
Citation: Li, Z.; Huang, X.; Shi, Y.;

Zou, X.; Li, Z.; Dai, Z. Identification

of MiRNA–Disease Associations

Based on Information of

Multi-Module and Meta-Path.

Molecules 2022, 27, 4443. https://

doi.org/10.3390/molecules27144443

Academic Editors: Ruoxu Gu,

Zunnan Huang and Fengxu Wu

Received: 17 May 2022

Accepted: 8 July 2022

Published: 11 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Identification of MiRNA–Disease Associations Based on
Information of Multi-Module and Meta-Path
Zihao Li 1, Xing Huang 1, Yakun Shi 1, Xiaoyong Zou 2,*, Zhanchao Li 3,* and Zong Dai 1,*

1 School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China;
lizh377@mail2.sysu.edu.cn (Z.L.); huangx48@mail2.sysu.edu.cn (X.H.); shiyk6@mail2.sysu.edu.cn (Y.S.)

2 School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
3 School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University,

Guangzhou 510006, China
* Correspondence: ceszxy@mail.sysu.edu.cn (X.Z.); zhanchao8052@gdpu.edu.cn (Z.L.);

daizong@mail.sysu.edu.cn (Z.D.)

Abstract: Cumulative research reveals that microRNAs (miRNAs) are involved in many critical
biological processes including cell proliferation, differentiation and apoptosis. It is of great signif-
icance to figure out the associations between miRNAs and human diseases that are the basis for
finding biomarkers for diagnosis and targets for treatment. To overcome the time-consuming and
labor-intensive problems faced by traditional experiments, a computational method was developed
to identify potential associations between miRNAs and diseases based on the graph attention net-
work (GAT) with different meta-path mode and support vector (SVM). Firstly, we constructed a
multi-module heterogeneous network based on the meta-path and learned the latent features of
different modules by GAT. Secondly, we found the average of the latent features with weight to obtain
a final node representation. Finally, we characterized miRNA–disease-association pairs with the node
representation and trained an SVM to recognize potential associations. Based on the five-fold cross-
validation and benchmark datasets, the proposed method achieved an area under the precision–recall
curve (AUPR) of 0.9379 and an area under the receiver–operating characteristic curve (AUC) of 0.9472.
The results demonstrate that our method has an outstanding practical application performance and
can provide a reference for the discovery of new biomarkers and therapeutic targets.

Keywords: MiRNA–disease association; graph neural network; meta-path

1. Introduction

MicroRNA (miRNA), with a length between 18 and 24 nucleotides, is one of the types
of non-coding RNAs in cells. Previously, miRNA was considered as a useless clip of human
gene and even once called ‘junk gene’ because it could not encode protein [1]. However,
more and more research studies show that miRNA is able to regulate the gene expression
affecting some essential biological processes, such as proliferation, division, growth and
apoptosis of the cell [2–4]. It commonly binds with messenger RNA (mRNA) at the three
prime untranslated region (3′UTR) to achieve the transcription repression or degradation
of the mRNA target [5]. Therefore, a high or low level of miRNA can lead to chaotic protein
synthesis, which may destroy normal metabolism and cause dysfunction, further inviting
diseases [6]. In addition, some studies have also shown that miRNA serving as an epigenetic
regulator of gene expression goes hand in hand with human diseases [7–10]. Therefore,
to identify the association between miRNAs and diseases is helpful for understanding
the pathogenesis of disease. Moreover, miRNA can serve as a promising biomarker for
diagnosis or a target for treatment [11]. Nevertheless, traditional biological experiments,
limited by high cost, and being laborious and time consuming, are prone to failure to
find all the relations between miRNA and disease. With the development of database
and biotechnology, the massive accumulation of biological data enables researchers to
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extract potential information and further adopt it to identify miRNA–disease association
(MDA). Protein is an essential component of all cells and tissues in the body. Protein-related
information has been utilized in plenty of bioinformatics studies, such as protein interaction
and drug–protein interaction [12–14].

Up to now, a large number of computational methods have been developed to rec-
ognize MDA. These methods, roughly classified into three categories of similarity-based
methods, network-based methods and machine learning based methods, are all based on
the hypothesis that miRNAs with similar function tend to be associated with diseases with
similar phenotypes. For similarity-based methods, throughout the development of the
computational method for MDA, Jiang et al. [15] used a computation method instead of a
traditional experiment to find unknown MDA. The work made use of the genes related
to miRNA and hypergeometric distributions to calculate the miRNA similarity score and
find the perspective neighbor miRNA by ranking the score; however, it only focused on the
direct neighbor miRNA and neglected the undirect ones. Chen et al. [16] tried to integrate
various heterogeneous biological datasets and calculate the within-score and between-score
to rank the indefinite MDA. Pasquier et al. [17] utilized diverse information to construct
miRNA and disease vector and find MDA by vector similarity. The network-based method
predicts MDA by implementing random walk and other propagation algorithms in miRNA
and disease network. Chen et al. [18] constructed the miRNA functional similarity network
(MFSN) and implemented the random walk algorithm on it to obtain the score of candidate
miRNAs. Xuan et al. [19] divided the miRNA into two categories, labeled and unlabeled,
and also carried out a random walk on the MFSN, which enabled the prior information to
improve the current information. However, these methods can only be used for miRNAs
that have similar function to other miRNAs. To extend the prediction, some researchers
have integrated a diverse biological dataset. You et al. [20] constructed a heterogeneous
graph and developed a path-based method adopting a depth-first search algorithm to
surmise MDA. Chen et al. [21] designed a method which implements random walk on the
miRNA–miRNA and disease–disease network constructed by Laplacian score of graphs,
respectively. The development of machine learning and deep learning breathes new life into
the fields of healthcare and bioinformatics, such as disease prediction, sleep monitoring and
medical image processing [22–24]. In addition, many methods based on machine learning
and deep learning have been proposed to distinguish associations between miRNA and dis-
eases. Jiang et al. [25] employed the miRNA and disease similarity score as a feature vector
and randomly selected some unobserved MDA as negative samples to classify by support
vector machine. Zhao et al. [26] attempted to integrate several decision trees to obtain the
score with a respective weight, forming a strong classifier, which achieved an adaptive
boosting improvement for prediction. Li et al. [27] utilized a graph convolution network
to learn the latent feature of miRNA and disease. Subsequently, they acquired MDA by
neural inductive matrix completion. Xuan et al. [28] constructed a dual convolutional
neural network framework to learn the global and local representation for the subsequent
prediction. Ji et al. [29] gained the miRNA and disease representation, respectively, by
minimizing the squared losses between the value of cosine distance and the score of the
function similarity, and then adopted the auto encoder to predict the probability of MDA.

Recently, graph neural network, depending on its ability to fuse the feature of node
and graph topological structure, has been introduced into bioinformatics [13,30–33]. What
is more, the introduction of meta-path is able to enrich the semantic information of the
network and provide the extra structure information for uncovering the complexity of the
network. As mentioned above, a protein whose chaos in synthesis may cause diseases plays
an essential role in life activity as well as being regulated by miRNA. Thus, the integration
of protein, miRNA and disease information may be able to significantly improve the
prediction performance.

Inspired by graph neural networks such as graph convolutional network (GCN) [34],
graph attention network (GAT) [35] and heterogenous graph attention network [36], a novel
method is proposed for predicting miRNA–disease association. In the current approach,
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multi-module meta-path along with graph attention network is employed to extract the
network topology features of miRNAs and diseases, and support vector machine (SVM) is
used as classifier to identify the potential MDA (MMGAN-SVM). Finally, five-fold cross-
validation is conducted to evaluate the prediction performance and the case studies with
lymphoma, liver neoplasms and lung neoplasms are performed to demonstrate the practical
application performance.

Overall, the main contributions of this work are as follows:

1. Protein information and meta-path strategy were utilized to construct the multi-
module, which can enrich the information of miRNAs and diseases.

2. The topological and semantic information can be better learned by Graph attention
network and attention mechanism.

3. A reliable negative sample selection strategy was utilized to overcome the imbalance
between positive and negative samples.

2. Results
2.1. Dimension Optimization of Node Representation

The node representation implies the complex information in latent feature space, and
its dimensionality affects the predictive performance of the model. A low number of
dimensions may lead to the loss of information, while a high number of dimensions will
lead to the introduction of noise and time consuming for calculation. Thus, discovery of the
optimized dimension of the node representation is attempted based on the 5-CV through
changing dimension in the range of (32, 64, 128, 256, 512). The experiment is repeated
10 times for each dimension. Here, Acc, Roc and Aupr are utilized to evaluate the effect of
dimension on model performance and statistical average results are shown in Figure 1. The
Acc of each dimension is 0.8591, 0.8628, 0.8719, 0.8751 and 0.8700 and its standard deviation
(std) is 0.0030, 0.0038, 0.0033, 0.0023 and 0.0040. The Roc of each dimension is 0.9178, 0.9251,
0.9392, 0.9472 and 0.9448 and its std is 0.0031, 0.0054, 0.0030, 0.0016 and 0.0034. The Aupr
of each dimension is 0.8965, 0.9058, 0.9180, 0.9379 and 0.9401 and its std is 0.0052, 0.0054,
0.0063, 0.0042 and 0.0043. We can conclude that higher dimensionality tends to be better
performance. However, a high feature vector can lead to a huge computational burden and
long model training time. Therefore, the optimal feature dimension for node representation
is set to 256. The learning curve of our model is shown in Figure 2 and the result illustrates
that the model has been trained in an optimal state.

2.2. Classifier Optimization

Here, deep neural networks (DNNs), such as multi-layer perceptron (MLP), convo-
lutional neural networks (CNN) and the traditional machine learning method, including
SVM and random forest (RF), are utilized to construct a model. The 5-CV is conducted with
a different model 10 times in the same condition as well as with the optimal parameter,
and the result is shown in the Figures 3–5 and in Table 1. In the 5-CV experiment, SVM
shows the best performance in Auc and Aupr. Although the evaluation measures of SVM
in 10 repetitive experiments are a little better than those of other models, SVM performs
a lower std than other models. In conclusion, SVM shows the better performance in the
majority of evaluation measures.

Table 1. The performance comparison of different classifier.

Acc Auc Aupr Sens Spec Prec F1 Mcc

MLP 0.8661 0.9460 0.9420 0.8924 0.8398 0.8504 0.8693 0.7364
CNN 0.8689 0.9458 0.9411 0.8984 0.8393 0.8490 0.8725 0.7399

RF 0.8639 0.9398 0.9327 0.8776 0.8502 0.8542 0.8657 0.7281
SVM 0.8752 0.9470 0.9374 0.9156 0.83491 0.8473 0.8801 0.7531
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Figure 1. The main performance under different dimensions.

Figure 2. The learning curve of our method. (a) Training and validation accuracy graph; (b) Training
and validation error graph.
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Figure 3. ROC curves for different classifier.

Figure 4. PR curves for different classifier.
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Figure 5. The performance comparison of different classifier.

2.3. Comparison with Other Methods

To further demonstrate the performance of the current method, a comparison is
performed with some state of art methods including PBMDA [20], WBNPMD [37], NIM-
CGCN [27], DNRLMF-MDA [38] and VGAE-MDA [39]. PBMDA is a path-based method
which aims at eliminating weak interactions. WBNPMD predicted the MDA by the bipartite
network projection with weight. NIMCGCN is a matrix completion-based method which
learns the feature by GCN. DNRLMF-MDA is a matrix factorization-based method and
it utilized dynamic neighborhood regularization to improve performance. VGAE-MDA
adopted variational graph auto-encoders to integrate the score from well-trained two
subgraphs. Based on the benchmark dataset, the best results of 5-CV from our model are
shown in Figures 6 and 7. The average of Acc, Roc, Aupr and F1 measured ten times in
the experiment are 0.8753, 0.9472, 0.9374 and 0.8801 with the std 0.0036, 0.0015, 0.0030
and 0.0034, respectively. The five-fold cross-validation results of the existing methods are
shown in Figure 8. The AUCs of PBMDA, WBNPMD, NIMCGCN, DNRLMF-MDA and
VGAE-MDA are 0.9172, 0.9173, 0.9291, 0.9357 and 0.9394, respectively. In our method, the
features of miRNAs and diseases are not only enriched by extra information of the protein
but also integrated with the structure semantic information of MDA. In addition, SVM can
show great performances in nonlinear classification tasks. Due to these strategies, the result
also illustrated correspondingly that our method presented an outstanding performance.
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Figure 6. The ROC curves of our method.

Figure 7. The PR curves of our method.
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Figure 8. Performance comparison of different methods in 5-CV.

2.4. Proportion of Negative Sample

In fact, the number of negative samples is much larger than the number of positive
samples. Therefore, the impact of the ratio of positive and negative samples on the per-
formance of the model is further investigated. A negative sample with different ratios
of 1:1, 1:2, 1:3, 1:4 and 1:5 is randomly selected to conduct the 5-CV, and the result is
shown in Figure 9 and listed in Table 2. As we can see, some evaluation measures are
affected significantly by the unbalance between positive and negative samples, because
these evaluation measures are sensitive to the ratio between positive and negative samples.
With the increase in negative samples, the value of Aupr, Sens, F1 and Mcc slowly descends.
A greater number of negative samples involved in the training procedure makes it easier
for the model to identify the negative samples. Thus, the value of Acc increases along with
the growth of ratios. The values of Auc and Aupr fluctuate within a controllable range.
However, aiming at digging potential MDA, it is necessary for the model to obtain high
sensitivity. Thus, to display the best performance of our model, the proportion of negative
and positive samples is set as 1:1.

Table 2. Performance comparison of different ratio of positive and negative samples.

Ratio Acc Auc Aupr Sens Spec Prec F1 Mcc

1:1 0.8753 0.9470 0.9375 0.9157 0.8349 0.8473 0.8801 0.7531
1:2 0.8790 0.9481 0.8989 0.8168 0.9101 0.8199 0.8182 0.7277
1:3 0.8901 0.9460 0.8634 0.7210 0.9464 0.8177 0.7662 0.6971
1:4 0.9002 0.9422 0.8321 0.6461 0.9637 0.8167 0.7213 0.6684
1:5 0.9098 0.9325 0.7984 0.5898 0.9738 0.8186 0.6854 0.6461
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Figure 9. Performance comparison of different ratio of positive and negative samples.

2.5. Reliability of Negative Sample

At present, there is no database dedicated to collecting miRNA–disease non-association
pairs because these pairs cannot provide more information to promote the mechanisms’
research and drug discovery. To overcome this problem, a random matching method is
utilized to construct negative samples; however, it may contain false negative samples.
Therefore, the influence of negative sample reliability on model performance is further
studied. At first, we calculated the mean values of all dimensions for all the positive
samples to form a cluster vector. Then, we obtained the average Euclidean distance (AED)
by calculating Euclidean distance between each negative sample and the cluster vector.
Depending on different threshold of AED, the original negative sample set was able to be
refined and shrunk. The AED threshold was set in the range of (0.4AED, 0.5AED, 0.6AED,
0.7AED, 0.8AED, 0.9AED 1.0AED) and the negative samples whose Euclidean distance was
lower than the threshold were removed to obtain different negative sample datasets. Then,
negative sample with the same ratios as positive samples were randomly selected from the
dataset for the training set in each of the threshold experiments. The results of different
threshold are shown in Figure 10. The values of Acc, Auc, Aupr, Sens, Spec, Precision,
F1 and Mcc are located in the range of (0.8798–0.9755), (0.9506–0.9932), (0.9423–0.9975),
(0.9148–0.9713), (0.8448–0.9798), (0.8551–0.9795), (0.7616–0.9510) and (0.8839–0.9753), re-
spectively. In addition, with the increase in threshold, the selected negative sample is
further away from the cluster vector, and there is a degree of improvement for all the evalu-
ation measure. Thus, the strategy of reliable negative sample selection makes a positive
difference on the model.
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Figure 10. Performance comparison of different thresholds of negative samples.

2.6. Case Studies

To illustrate the practical application performance of our model, the case studies are
implemented over the three common human diseases: liver neoplasm, lung neoplasm
and leukemia. Specifically, the MDA information of each case study is erased during the
model training and the prediction score is acquired for all the miRNA candidates. Here,
the ratio of positive and negative samples is set as 1:1 and the strategy of reliable negative
samples selection is utilized in training procedure. According to the prediction scores,
these identified potential disease-related miRNAs are ranked in descending order. For
the three diseases, the recognized top 30 miRNAs and the corresponding scores are listed
in Tables 3–5, respectively. Meanwhile, these results are validated by the databases of
HMDD V3.0 and dbDEMC. The latter is a database recording the expression profiles of
cancer-related miRNA and the published literature [40].

Table 3. Top-30 Predicted Associations of Liver Neoplasms.

Rank Score miRNA Evidence

1 0.9557 hsa-miR-21 HMDD3.0, dbDEMC, PMID: 31037150
2 0.9540 hsa-miR-155 dbDEMC, PMID: 29565484
3 0.9477 hsa-miR-146a HMDD3.0, dbDEMC, PMID: 29133238
4 0.9345 hsa-miR-29a HMDD3.0, dbDEMC, PMID: 33891266
5 0.9326 hsa-miR-16 HMDD3.0, dbDEMC, PMID: 30657555
6 0.9323 hsa-miR-29b dbDEMC, PMID: 34184070
7 0.9309 hsa-miR-125b HMDD3.0 dbDEMC, PMID: 32609900
8 0.9301 hsa-miR-15a dbDEMC, PMID: 31099097
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Table 3. Cont.

Rank Score miRNA Evidence

9 0.9266 hsa-miR-1 dbDEMC, PMID: 31846694
10 0.9242 hsa-miR-221 HMDD3.0, dbDEMC, PMID: 31069760
11 0.9220 hsa-miR-34a HMDD3.0, dbDEMC, PMID: 32778238
12 0.9203 hsa-miR-17 dbDEMC, PMID: 32206115
13 0.9195 hsa-miR-20a dbDEMC, PMID: 32206115
14 0.9184 hsa-miR-199a HMDD3.0, dbDEMC, PMID: 31144384
15 0.9183 hsa-miR-133a dbDEMC, PMID: 30086463
16 0.9150 hsa-miR-19b dbDEMC, PMID: 29889802
17 0.9147 hsa-miR-29c HMDD3.0 dbDEMC, PMID: 30718452
18 0.9141 hsa-miR-223 HMDD3.0, dbDEMC, PMID: 32233593
19 0.9139 hsa-miR-222 HMDD3.0, dbDEMC, PMID: 34273068
20 0.9101 hsa-miR-150 dbDEMC, PMID: 25549355
21 0.9043 hsa-miR-92a dbDEMC, PMID: 32587378
22 0.9040 hsa-miR-18a dbDEMC, PMID: 34221105
23 0.9015 hsa-miR-145 dbDEMC, PMID: 29658584
24 0.9011 hsa-miR-106b dbDEMC, PMID: 29975452
25 0.9009 hsa-miR-181a dbDEMC, PMID: 25058462
26 0.9006 hsa-miR-19a dbDEMC, PMID: 27012708
27 0.8999 hsa-miR-210 HMDD3.0, dbDEMC, PMID: 27666683
28 0.8978 hsa-miR-31 HMDD3.0, dbDEMC, PMID: 25797269
29 0.8957 hsa-miR-122 HMDD3.0, dbDEMC, PMID: 25537773
30 0.8941 hsa-miR-142 HMDD3.0, dbDEMC, PMID: 30092578

Table 4. Top-30 Predicted Associations of Lung Neoplasms.

Rank Score miRNA Evidence

1 0.9690 hsa-miR-21 HMDD3.0, dbDEMC, PMID: 30736829
2 0.9675 hsa-miR-155 HMDD3.0, dbDEMC, PMID:32447486
3 0.9673 hsa-miR-122 HMDD3.0, dbDEMC, PMID: 26604787
4 0.9672 hsa-miR-15a HMDD3.0, dbDEMC, PMID: 33059020
5 0.9671 hsa-miR-29a HMDD3.0, dbDEMC, PMID: 33250420
6 0.9670 hsa-miR-16 HMDD3.0, dbDEMC, PMID: 31379227
7 0.9660 hsa-miR-29b HMDD3.0, dbDEMC, PMID: 31813135
8 0.9647 hsa-miR-133a HMDD3.0, dbDEMC, PMID: 33074595
9 0.9630 hsa-miR-1 HMDD3.0, dbDEMC, PMID: 34139980
10 0.9626 hsa-miR-15b dbDEMC, PMID: 32220063
11 0.9617 hsa-miR-199a HMDD3.0, dbDEMC, PMID: 28363780
12 0.9608 hsa-miR-146a HMDD3.0, dbDEMC, PMID: 29127520
13 0.9602 hsa-miR-29c HMDD3.0, dbDEMC, PMID: 29512752
14 0.9598 hsa-miR-26a HMDD3.0, dbDEMC, PMID: 33407724
15 0.9588 hsa-miR-126 HMDD3.0, dbDEMC, PMID: 34107168
16 0.9586 hsa-miR-192 HMDD3.0, dbDEMC, PMID: 29571988
17 0.9581 hsa-miR-30b HMDD3.0, dbDEMC, PMID: 33779882
18 0.9578 hsa-miR-106b dbDEMC, PMID: 34351868
19 0.9575 hsa-miR-19b HMDD3.0, dbDEMC, PMID: 29455644
20 0.9569 hsa-miR-150 HMDD3.0, dbDEMC, PMID: 24456795
21 0.9575 hsa-miR-23a HMDD3.0, dbDEMC, PMID: 28436951
22 0.9567 hsa-miR-196a HMDD3.0, dbDEMC, PMID: 33775710
23 0.9561 hsa-miR-19a HMDD3.0, dbDEMC, PMID: 28364280
24 0.9558 hsa-miR-23b dbDEMC, PMID: 32495614
25 0.9556 hsa-miR-206 HMDD3.0, dbDEMC, PMID: 26919096
26 0.9555 hsa-miR-26b HMDD3.0, dbDEMC, PMID: 26744864
27 0.9552 hsa-miR-223 HMDD3.0, dbDEMC, PMID: 29615147
28 0.9547 hsa-miR-195 HMDD3.0, dbDEMC, PMID: 32406336
29 0.9544 hsa-miR-222 HMDD3.0, dbDEMC, PMID: 32588752
30 0.9539 hsa-miR-34a HMDD3.0, dbDEMC, PMID: 30700696
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Table 5. Top 30 Predicted Associations of Leukemia.

Rank Score miRNA Evidence

1 0.9819 hsa-miR-21 HMDD3.0, dbDEMC, PMID: 32911844
2 0.9804 hsa-miR-155 HMDD3.0, dbDEMC, PMID: 33357126
3 0.9723 hsa-miR-146a HMDD3.0, dbDEMC, PMID: 32798394
4 0.9643 hsa-miR-17 HMDD3.0, dbDEMC, PMID: 35536524
5 0.9632 hsa-miR-29a HMDD3.0, dbDEMC, PMID: 31870103
6 0.9631 hsa-miR-125b HMDD3.0, dbDEMC, PMID: 27637078
7 0.9630 hsa-miR-34a HMDD3.0, dbDEMC, PMID: 27424989
8 0.9629 hsa-miR-20a HMDD3.0, dbDEMC, PMID: 34587164
9 0.9622 hsa-miR-16 HMDD3.0, dbDEMC, PMID: 28599250
10 0.9606 hsa-miR-221 HMDD3.0, dbDEMC, PMID: 29172404
11 0.9605 hsa-miR-29b dbDEMC, PMID: 29435107
12 0.9568 hsa-miR-92a HMDD3.0, dbDEMC, PMID: 31870103
13 0.9556 hsa-miR-145 HMDD3.0, dbDEMC, PMID: 32538049
14 0.9552 hsa-miR-126 HMDD3.0, dbDEMC, PMID: 34686664
15 0.9546 hsa-miR-1 dbDEMC, PMID: 28042875
16 0.9543 hsa-miR-15a HMDD3.0, dbDEMC, PMID: 24026141
17 0.9532 hsa-miR-19b HMDD3.0, dbDEMC, PMID: 29032147
18 0.9520 hsa-miR-18a HMDD3.0, dbDEMC, PMID: 32146479
19 0.9505 hsa-let-7a dbDEMC, PMID: 29398802
20 0.9489 hsa-miR-19a HMDD3.0, dbDEMC, PMID: 34895042
21 0.9473 hsa-miR-222 HMDD3.0, dbDEMC, PMID: 20203269
22 0.9463 hsa-miR-143 dbDEMC, PMID: 28890884
23 0.9454 hsa-miR-31 HMDD3.0, dbDEMC, PMID: 22511990
24 0.9453 hsa-miR-29c dbDEMC, PMID: 31333331
25 0.9445 hsa-miR-223 HMDD3.0, dbDEMC, PMID: 27900032
26 0.9443 hsa-miR-133a dbDEMC, PMID: 32647415
27 0.9439 hsa-miR-199a HMDD3.0, dbDEMC, PMID: 31636666
28 0.9409 hsa-let-7b HMDD3.0, dbDEMC, PMID: 33283713
29 0.9398 hsa-miR-150 HMDD3.0, dbDEMC, PMID: 27917123
30 0.9386 hsa-miR-200b PMID: 30574752

Development of liver neoplasm, which has the highest mortality rate in the East Asia
region, is contributed to by genetic and epigenetic factors [41]. There are two principal
subtype of liver cancer, hepatocellular carcinoma (HCC) and cholangiocarcinoma, and the
former is the main type happening to the case in [42]. All the top thirty miRNAs predicted
can be confirmed by HMDD V3.0 or dbDEMC. In addition, some researchers reported that
the over-expression of miR-221/222 is responsible for the multifocality of HCC, and the
over-expression if miR-155 occurs after the cancer recurrence [43,44]. All of those miRNAs
appear in the Top thirty predicted results.

Lung neoplasm is a common tumor with the highest morbidity, after breast neoplasm,
worldwide, and it can be divided into two categories: small cell lung carcinoma and non-
small cell lung carcinoma [45]. As listed in Table 4, all miRNAs can be validated by HMDD
V3.0 or dbDEMC. Fan et al. reported the expression of miR-20a and miR-15b to be evidence
to distinguish the case from healthy individuals [46]. In addition, miR-223 and miR-145 in
plasma can be considered as potential biomarkers for early diagnosis [47].

Leukemia is recognized as a progressive malignant disease and is divided into four
main types: acute leukemia, chronic leukemia, myelogenous leukemia and lymphocytic
leukemia [48]. Twenty-nine of the top thirty predicted miRNAs in Table 5 can be validated
by HMDD V3.0 or dbDEMC. Only one predicted result of miR-200b without recorded
in database; however, it is revealed to promote the cell proliferation and invasion in
leukemia [49]. MiR-200b acts as an oncogenic regulator in human lung cancer. The
proliferation, invasion and apoptosis of leukemia cells can be controlled by miR-200b
through its regulatory of NOTCH1 signaling pathway. In addition, the inactivation of
miR-155 and miR-29 contribute in leukemia and the expression decrement of miR-223 can
be used to distinguish the case from a healthy individual [50,51].
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3. Discussion

As the epigenetic controller, miRNAs are involved in gene expression and cellular
signaling pathways, which makes a difference in cell propagation, division, growth and
apoptosis leading. With these functions, miRNAs are considered to play a critical role in
the initiation and progression of human diseases as well as being the promising biomarker
or therapeutic target to help with the early diagnosis and treatments. Hence, it is mean-
ingful to discover the potential related miRNAs for a disease. In this study, a model is
proposed for feature extraction and to build a model classification. The results have been
compared with the state-of-the-art methods in 5-CV and the case studies showed that our
method has a great performance. The comparisons of our method and other methods
were performed, and advantages and drawbacks are listed in Table 6. The methods of
PBMDA and WBNPMD obtained AUC of 0.9172 and 0.9173, respectively, because nei-
ther complex network was created, nor weighted edges adopted. Construction of the
complex network contribute to enriching potential information of networks and adoption
of a weighted edges strategy brings known microRNA disease associations into sharper
focus. On the contrary, the methods of NIMCGCN, DNRLMF and VGAE-MDA with AUC
of 0.9291, 0.9357 and 0.9394 not only constructed a complex network but also adopted
diverse strategy to improve the prediction performance, such as neural inductive matrix
completion (NIMCGCN), dynamic regularized weight (DNRLMF) and variational Bayesian
inference (VGAE-MDA). Our method obtained the highest AUC of 0.9472, because the
complex network was constructed and the weighted edge of microRNA disease association
was considered among different modules. In addition, the weighted parameters can be
adaptively learned by loss function. However, the unbalance sample problem should be
investigated for all methods. The outstanding performance of our method stems from three
factors. First, the information of protein is introduced to enrich the feature of miRNAs and
diseases, and a composite module based on meta-path is constructed. Second, the latent
feature incorporating information of the node and topological structure are extracted by
node aggregation in different meta-paths and modules with an attention mechanism. Third,
SVM is able to complete the non-linear classification task well on the feature extracted. In
the future, much more information, such as miRNAs expression profiles, miRNA sequences
and drugs, will be taken into account to improve the MDAs prediction performance. In
addition, more efficient feature extraction algorithms will be a novel direction.

Table 6. The advantages and drawbacks of our method and other methods.

Method AUC Advantages Drawbacks

PBMDA 0.9172 Topological information, complex network No weighted, imbalance problem

WBNPMD 0.9173 Weighted edges No topological information,
imbalance problem

NIMCGCN 0.9291 Topological information, complex network,
neural inductive No weighted, imbalance problem

DNRLMF 0.9357 Complex network, dynamic regularized weight No topological information,
imbalance problem

VGAE-MDA 0.9394 Topological information, complex network,
variational Bayesian inference No weighted, imbalance problem

Ours 0.9472 Topological information, complex network,
adaptive weight Imbalance problem

4. Materials and Methods

The experiment-verified miRNA–disease associations were retrieved from the Human
microRNA Disease Database (HMDD) [52]. In this work, HMDD V2.0 was adopted
as the benchmark dataset with 5430 human miRNA–disease associations incorporating
495 miRNAs and 383 diseases after deduplication and normalization. For convenience,
these associations are described as an adjacent matrix A ∈ {0, 1}m × n, in which m and n
are the number of miRNAs and diseases, respectively. If an miRNA i is associated with a
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disease j, the value of Ai,j is 1, and 0 vice versa. In addition, the miRNA–protein associations
were collected from the miRTarBase database and the disease–protein associations from
Comparative Toxicogenomics Database (CTD) [53,54].

4.1. Integration Similarity Calculation and Multi-Module Construction
4.1.1. MiRNA Integration Similarity

MiRNA integration similarity was composed of miRNA functional similarity (MFS)
and Gaussian interaction profile kernel similarity [55]. The calculation of MFS was defined
according to the previous work, which was based on the assumption that the function of
two miRNAs are more similar if the number of the common disease associated with them
is greater [56,57]. The score of MFS was defined as FS(i, j), i.e., the similarity score between
miRNA i and miRNA j. In addition, to supplement the missing entries of MFS, Gaussian
interaction profile kernel similarity mGS(i, j) was adopted and defined as Equation (1):

mGS(i, j)= exp
(
−δm‖M(mi)− M

(
mj
)
‖2
)

(1)

where M(m i) and M(m j) indicate the ith and jth row of the adjacent matrix A, respectively.
δm represents the kernel bandwidth parameter, and is illustrated as Equation (2):

δm =
1
m

m

∑
i=1
‖Mi‖2 (2)

where m is the number of miRNAs. Finally, miRNA integration similarity is described as
Equation (3):

MS
(
mi, mj

)
=

{
FS(m i, mj) If there is a function similarity between mi and mj

mGS
(
mi, mj

)
otherwise

(3)

4.1.2. Disease Integration Similarity

Disease integration similarity constitutes disease semantic similarity and Gaussian
interaction profile kernel similarity. The entry of diseases in the National Library of
Medicine (http://www.ncbi.nlm.nih.gov/ (accessed on 5 November 2021)) describes the
relationship among different disease, which can be used to construct a hierarchical directed
acyclic graph (DAG). According to the definition by Wang et al. [56], semantic contribution
of a disease d is calculated as Equation (4):

DCd(i) =
{

1 if i = d
max{σ ∗ DCd( d ′)| d ′ ∈ children of d} if i 6= d

(4)

where σ is a semantic contribution decay factor, and is maintained it as the same as the
previous work that was set as 0.5 [56]. The semantic value of the disease di, DV(d i) is
defined as Equation (5):

DV(di) = ∑
k ∈ D(di)

DCdi(k) (5)

where D(di) is the node set of disease di and its ancestor. The semantic similarity score
between disease di and dj can be calculated as Equation (6):

SS
(
di, dj

)
=

∑k ∈ D(di) ∩ D(dj)

(
DCdi(k)+DCdj(k)

)
DV(di)+DV

(
dj
) (6)

http://www.ncbi.nlm.nih.gov/
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Finally, the disease semantic similarity combined with Gaussian kernel similarity is
defined as Equation (7):

DS
(
di, dj

)
=

{
SS(d i, dj) if there is a semantic similarity between di and dj

dGS
(
di, dj

)
otherwise

(7)

where dGS is the Gaussian kernel similarity of disease and defined as Equation (8), its
formulation is similar with Equation (8).

dGS(i, j)= exp
(
−δm ‖ Ds(di)− Ds

(
dj
)
‖2
)

(8)

where Ds(di) and Ds(dj) indicates the ith and jth column of the adjacent matrix A, respectively.

4.1.3. Multi Module Construction

Meta-path is explained as a path in form of P = N1
r1→ N2

r2→ . . .
rm−2→ Nm−1

rm−1→ Nm
(simplified as N1N2. . . Nm−1Nm), which illustrates that the starting node N_1 is able to
reach one of the destination nodes connected by a composite relation R = r_1 r_2..r_(m− 2)
r_(m – 1) [58]. Based on the meta-path, various significance can be received from the relation
between two of the identical type nodes. Thus, miRNA–protein association and disease–
protein association were introduced to enrich the information of the miRNA–miRNA and
disease–disease association (MMA and DDA) network. Another four association matrices
MDMA (MMA based on disease), MPMA (MMA based on protein), DMDA (DDA based
on miRNA) and DPDA (DDA based on protein) are shown in Figure 11.

Figure 11. The construction of module. MPMA and MDMA are miRNA adjacent matrices based on
proteins and diseases respectively. DPDA and DMDA are disease adjacent matrices based on proteins
and diseases respectively. MS and DS are the similarity matrices of miRNAs and diseases respectively.

Take MDMA for example, the value of MDMA(i, j) is 1 when miRNA i can reach
miRNA j through a disease d, and it is 0 vice versa. To increase the density of MDA to about
3%, the heterogeneous graph is constructed in term of multi-module as Equations (9)–(11):

G1 =

[
MS A
AT DS

]
(9)
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G2 =

[
MDMA A

AT DMDA

]
(10)

G3 =

[
MPMA A

AT DPDA

]
(11)

where the AT is the transposition matrix of A.

4.2. Information Aggregation
4.2.1. Node Feature Linear Transformation and Aggregation

The original feature of miRNA and disease had to be projected into the same latent
feature space, because their original feature represented two different feature spaces. The
latent feature of nodes could be obtained by leveraging the transformation matrix to carry
on linear transformation. Specifically, each type of node adopts a respective transformation
matrix. For the node i ∈ Nc of type c, the latent feature hi ∈ Rd′of it could be obtained by
using Equation (12):

hi= Wc · xi
c (12)

where Wc ∈ Rd′× n is the transformation matrix of type c and xi
c ∈ Rn is the original

feature of node i.
GAT was able to aggregate the information of neighboring nodes for the central node

by of assigning learnable weight, which finally obtained the node representation by fusing
the information of the network topological structure and node feature. Specifically, GAT
adopted the SoftMax function to calculate the attention score of each node, and then
continually updated the information of the central node by aggregating that of neighboring
nodes based on their respective attention score. For each graph G constructed by meta-
path, the importance eG

ij contributed by neighbor node j to central node i was defined by
Equation (13):

eG
ij = LeakyReLU

(
ωG ·

[
hi || h j

])
(13)

where ωG ∈ R2 d′ is the attention parameter vector for graph G and || represents the
concatenation operation. SoftMax function was utilized to normalize the importance of all
nodes in order to obtain the final attention score αij which was defined by Equation (14):

αG
ij = SoftMax

(
eG

ij

)
=

exp
(

eG
ij

)
∑k ∈ NG

i
exp

(
eG

ik

) (14)

where k indicates the neighbor node of i in the graph G.

4.2.2. Module Aggregation

Based on the attention score, the information of node i was able to aggregate that of its
neighbor nodes and eventually obtain the node representation zG

i of graph G and defined
as Equation (15):

zG
i = σ

 ∑
j ∈ NG

i

αG
ij · hj

 (15)

where σ(·) represents the nonlinear activation function, and sigmoid function was used in
the current study.
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For the sake of the stability and low variance, multi-head attention mechanism was
introduced to improve the learning process of attention score. Specifically, the aggregation
was repeated for K times and the formulation (15) can be revised by Equation (16):

zG
i =||Kk=1 σ

 ∑
j ∈NG

i

αG
ij · hj

 (16)

In addition, due to different meta-paths, every node obtained more than one represen-
tation in various semantic significances. To figure out which meta-path was more essential,
an attention mechanism could be also adopted among the representations obtained by
different meta-paths. We denoted that different meta-path mode as G1, G2, . . . , Gn and the
corresponding node representation as zG1

i , zG2
i , . . . , zGn

i . Then, an attention mechanism
was used to fuse and average all of the representations with their respective weight, defined
by Equations (17)–(19).

wGk =
1
|vc| ∑

i ∈ vc

λT ·tan h
(

Wc · zGk

i +ε
)

(17)

βGk
= SoftMax

(
wGk

)
=

exp
(
wGk

)
∑j ∈ {G1, G2, ..., Gn} exp

(
wGj

) (18)

zi =
{G1, G2, ..., Gn}

∑
k=1

βGk
· zGk

i (19)

where Wc ∈ RD×d′ and ε ∈ RD are the weight matrix and bias vector. vc is a set of
neighbor nodes in the same meta-path mode and λT ε RD is the attention vector of all
meta-paths for node type c. βGk

indicates the final attention score after normalizing the
importance contribution of a meta-path and z′i is the final node representation.

4.2.3. Training and Prediction

Inspired by some matrix factorization or completion method, the latent feature of
miRNA and disease was obtained by pre-training [59–62]. Specifically, the final node
representation was used to reconstruct MDA by an inner product operation and the recon-
struction error was reduced through minimizing the cross-entropy loss function defined by
Equation (20):

L
(
a, a′

)
= −

[
aloga′+(1 − a) log

(
1 − a′

)]
(20)

where a and a′ are the original MDA and reconstruction MDA, respectively.
According to minimizing the loss function, the parameter mentioned above is con-

stantly trained. When the well-trained latent feature of miRNAs and disease was acquired,
the form of the miRNA–disease pair was concatenated as the input for SVM, which is a
binary classifier with a significant accuracy and robustness in sparce and noise data. With
the kernel function, it was also able to implement the non-linear classification and cater
to the data complexity of miRNA and disease. After the prediction of SVM, the miRNA–
disease pair association score can be obtained to indicate the association probability of the
miRNA–disease pair.

4.3. Model Experiment and Evaluation

In this work, five-fold cross validation (5-CV) was utilized to evaluate the prediction
performance of the model. The known MDA was considered as the positive sample and
the stochastically selected identical amount of unobserved MDA as the negative sample.
Positive and negative samples were combined into a dataset, which was randomly divided
into five equal-sized subsets. Each subset was used as the test set in turn, and the remaining
subsets were utilized as a training set. To reduce the variance cause by randomness, the
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procedure was repeated 10 times. To evaluate the performance of the model, several
evaluation measures were taken into account, including accuracy (Acc), precision (Pre),
specificity (Spe), sensitivity (Sens, also called as recall), F1-mesure(F1), Matthews correlation
coefficient (Mcc), the areas under receiver operating characteristic (ROC) curve (AUC) and
areas under precision-recall (PR) curve (AUPR). The Acc, Pre, recall and F1 were calculated
by Equations (21)–(26):

Acc =
TP + TN

TP + TN + FP + FN
(21)

Pre =
TP

TP + FP
(22)

Spe =
TN

TP + FN
(23)

Recall(Sens) =
TP

TP + FN
(24)

F1 =
2 ∗ Pre ∗ Recall

Pre + Recall
(25)

Mcc =
TP × TN − FP × FN√

(TP + FN) × (TN + FP) × (TP + FP) × (TN + FP)
(26)

where the TP, TN, FP and FN represent the number of true positives, true negatives, false
positives and false negatives, respectively.

For the part of feature extraction, we pretrained it for 4000 epochs and employed an
Adam optimizer with a learning rate 0.001. In addition, the other hyper parameters only
affected the dimension of node representation, and the dimension was set in the range of
(32, 64, 128, 256, 512). For the part of prediction with SVM, the penalty factor C was set as
150 and the radial basis function was used as a kernel function. In addition, the architecture
and parameters of the model are listed in Table 7.

Table 7. The framework and parameters of model.

Parameters

GAT

Input (1, 857, 857)
Node attention layer (1, 857, 32) × 8, activation function

Concatenate layer (1, 857, 256)
Module attention layer (857, 256), activation function

Dense layer (857, 256), activation function
Learning rate (0.001)

Epoch (2000)

SVM
Kernel function (radial basis function)

C factor (50)

The framework of MMGAN-SVM is illustrated in Figure 12. First of all, as shown in
Figure 12a, known miRNA–disease association was coordinated with Gaussian interaction
profile kernel to calculate the miRNA (disease) integrated similarity (MS/DS). The miRNA–
miRNA (disease–disease) relation network was built by adopting meta-path with the help
of MDA, miRNA–protein association and disease–protein association. Second, as shown in
Figure 12b, with the preparation above, combination matrix constructed the multi-module
to be the input of the model. Then, as shown in Figure 12c,d, the latent feature of miRNA
(disease) was acquired by model concatenate in the form of an miRNA–disease pair, which
later served as the input of SVM for MDA prediction.
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Figure 12. The flowchart of our method. (a) Construction of networks; (b) Construction of multi-
module; (c) Feature extraction; (d) Model training and prediction.

5. Conclusions

In this study, extra protein information and meta-path were introduced to construct
a multi-module, and GAT was utilized to learn the latent feature of the node in every
module. Then, with the attention mechanism, the topological and semantic information of
nodes could be aggregated adaptively by their different neighboring nodes and modules.
With abundant information of latent features, the latter classification task conducted by
SVM obtained a great performance in MDA prediction. In addition, the impact of different
ratios of positive and negative samples on the model was explored. To some extent, the
unbalance between negative and positive samples actually made some influences on the
model. Thus, the strategy of reliable negative sample selection was adopted to reduce
the impact of sample unbalance. In addition, the results showed that the performance of
prediction can be improved by selecting negative samples within a certain threshold. In
conclusion, we propose a new avenue for research to discovery potential biomarker and
treatment for diseases.
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