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Abstract
Background: Conventional multiple-trait quantitative trait locus (QTL) mapping methods must
discard cases (individuals) with incomplete phenotypic data, thereby sacrificing other phenotypic
and genotypic information contained in the discarded cases. Under standard assumptions about the
missing-data mechanism, it is possible to exploit these cases.

Results: We present an expectation-maximization (EM) algorithm, derived for recombinant inbred
and F2 genetic models but extensible to any mating design, that supports conventional hypothesis
tests for QTL main effect, pleiotropy, and QTL-by-environment interaction in multiple-trait
analyses with missing phenotypic data. We evaluate its performance by simulations and illustrate
with a real-data example.

Conclusion: The EM method affords improved QTL detection power and precision of QTL
location and effect estimation in comparison with case deletion or imputation methods. It may be
incorporated into any least-squares or likelihood-maximization QTL-mapping approach.

Background
Statistical methods for identifying and mapping genes
controlling complex traits, commonly known as quantita-
tive trait loci or QTL, have been developed to a high
degree. The primary focus has been on methods for single
traits ([1-8] and many others). It was proposed [9,10] that
multi-trait QTL mapping methods that consider simulta-
neously several correlated phenotypic traits, or a single
trait measured in several environments, offer increased
detection power and precision of location and effect esti-
mation over single-trait QTL mapping. This is because
trait-by-trait QTL-searching neglects information con-
tained in the data about the common influence of a QTL
on more than one trait, in more than one environment, or
[11] at more than one developmental stage. Multi-trait

(MT) QTL mapping allows a formal test of pleiotropy of a
QTL for multiple traits or QTL-by-environment interac-
tion for a single trait measured across multiple environ-
ments. The enhancement by MT of QTL-detection power
is greatest when the QTL induces covariation between the
tested traits in the direction opposite to that from "back-
ground" sources [12,13]. These advantages have been
exploited in animal [14-16] and plant [17] studies.

With the promise of increased power from a multivariate
approach comes an interesting problem: what to do when
some of the multivariate data are missing.

Two main statistical approaches have been elaborated for
multi-trait QTL analysis: regression [10,18-21] and maxi-
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mum likelihood or ML [9]. Regression QTL-mapping
methods, though easier to implement and faster to com-
pute, give biased parameter estimates with sparse markers
[22] or when QTLs interact or are closely linked [23],
while ML methods are free of these defects [23]. It has also
been proposed to transform multiple traits into canonical
variates so that conventional univariate interval QTL map-
ping can be applied [18,24,25], but interpretation of the
results is difficult.

Though QTL-mapping data are often incomplete, infor-
mation-recovery methods are at present applied only to
genotypic data. For incompletely informative marker-gen-
otype data, posterior distributions are readily estimated
from flanking markers in the same individual [26]. For
unknown QTL genotypes at tested positions in map inter-
vals, ML methods estimate posterior distributions simul-
taneously with the parameters of a phenotypic mixture
distribution [4], while regression methods [1] replace
missing QTL genotypes with their expectations given
flanking markers. Variations based on sampling include
multiple imputation (MI) as described by [27] and [22]
and Bayesian approaches (e.g. [5-7,28,29]).

In contrast to genotypic data, missing phenotypic data for
any trait results in discarding all cases (individuals) lack-
ing even one value, sacrificing all other phenotypic and
genotypic information available for these cases. The prob-
lem was recognized by [20], but they provided no solu-
tion, nor does conventional QTL-mapping software offer
an alternative to this "casewise" [30] deletion. Is there
one?

Completion of incomplete multivariate data may be done
by imputation (single or multiple), by EM algorithm, or
by Bayesian approaches. Single imputation typically
replaces missing data with three kinds of values: a value
drawn from a model-based distribution, a mean of other
observations of the same variable, or a conditional mean
calculated by least-squares regression on predictors. MI
[31,32] fills in missing data by imputing multiple (e.g. 3–
5) times to produce several complete datasets, with
parameter estimates calculated as the average over the
results from these datasets. The defect of imputation
methods, in analyses such as QTL mapping where we
want ML estimates of statistics, is that bias is introduced
by maximization of the likelihood over both original and
imputed data. In contrast, the EM algorithm as described
by [33] focuses not on replacing a missing value with its
expectation, but on using the information available in the
original dataset. In the framework of EM, missing data
imputed are in effect integrated out of the complete-data
log likelihood by iterative refinement of their expectation.
An EM method described by [34] addressed the problem
of missing genotype or phenotype data in single-marker
QTL analyses by the use of flanking-marker genotypes.

While free of the dependence on recombination estimates
to which interval-mapping methods are subject, the
method accommodated only single traits. [35] provided
an EM algorithm for incomplete multivariate data and
extended it to accommodate multiple regression with
missing responses. A Bayesian approach developed by
[36] for joint mapping with multiple traits in outbred
populations employed an identity-by-descent (IBD)-
based variance-components model and reversible-jump
Markov-chain Monte Carlo (MCMC) estimation, but did
not consider missing phenotypic and genotypic data. It
would be possible to derive an MCMC algorithm to sam-
ple missing phenotypic entries from their posterior distri-
bution, though Bayesian approaches are computationally
intensive and often criticized for lacking a test statistic.

Here we describe an adaptation of the EM method of [35]
to the case of multi-trait QTL mapping with incomplete
phenotypic data. For simplicity we have limited our scope
of mating design to biparental crosses between inbreds.
We show that the tests for QTL main effects may be con-
structed as in [9], and we describe the properties and
behavior of the test statistics and QTL effect and position
estimates based on simulation studies and a real example.

Results
Power
As expected, power was highest when data were complete
(Figure 1). When data were missing, EM, MS and CMS
gave power superior to CaD in all cases. MS and CMS gave
similar power, equal to or lower than that of EM. The gain
in power for EM over CaD increased with the proportion
of missing data. This trend was also seen for gain in power
of EM over MS or CMS, but to a lower degree.

Figure 1 also shows that EM gave QTL detection power
about equal to that supplied by CaD with half the propor-
tion of missing data. Simple probability calculations yield
the numbers to which this power relationship corre-
sponds. As an example, in a population of size 300 with
0.4 of the data missing from each of two traits, the EM
method was operating on only 108 lines carrying com-
plete data and another 144 lines with partial data, but
achieved power corresponding to 192 lines with complete
data. The increase in effective (equivalent-power) number
of complete records achieved by the EM method can be
estimated graphically from Figure 2. Here the effective
complete-data sample sizes achieved by EM were about
271, 255, 230, and 190, representing gains of 1, 12, 38
and 82 over the number of complete records available for
CaD at missing levels of 0.05, 0.1, 0.2 and 0.4.

Specificity
All the methods gave similar QTL-detection specificity of
0.98 to 1.00, except with sample size 100 and missing
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proportion 0.40, where CaD gave specificity as low as
0.93.

Accuracy and precision of QTL effect estimation
All methods gave reasonable estimates of QTL positions.
CoD and CaD provided the highest and lowest precisions

for QTL position estimation (Figure 3), while those of MS,
MS, and EM were very similar and intermediate. For QTL
effects (Figure 4), CoD, CaD and EM provided unbiased
estimates, while both MS and CMS underestimated these
parameters, CMS by slightly less. The extent of underesti-

Statistical power of five multiple-trait QTL-mapping methods in simulated populations with four levels of missing dataFigure 1
Statistical power of five multiple-trait QTL-mapping methods in simulated populations with four levels of missing data.
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mation tended to increase with missing percentage and
decrease with sample size (not shown here).

Real data analyses
In the selected example from a real dataset, EM provided
higher power for the detection of a QTL on rice chromo-
some 12 than CaD and MS (Figure 5). While CMS also
identified the QTL, its position estimate was somewhat
biased, as were those of CaD and MS (Table 1). In general,
EM provided estimates of QTL position and effect closer
to those from CoD than were the estimates from CaD, MS
and CMS.

Discussion
While any substitution of unavailable data by their expec-
tations based on trends in available data will increase the
precision of parameter estimates over those obtained by
CaD, the EM-based multi-trait QTL mapping method we
propose here is superior to MS and CMS for several rea-
sons. MS underestimates phenotypic variation and QTL
effect due to fill-in of missing data with a single value,
resulting in decreased power compared with our method
especially when amounts of missing data are relatively

large. The same trend can be observed for CMS, which, as
a precursor of the EM algorithm, is closely related to a sin-
gle EM iteration [35]. Although CMS gave better estimates
of QTL effect than MS, it still underestimates variance
[35].

While we did not include MI [31,37] in the simulation
study, we doubt its potential utility for multi-trait QTL
mapping with missing trait data. We investigated MI by
filling in missing trait data with values sampled from their
conditional distributions under the null and alternative
hypotheses given the observed trait values. Resulting log-
arithm-of-odds (LOD) profiles were sawtoothed (not
shown here) due to random sampling, and a different
profile could be obtained with each analysis even with
many imputations (e.g. 100 compared with 3–5 in regular
MI) performed at each QTL test position. For these rea-
sons, apart from the high computational cost, we did not
pursue this method further.

For MS, CMS, and even MI, the effects on QTL mapping of
introducing imputed data need further study. Although
simulation results showed specificities close to those of

Power of QTL 1 detection after casewise deletion and by the EM method as a function of the number of complete trait records for 300 simulated RILsFigure 2
Power of QTL 1 detection after casewise deletion and by the EM method as a function of the number of complete trait 
records for 300 simulated RILs.
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our method, complete-data analysis, and CaD, the bias
imposed on the LOD test statistic by introduction of these
"artificial" data remains unknown. Interestingly, in the
real-data example we chose for illustration, CMS, besides
apparently biasing the location of the QTL, gave higher
background LOD scores than CoD in regions away from
the QTL, while the EM and other approaches did not (Fig.
5). In fact, imputation of missing data is also performed
in the E step of our EM algorithm. But this kind of impu-
tation only furnishes a pivot to facilitate parameter esti-
mation and is actually not involved in the likelihood
calculation. Thus, theoretically, the EM-based method
does not bias QTL detection and parameter estimation as
may imputation methods.

The information gain of our method over CaD, MS, and
CMS depends on the amount of missing trait data. The
reason is readily explained by the following example for
CaD. Consider a sample of 200 individuals with missing
proportion 0.1 for each of two traits independently. The
average number of individuals available for CaD is 162
and that for EM 198, and the difference is 36. This differ-
ence expands to 96 with a missing proportion of 0.4. In
other words, power is lost more slowly with data loss
when the information-recovering EM method is applied.

Cofactor markers too may lack genotype data. In our
model, these are replaced by expectations given flanking
markers, computed by the method of [26]. Prediction of
missing trait data employs these imputed cofactor geno-
types, with a resulting potential for error in parameter esti-
mation. While such error could be minimized by
extension of our method to include missing cofactor data,
we suspect that the improvement would hardly justify the
computation, and remark that the issue is shared by all
composite interval-mapping methods.

While the EM method should give more power than the
information-discarding alternatives regardless of the cho-
sen QTL acceptance threshold, we do not know how to
find the optimum threshold for multiple-trait mapping
when our algorithm is applied. Indeed, the question has
not to our knowledge been satisfactorily answered to date
even for the case of complete data. Thresholds in our sim-
ulation experiment were based on analyses of simulated
populations lacking QTLs but with complete trait data
conforming to the same variance structure as the QTL
population – an option not available to an analyst in prac-
tice. A working method might be to adopt a threshold
lying between the overly conservative one calculated from
permutation (of individual records for all traits) applied
to the complete data remaining after CaD and the insuffi-
ciently conservative one that would be obtained from per-
mutation applied under our reconstruction algorithm. For
nonpathological data sets our simulation results suggest
that this range will be relatively narrow. The quick and
approximate method of [38] might serve as well as any for
establishing thresholds.

Some extensions of the EM method are promising. First,
we have derived the EM calculation of the hypothesis test
for QTL main effect. By following the procedure of [9],
one may derive specific EM implementations for other
hypothesis tests including for QTL-by-environment inter-
action, pleiotropy, and pleiotropy vs. close linkage. Sec-
ond, the EM method may be extended to multiple interval
mapping [3] with multiple traits and incomplete pheno-
typic data. Third, mixed-model QTL mapping as recom-
mended by [9] can now be applied to incomplete trait
data as an alternative method for multi-trait QTL map-
ping. When multiple traits are actually different expres-

QTL position estimates and standard deviations with 200 simulated RILs and 0.40 missing proportion for each traitFigure 3
QTL position estimates and standard deviations with 
200 simulated RILs and 0.40 missing proportion for 
each trait. White, gray, and black bars represent QTLs 1, 2 
and 3. CoD: complete data analysis; CaD: casewise deletion; 
MS: mean substitution; CMS: conditional mean substitution; 
EM: EM algorithm; SD: standard deviation
Page 5 of 12
(page number not for citation purposes)



BMC Genetics 2008, 9:82 http://www.biomedcentral.com/1471-2156/9/82
sions of a single trait in different environments (locations
or years), a mixed model allows treating environmental
effect as a random and QTL effect as a fixed factor [39,40].
One of the advantages of the mixed model is in accommo-
dating both balanced and unbalanced data structure.

In principle, our EM approach may be used to handle
multi-trait QTL mapping with any proportion of missing
phenotypic data. But if the data may not be MAR, as is

especially likely when the missing proportion is large, a
more prudent course of analysis is to find out why not,
and work out an appropriate statistical method for QTL
mapping.

The method we have presented requires more computing
time than the conventional EM or ECM interval-mapping
algorithm. There are two reasons for this. First, to obtain
parameter estimates, the EM algorithm must be applied

QTL effect estimates and their standard deviations with 200 simulated RILs and 0.40 missing percentage for each traitFigure 4
QTL effect estimates and their standard deviations with 200 simulated RILs and 0.40 missing percentage for 
each trait. White bars represent trait 1 and gray trait 2. CoD: complete data analysis; CaD: casewise deletion; MS: mean sub-
stitution; CMS: conditional mean substitution; EM: EM algorithm; SD: standard deviation
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under both null and alternative hypotheses, because the
trait data are missing in both cases. In contrast, conven-
tional methods require EM iteration only under the alter-
native hypothesis. Second, our EM algorithm is used to
complete both QTL genotype and phenotype in the case

of ML-based QTL mapping, while the conventional
method must complete only QTL genotype. The comput-
ing load increases with the proportion of missing data,
but the extreme amounts of missing data we have simu-
lated are unusual in real experiments.

Table 1: QTL statistics for analysis of two traits in a 325-line doubled-haploid rice population with 10% simulated missing data, 
estimated by several approaches.

Method Position (cM) LOD Additive effect
Sheath blight Heading days

EM 21 4.47 -0.38 0.80
CaD 24 3.07 -0.33 0.70
MS 22 3.76 -0.32 0.66

CMS 16 4.41 -0.55 0.59
CoD 21 6.58 -0.44 1.06

Key EM: EM algorithm; CaD: casewise deletion; MS: mean substitution; CMS: conditional mean substitution; CoD: complete data analysis.

LOD profiles of several approaches to analysis of a putative QTL for two traits in a 325-line doubled-haploid rice population with 10% simulated missing dataFigure 5
LOD profiles of several approaches to analysis of a putative QTL for two traits in a 325-line doubled-haploid 
rice population with 10% simulated missing data. CoD: complete data analysis; CaD: casewise deletion; MS: mean sub-
stitution; CMS: conditional mean substitution; EM: EM algorithm. Horizontal dotted lines in the corresponding colors show the 
empirical LOD thresholds for these methods. The asterisk marks the position (at 21 cM) of the QTL identified by CoD.
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Methods
Missing-data mechanism is ignored
Several kinds of "missingness" have been defined [37].
Under MAR, "missing at random", the probability of
missing phenotypic data within any genotype class is
unrelated to the phenotypic value. Either for MAR or the
stronger assumption, MCAR or "missing completely at
random" (missingness also independent of genotype),
estimation methods need not model a missing-data
mechanism. Either assumption seems reasonable in con-
ventional mapping practice and is accommodated by the
method described here.

Multivariate regression with incomplete data
Consider the linear model

Yn × m= Xn × p Bp × m + En × m, (1)

where Y is a (n × m) response matrix with n the number of
individuals and m the number of traits (or environments);
X is a (n × p) design matrix with p predictors; B is a matrix
of regression coefficients associated with X, E is an error
matrix; and Ei (i = 1, 2, ..., n) follows a multivariate normal
distribution with means zero and variance-covariance
matrix

For a random sample, the log likelihood of observations
is given by

where yi is the response and xi the predictor vector of the
ith individual, YT = [y1, y2, ..., yn], and XT = [x1, x2, ..., xn].
Parameters B and V are estimated by maximization of (3).

Suppose there are some missing entries in yi. The log like-
lihood of observations can be written as

where  is the observed part of yi,  is the part of the

predictor vector associated with , bobs contains the

regression coefficients associated with , and 

is the submatrix of V representing the variance-covariance
matrix of the traits for which the ith individual has com-
plete data. Since missing entries vary among individuals,
the log likelihood is a logarithm sum of multivariate nor-
mal probabilities of varying dimensions.

Estimates of parameters B and V cannot be obtained by
direct maximization of (4) with respect to the individual
parameters. To estimate parameters in the presence of
missing data we may apply the EM algorithm of [35]. For
the ith individual with some missing trait entries, we parti-
tion its trait yi, its mean μi = xiB, and the variance-covari-
ance matrix V as

where  is a vector composed of the missing trait data

of individual i,

and

Given these partitions, the MLEs of parameters in model
(1) are obtained as follows.

ALGORITHM 1: Starting with random initial values

, iterate the following two steps

until convergence.

E step: use the following equation to predict missing trait
data conditional on the observed trait data and variance-
covariance matrix.

Then reconstruct complete phenotypic matrix yi with the
observed and predicted trait data (k indexes iterations):
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Multi-trait QTL mapping with incomplete phenotypic 
data by regression
We now describe our multi-trait QTL mapping method
with incomplete data. Though the method given is based
on a recombinant inbred line (RIL) population, it is read-
ily extended to other mating designs, as we show for the
F2. According to the statistical model for multiple-trait
analysis [9,10,19] based on complete phenotypic data,
the model for incomplete phenotypic data is written as

Yn × m = zn × 1a(1 × m) + xn × (p+1)b(p+1) × m + En × m

(13)

where Y = [y1, y2,..., yn]' is a matrix of phenotypic data for
n lines and m traits, and y1, y2,...,yn are 1 × m vectors com-
posed of observations and missing trait data; z is a matrix
of QTL genotypes represented as 2 for QQ and 0 for qq; a
is a matrix of additive effects of a putative QTL at a tested
position; x is a matrix of genotypes of p cofactor markers
with the first column ones; b is a matrix of cofactor marker
effects; and E is a matrix of residual errors eij (i = 1, 2, ..., n;
j = 1, 2,..., m), which are assumed to be correlated between
traits and to follow a multivariate normal distribution
with means zero and covariance matrix as in (2). Equation
(13) is readily seen to be a variant of (1).

In this model, QTL genotype is replaced with its condi-
tional expectation given flanking-marker genotypes
[1,26]. Least-squares estimates of the parameters can then
be obtained by multiple regression based on ALGO-
RITHM 1. If considering a F2 population, we may instead
use the model

Yn × m = zn × 1a1 × m + wn × 1d1 × m + xn × (p+1)b(p+1) × m + En × m,
(14)

where w is a matrix of QTL genotypes represented as 1 for
Qq and 0 for qq and QQ, and d is a matrix of dominance
effects of a putative QTL at a tested position. Since w is
unobservable, it is also replaced by its probability condi-
tional on flanking markers.

Multitrait QTL mapping with incomplete phenotypic data 
by ECM
Instead of replacing a missing QTL genotype with its
expectation given flanking markers, ECM (expectation/
conditional maximization) treats QTL genotype as miss-
ing data included in model (14) and estimates parameters
at a QTL position by repeatedly updating the posterior
probability of QTL genotype given both flanking-marker

genotypes and phenotypes. Since we now have two types
of missing data in model (14), QTL genotype and pheno-
type, we may extend the ECM method of [9] for multi-trait
QTL mapping as follows:

ALGORITHM 2: Starting with initial values of parameters

iterate the following two steps until convergence (< 10-7

change in log likelihood between two iterations).

E step:

where p1i and p2i are the conditional probabilities of QTL
genotypes QQ and qq given flanking markers and recom-
bination distances [26], f the multivariate normal proba-
bility density function, and q1i and q2i the posterior
probability of QTL genotypes given flanking markers and
phenotypes [9].

M step:

where l is a (n × 1) matrix of ones.
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where  and  are the predicted phenotypic

means of QTL genotypes QQ and qq given cofactor mark-
ers, and

For a F2 population, we need to consider both additive a
and dominance effects d in terms of model (14). In this
case, the E-step is as in equations 16–19, and the M-step
is as follows:

where l is a (n × 1) matrix of ones,

where  is the predicted phenotypic mean given QTL

and cofactor markers,

where ,  and  are the predicted pheno-

typic means of QTL genotypes QQ, Qq, and qq given
cofactor markers, and V is updated by (25).

In the ECM algorithm, incautious selection of initial
parameter values may lead to convergence on local
maxima. We used additive and dominance effects of 0,
and the estimates of μ and V under the null hypothesis H0:
a = 0, d = 0.

Hypothesis tests for QTL effects with missing phenotypic 
data
Hypothesis tests for QTL main effects, pleiotropy effects
and close linkage vs. pleiotropy are constructed according
to [9] and can be tested by ALGORITHM 1 if regression is
chosen or ALGORITHM 2 if the ECM method is used. As
test statistic the likelihood ratio (LR) or its transformation
to a logarithm-of-odds (LOD) are commonly used. For
example, to test main QTL effects in a two-trait example,
the hypotheses can be formulated as H0: a1 = 0, a2 = 0 and
H1: at least one a  0. For the regression method, parame-
ters under H0 or H1 are estimated by ALGORITHM 1
(Equations 8–12) depending on whether or not QTL
effects are included in model (13). If the ECM method is
used, first these quantities are estimated under H0 by
ALGORITHM 1 without inclusion of QTL effect and then
those of the full model under H1 are obtained by ALGO-
RITHM 2 (Equations 16–25 for RIL or 16–19, 26–32, and
25 for F2). Then the LR is obtained as LR = -2(<reduced - <full),
where <reduced is the log likelihood of the reduced model
under H0, and <full is that of the full model under H1 [4].
Both are calculated from (4) and a LOD score is calculated
as LR/(2 ln 10).

Simulations
To compare the properties of the EM method with those
of casewise deletion (CaD), mean substitution (MS), con-
ditional mean substitution (CMS) and complete data
(CoD), we performed simulation experiments. RIL popu-
lations of size 100, 200 and 300 were generated based on
a 300-cM chromosome with 31 evenly spaced markers.
For CMS, missing data were replaced with their condi-
tional expectations calculated by regression of each trait
on the other(s). Three pleiotropic QTLs controlling two
traits were simulated at cM positions 53, 182, and 258
with effects listed in Table 2.

Trait values of each line were calculated as the sum of QTL
effects plus a random vector of environmental effects with
means zero and variance given in Table 2. Then a specified
proportion (0.05, 0.10, 0.20, or 0.40) of values for each
trait independently was set to missing. Lines lacking data
for both traits were dropped. Analyses were performed on
500 replicates.

In the QTL analyses, the calculation interval (step size)
used was 1 cM. Cofactor markers for each trait were
selected by forward stepwise regression at a significance
level of 0.01 and combined for multi-trait analysis. Cofac-
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tors lying within 10 cM of a QTL testing position were
dropped from the model.

Though the LR at each test position asymptotically follows
a chi-square distribution with degrees of freedom deter-
mined by the corresponding hypothesis test, an accept-
ance threshold applying over all test positions must be
found. Genomewide LOD thresholds of 3.71, 3.54 and
3.43 for n = 100, 200, and 300 at significance level 0.05
were calculated from 5000 simulations with no missing
data under the null hypothesis of no QTL [20]. When
sample size or heritability is relatively small, the effect of
a QTL may extend to adjacent intervals due to sampling
error. Rather than including heritability as an experimen-
tal parameter for investigation, we chose the cautious
expedient of declaring a QTL if a LOD peak higher than
threshold was found within the interval containing the
simulated QTL and the intervals on either side of the QTL
interval. Power of QTL detection was calculated as the
number of correctly declared ("true positive") QTLs
divided by the number of actual QTLs simulated, while
specificity was calculated as the number of true positive
QTLs divided by the total number declared.

Real data analysis
We applied the EM method to a population of 325 dou-
bled-haploid lines (unpublished data) tested for rice
sheath-blight disease in field and greenhouse studies and
genotyped with 114 codominant markers. The traits we
chose for analysis were sheath-blight score and heading
date measured in Stuttgart, Arkansas in 2006 and corre-
lated at r = -0.57. The preliminary SIM and CIM analyses
indicated that a QTL on chromosome 12 influenced both
traits, and suggested a multi-trait analysis.

Since there were no missing trait data, we generated a new
sample with 10% randomly missing phenotype scores.
Genomewide LOD thresholds 3.73, 3.77, 3.90, 3.80, and
3.83 for EM, CoD, CaD, MS, and CMS at significance level

0.05 were calculated from 1000 permutations, based on
shuffling the phenotypic records for both traits at once in
order to preserve their correlation structure.
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