations can
also be used to quantity deleterious mutation accumulation un-
der the assumption that all nonsynonymous variation observed
is deleterious. To explicitly test our prediction that stochastic het-
erogeneity increases the rate of deleterious mutation accumula-
tion, cell lines differing in their permissiveness to infection could
potentially be combined to increase the extent of cellular hetero-
geneity. To explicitly test our prediction that input dependency
increases the rate of deleterious mutation accumulation at inter-
mediate MOI (but not at low or high MOI), different virus strains
could potentially be used, or cell lines modified to carry viral
genes that would reduce the existing extent of input dependency
(Phipps et al. 2020; Martin et al. 2020). While we used a positive lin-
ear relationship in our extension of the base model, exponential,
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Fig. 6. Patterns of deleterious mutation accumulation under different cellular fitness functions. a) Mean number of deleterious mutations accumulated
across a range of MOIs, for different fitness functions considered. Here, the number of virions is kept constant at V=1,000 and the number of cells is
decreased to increase MOIL. b) Mean number of deleterious mutations accumulated across a range of MOIs, for different fitness functions considered.
Here, the number of cells is kept constant at C=1,000 and the number of virions is increased to increase MOL In (a) and (b), gray lines show results
from the base model. Green lines show results from the model implementing the recessive mutation fitness function. Pink lines show results from the
model implementing the dominant mutation fitness function. Each data point in (a) and (b) is the average across 20 replicate simulations with error
bars showing the standard error. Parameters are U= 1 and s =0.2. Red dashed lines show the theoretical expectation of mutation accumulation at
selective neutrality (Ut). Blue dotted lines show the expected number of mutations for an infinite viral population size at its mutation-selection balance
(U/s). c) Distributions of numbers of mutations per virion from a single time point of a simulation with V=1,668 and C = 1,000 for each model. The
recessive mutations have a bimodal distribution, with individuals tending to either have a low load or a very high load.

saturating, and negative linear relationships may be observed.
Experimentalists would need to make this consideration if direct
comparisons of deleterious mutation accumulation will be made
between our model predictions and empirical results.

To better understand the effects of phenotypic hiding and het-
erogeneities on patterns of deleterious mutation accumulation in
viral populations, we have kept our simulation models highly
simplified. While facilitating understanding, these simplifications
make our simulations less like those of natural viral infections.
Of particular note are 2 key features of natural infections that we
do not incorporate into our models but that likely impact viral
evolutionary dynamics. The first is that many viral infections
(particularly respiratory ones) exhibit within-host spatial struc-
ture (reviewed in Gallagher et al. 2018). This could result in high
MOI hotspots, increasing the potential for both phenotypic hiding
and, in segmented viruses, reassortment. Other regions of infec-
tion could instead maintain lower MOIs, allowing purifying selec-
tion to occur more readily as long as viral populations in those
regions are sufficiently large. Beyond impacting MOI, spatial
structure will create correlations in viral fitness across space.
This is because viral progeny are more likely to infect nearby
cells, resulting in a patchy mosaic of viral fitnesses across space.
The result of this patchy mosaic means that virions with similar
numbers of deleterious mutations are more likely to coinfect a
cell. This would reduce the extent to which phenotypic hiding
can relax selection on a viral population. It would also reduce the

extent to which reassortment could re-create high-fitness viral
genotypes. The extent to which spatial structure in natural infec-
tions will dull the predicted impacts of cellular coinfection that
we put forward here will depend on the extent of spatial struc-
ture present in the natural infection, as well as other factors such
as cellular MOI that depend on viral replication dynamics.

The second key feature of natural infections that we do not in-
corporate into our models but that likely impacts viral evolution-
ary dynamics is the dramatic change in viral population sizes
over the course of a natural acute infection. While our model
assumes a constant viral population size, viral populations in
natural infections often expand from a small founding popula-
tion, reach population sizes in the millions, and then decline
again until the host immune response clears the viral infection.
Population expansion is known to increase the number of segre-
gating deleterious mutations in a population but also decreases
the per-individual number of deleterious mutations (Gazave et al.
2013). While we have not implemented simulations with variable
viral population sizes between generations, we can use our exist-
ing findings to anticipate the effects these changes in viral popu-
lation sizes would have on the accumulation of deleterious
mutations. Based on findings from our base model (Fig. 2¢), if a
viral population was to grow in a limited cell population, it would
experience 3 stages. First, a small founding population size would
initially result in a low MOI, such that selection would be at
the individual-level and deleterious mutations that would
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accumulate would do so as a result of genetic drift rather than
phenotypic hiding. Then, selection would become more effec-
tive as the viral population expanded up until intermediate
MOL. Finally, at large population sizes, cellular MOI would be
high and the population would thus experience high levels of
phenotypic hiding, thus relaxing purifying selection. As the viral
population declined, depending on target cell availability, high
MOIs might still be retained, maintaining phenotypic hiding as
the dominant driver of deleterious mutation accumulation.
These predictions, however, are impacted by the extent of spa-
tial structure and patterns of target cell availability throughout
infection. For example, if a viral population was to continue to
colonize new tissues as it grew, MOIs could remain roughly con-
stant, such that patterns and drivers of deleterious mutation
accumulation may not appreciably change throughout an infec-
tion.

Beyond our models’ simplifying assumptions of a constant vi-
ral population size over generations and free mixing of virions,
our models also assume that the fitness effects of deleterious
mutations are independent of one another. One possible genetic
extension of our model would be to include epistasis among
mutations. Positive epistasis would result in additional muta-
tions accumulating because the fitness effect of adding a new
mutation decreases with each subsequent mutation. Negative
epistasis would have the opposite effect: selection would be more
strict and thus fewer mutations would accumulate. However,
neither form of epistasis should have much effect on mutation
accumulation at high MOI where phenotypic hiding renders
mutations effectively neutral.

Phenotypic hiding can be seen as an example of social interac-
tions between viruses at the intracellular level. The emerging
field of “sociovirology” examines how such interactions between
viruses, including during cellular coinfection, can have an impact
on the evolution of viral populations (Vignuzzi et al. 2006; Andino
and Domingo 2015; Borderia et al. 2015; Diaz-Munoz et al. 2017,
Sanjudn 2017; Aguilera and Pfeiffer 2019). The importance of co-
infection in viral evolution has been demonstrated empirically
(Chao et al. 1997; Turner et al. 1999; Wilke and Novella 2003;
Froissart et al. 2004). Specifically, cellular MOI depends on viral
traits such as aggregation via collective infectious units (reviewed
in Sanjudn 2017), while other factors such as superinfection ex-
clusion limit coinfection (Sun and Brooke 2018). Some of the
other modern work in the field also highlights the role of hetero-
geneity (Andreu-Moreno and Sanjudn 2018; Sun and Brooke
2018). However, while much of sociovirology focuses on positive
selection, our work shows that interactions among virions also
have large effects on the ability of purifying selection to shape
the evolution of viral populations.

Data availability

The code used to produce the data underlying this article was writ-
ten and implemented in MATLAB R2020a and is available on
GitHub at https://github.com/allmanbrent/coinfection_heterogene
ity. Visualization was performed using R version 4.0.1.
Supplemental material is available at GENETICS online.
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