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ABSTRACT
Research on the gut–brain axis has accelerated substantially over the course of the last years. Many 
reviews have outlined the important implications of understanding the relation of the gut micro-
biota with human brain function and behavior. One substantial drawback in integrating gut 
microbiome and brain data is the lack of integrative multivariate approaches that enable capturing 
variance in both modalities simultaneously. To address this issue, we applied a linked independent 
component analysis (LICA) to microbiota and brain connectivity data. 
We analyzed data from 58 healthy females (mean age =  21.5 years). Magnetic Resonance Imaging 
data were acquired using resting state functional imaging data. The assessment of gut microbial 
composition from feces was based on sequencing of the V4 16S rRNA gene region. We used the 
LICA model to simultaneously factorize the subjects’ large-scale brain networks and microbiome 
relative abundance data into 10 independent components of spatial and abundance variation. 
LICA decomposition resulted in four components with non-marginal contribution of the microbiota 
data. The default mode network featured strongly in three components, whereas the two-later-
alized fronto-parietal attention networks contributed to one component. The executive-control 
(with the default mode) network was associated to another component. We found that the 
abundance of Prevotella genus was associated with the strength of expression of all networks, 
whereas Bifidobacterium was associated with the default mode and frontoparietal-attention net-
works. 
We provide the first exploratory evidence for multivariate associative patterns between the gut 
microbiota and brain network connectivity in healthy humans considering the complexity of both 
systems.
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Introduction

The gut–brain axis (GBA) is a bidirectional bio-
chemical signaling that takes place between the 
gastrointestinal tract (GI tract) and the central 
nervous system (CNS).1 The microbiota–GBA is 
used to describe the complex effects of the com-
mensal gut bacteria (the microbiota) in the 
interplay between the gut and the brain. 
Recently, many studies have outlined the impor-
tant implications of understanding the relation 
of the gut microbiota with human brain function 
and behavior. Several intermediary pathways 
have been proposed, specifically, bi-directional 
interactions between microbiota and the brain 
are plausible via modulation of vagal nerve 
activity, via neuromodulators or their precursors 

such as serotonin or tryptophan, via the 
Hypothalamic–Pituitary–Adrenal System (HPA- 
axis) and via interactions with the immune 
system.1–4

In recent years, researchers aimed at elucidating 
these interactions, highlighting putative pathways, 
hormonal or immunological agents, and targeting 
the activity and interaction of certain bacterial 
strains.3 However, these studies have not taken 
into account the complexity and, especially, the 
full multivariate nature of both the brain and the 
gut microbiome.

One of these complex traits of the brain is the 
intrinsic connectivity between different brain 
regions. So far, studies assessing the relation 
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between gut microbiome composition and intrinsic 
brain connectivity – with resting state fMRI – are 
rare, limited in rigor, and inconclusive.5 A recent 
study tested the effects of four weeks multi-strain 
probiotics supplementation.6 The authors report 
mild probiotics-induced changes in resting state 
connectivity of some of the 10 networks tested. 
The strongest modulation was found in differences 
between the placebo (n = 15) and probiotics 
(n = 15) group, with the latter showing a relatively 
stronger increase in connectivity of the salience 
network to superior frontal brain regions. In 
another placebo-controlled trial of probiotics (n 
= 20 per group), Bifidobacterium longum influ-
enced resting neural oscillations measured with 
magnetoencephalography (MEG), which correlated 
with enhanced vitality and reduced mental fatigue 
during a social stress induction task. Modulations 
of theta and alpha band oscillations by probiotics 
were localized in the frontal and cingulate cortex 
and supramarginal gyrus.7 However, these results 
(in relatively small samples) have not been related 
to probiotics-induced effects on gut microbiota 
composition.

A few studies did assess the relation between gut 
microbiome composition and intrinsic brain con-
nectivity. One resting state fMRI study (n = 30), 
which included a subgroup of smokers, focused on 
the association of gut microbiota composition with 
insula connectivity and found its connection to 
several brain regions, such as occipital and lingual 
gyrus, frontal pole and cerebellar regions, to be 
associated with microbiota diversity and structure.8 

Other exploratory region-of-interest (ROI) ana-
lyses did not reveal significant associations. 
Another resting-state fMRI study (n = 28 vs 19) 
demonstrated that in end-stage renal disease, the 
integrity of the default mode network (DMN) was 
decreased along with alterations in the gut–micro-
biota composition.9 A recent study (n = 157) 
focused on certain enteroptypes and diversity mea-
sures in the gut and their association to specific 
large-scale brain networks.10 The authors found 
an association between gut microbial diversity mea-
sures with network connectivity of executive con-
trol, default mode and sensorimotor control, as well 
as within executive control network. Enterotypes 
were linked to executive control network. Another 
very recent study investigated MRI measures of 

cortical thickness, regional homogeneity (ReHo) 
and fractional amplitude of low-frequency fluctua-
tion (fALFF) in relation to relative abundance in a 
schizophrenia group comparison.11 The ‘func-
tional’ measures (ReHo & fALFF) used in this 
study should be interpreted with caution, as they 
are potentially strongly biased by non-neuronal 
sources (cp.12). They found differences in relative 
abundance of Ruminococcus and Roseburia genera 
and associated differences in brain measures, which 
might be associated with neuropathology of 
schizophrenia.

Most importantly, previous studies on healthy 
individuals have exclusively performed bivariate 
associations (albeit controlled for multiple com-
parisons or partial effects) between one gut– 
microbiome composition measure and one brain 
connectivity measure (i.e. within one network or 
between two brain networks). Taken together, 
these results are difficult to integrate and compre-
hend, as studies focus on one aspect of the mod-
alities, such as connectivity from one particular 
ROI or with different types of interventions. 
Furthermore, investigation of the gut–brain axis 
in targeted patient groups9–11,13 is of great merit, 
especially for the relevance of the gut microbiota 
in the context of a particular disease, but as long 
as the health functionality of the gut–brain axis is 
not sufficiently understood on a macroscopic 
level, assessing the consequences of certain 
pathologies is difficult. We here argue for a multi-
variate integration of healthy adult individuals as 
a starting point.

Indeed, in research, one approach to understand 
complex systems is to try to elucidate the function 
of all its components sequentially and then to inte-
grate interactions between a limited number of 
components. The opposite approach of investiga-
tion is to aim at integration at a macroscopic level. 
In this approach as many components as possible 
are sampled and patterns are investigated by 
dimensionality reduction. This has been attempted 
for the gut–brain axis very often narratively, in 
multiple reviews. Yet, no empirical attempt has 
been made so far to try to integrate the functions 
of the brain and the gut microbiome at a macro-
scopic level to determine associations between var-
iance in macroscopic components of the two 
systems. In a similar approach, using data from 
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the Human Connectome, researchers linked several 
lifestyle, demographic and psychometric measures 
in a positive–negative mode of brain connectivity.14

Here, we aim to assess the relation between these 
two complex, multivariate modalities, focusing on 
canonically established brain networks in resting 
state that represent major modes of brain function-
ing in an unperturbed fashion, i.e. in healthy 
individuals.15 We asked if the inter-individual 
variability in the abundance of gut microbiome 
genera was linked to variability in brain functional 
connectivity in canonical brain networks, when 
taking into account the full complexity of both. In 
doing this, we hope to (1) validate past research that 
has demonstrated associations between brain con-
nectivity and gut microbiota, be it via probiotica 
intervention or by focusing on select networks/ 
regions and bacterial strains, (2) provide a targeted 
explorative ‘map’ of potential candidate links 
between sets of associated gut microbiota and 
brain connectivity that have this far not be explored 
and (3) provide a similar guidance to studies 
investigating clinical perturbations in brain 
connectivity – gut microbiota associations as well 
as an elegant way to investigate complex interven-
tion-induced changes in the gut–brain axis.

One substantial methodological challenge is the 
multivariate and simultaneous integration of gut 
microbiome and brain data that enables capturing 
variance in both modalities simultaneously. To 
address this issue, we applied a linked independent 
component analysis (LICA)16,17 to microbiota and 
brain connectivity data (Figure 1). LICA enables 
data reduction in several modalities simultaneously 
and thereby can demonstrate joint inter-individual 
variation patterns in different modalities. We chose 
to investigate four very well characterized and often 
replicated brain networks.15 In the previous work, 
we used this selection to investigate the impact of 
fasting on functional connectivity at rest.18 We 
limited our study to a set of four networks of inter-
est (the lateralized fronto-parietal (left/right) atten-
tion networks, FPN; the executive control network, 
ECN; and the default mode network, DMN) due to 
their importance in the neuroimaging field, their 
comparatively clear and cognitive functional profile 
and their importance in mental disease or previous 
microbiome research.14,15,18–20 This pre-selection 
enables us to better conceptually understand the 
explorative associations between gut and these 
brain networks, limiting the number but not the 
type of interactions.

Figure 1. We linked functional brain connectivity in four well-established brain networks with relative abundance of human gut 
bacteria (microbiota). Panel A describes the Linked ICA that decomposed, simultaneously, the variability in functional connectivity of 
the four networks and the relative abundance of bacterial taxa (genera). This resulted in 10 components for which we have individual 
subject loadings as well as the loadings of each input feature depicted in panel B. The loadings represent voxel-wise association to the 
component in functional connectivity per network and genera-wise association to the component in the gut–microbiome.
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Results

For 58 subjects, the spatial template maps of right and 
left frontoparietal-attention networks (FPN), execu-
tive control (ECN), default mode network (DMN)15 

were projected onto the subjects resting state fMRI 
time-courses to create network maps per subject. The 
ECN largely consists of middle frontal and superior 
frontal gyri, paracingulate cortex and dorsal posterior 
parietal cortex.15,21 The ECN has been demonstrated 
to overlap spatially with brain activity observed in 
cognitive control tasks, emotion tasks and response 
inhibition.15 The DMN is the large-scale brain net-
work that was identified first and it is probably the 
most often studied of all so-called resting-state net-
works. DMN modulations have been implicated in a 
broad range of disorders.22–25 The most prominent 
feature of the DMN is its task-negative nature; the 
areas of the DMN deactivate when an individual is 
engaged in most tasks.26–28 It has been associated to a 
broad range of cognitive processes such as self-refer-
enced thought and self-monitoring,26 passive, broad 
attention,23,29 auto-biographical memory retrie- 
val,30,31 imparting meaning to the current sensory 
input depending on prior experiences,32 mind-wan-
dering and future thinking32,33 as well as homeostatic 
functions.26,27,34,35 As the name of these networks 
suggest, the fronto-parietal-attention networks 
encompass fronto-parietal brain regions, which are 
commonly and reliably associated with brain activity 
in attention tasks15 and are modulated with varying 
degree of attention demand.36,37

Gut microbiome composition was based on 
sequencing of the V4 region of the 16S rRNA 
gene on the Illumina HiSeq platform. We used the 
LICA model to simultaneously factorize the sub-
jects’ brain networks and gut microbiome relative 
abundance into 10 independent components.16,17

Joint decomposition of brain networks and 
microbiome relative abundance

From the 10 components, six showed a non-mar-
ginal (proportion >0.2) contribution on both the 
gut microbiota relative abundance and the brain 
connectivity patterns (Component 0, 1, 3, 4, 6 and 
7ö Figure 2). From these six components, the first 
extracted component (component 0) was explained 
by a single subject; therefore, this component was 
disregarded for further analyses. Additionally, 
sanity checks on brain connectivity showed that, 
for component 4, equal values for all voxels in the 
brain data. This renders the interpretation of this 
component hardly possible and could potentially be 
related to residual noise being picked up and 
explained. This component was therefore also 
discarded.

We subsequently investigated the association 
between brain connectivity and gut microbiota 
relative abundance in the four remaining compo-
nents. We characterized each component by the 
contribution of the different modalities (proportion 
>0.2 for brain or microbiome). For each 

Figure 2. Decomposition of brain connectivity and microbiome. The plot shows the percentage of contribution per input modality. FPr 
and FPl are right and left fronto-parietal networks, DMN is default mode and ECN is executive control network.
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component, we plotted the brain-network and their 
voxel-wise loading and listed the bacterial genera 
that were non-marginally associated with the com-
ponent. For brain connectivity data, the z-maps 
from the LICA were thresholded at a z > 3 for 
display purposes (see Neurovault: https://neuro 
vault.org/collections/TRVFBPAB/ for z maps of 
the brain data four components). The z-scores 
reflect how strongly a voxel covaries in connectivity 
with the respective input network. For microbiome 
data, high loadings reflect a robust covariation in 
relative abundance of a particular genus in that 

particular component. Similarly, we thresholded 
the microbiome loading at z > 2.3 as they were 
more sparse compared to brain loadings (see 
Figure 3 for a visualization of these results).

The microbiota accounted for the majority of the 
variability that could be explained by component 1, 3 
and 6. The DMN explained the majority of variabil-
ity in component 7, yet the microbiota is contribut-
ing by more than .2. We will discuss components 1, 
3, 6 and 7 in chronological order. On the brain 
connectivity side, LICA enables us to say which 
voxels show variation in functional connectivity to 

Figure 3. Summary results of the contribution of each modality are shown in the first column (left). Second and third columns display 
the spatial project of the brain modalities, e.g. which voxels covary most strongly with covariation in other modalities (brain networks 
and microbiota abundance). Fourth column (right) displays the genera that show a covariance in abundance that is linked to 
covariance in the brain networks. The colors align with the modalities of the LICA (the four brain networks and the gut microbiota). 
For display purposes genera loading were cut at z > 2.3 (for more details see the Method section).
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the respective network between subjects, which 
could be understood as an inter-individual variation 
in the strength of network connectivity. For the 
microbiota, LICA gives an indication of between- 
subject variation in the relative abundance of the 
gut microbiota genera that load on that component.

The first component (#1) has strong contributions 
from variability in the DMN and the ECN and the 
microbiota. The ECN in component 1 varied between 
subjects in core hubs of the ECN, such as the dorsal 
paracingulate cortex, middle frontal, and superior 
frontal gyri. This covariance in core hubs of the 
ECN can be interpreted as this component explaining 
the functional connectivity strength, or the strength of 
the expression of the ECN in the subjects, and this 
strength of expression being related to variation in the 
relative abundance of gut microbiota. Similarly, for 
the DMN, component 1 picked up on variability in 
the posterior core hub of the DMN (the posterior 
cingulate and retrosplenial cortex; 13, 16). 
Prevotella_9 was more abundant and Blautia was 
less abundant with increasing between-subject func-
tional connectivity of these hubs of the two networks. 
We therefore in the discussion call it ECN-DMN- 
Prevotella+-Blautia− component.

The next component (#2) had a contribution of 
over 50% from variability in the microbiota abun-
dance and the DMN. Bifidobacterium was more 
abundant and Prevotella_9 and Bacteroides were 
less abundant with increasing functional connectiv-
ity in the anterior core hubs of the DMN. We 
therefore in the discussion call it the DMN- 
Bifido+-Prevotella− component

Component #6 had the strongest contribution of 
all components from microbiota of around 75%, yet 
also explained variability in the two-lateralized 
fronto-parietal attention networks. The topology 
of the loading of these networks on this component 
overlaps with their common, canonical spatial pro-
file in lateral frontal and parietal brain areas. Thus, 
again this component is associated with the 
between-subjects variation of the strength of 
expression of the lateralized attention networks. 
Prevotella_9, Bifidobacterium, genera belonging to 
Lachnospiracaceae family, and Faecalibacterium 
were more abundant and Christensenellacea_R- 
7_group was less abundant with stronger 

expression of the attention networks. We therefore 
in the discussion call it the FPN-Bifido-Prevotella 
component.

Component #7 was associated with variability in 
the DMN again and to roughly 25% of the microbiota. 
The spatial pattern of between-subject variation could 
be interpreted as elevated connectivity of the DMN to 
parts of the so-called salience network (such as dorsal 
anterior cingulate cortex (dorsal ACC) and ventrolat-
eral prefrontal cortex (VLPFC)), which has in the 
previous literature been associated with effects of ele-
vated stress on DMN resting state connectivity.19,20 

Ruminocuccus_2 was more abundant and Blautia was 
less abundant in individuals that showed this elevated 
connectivity pattern of DMN to dorsal ACC and 
VPLFC. We therefore in the discussion call it the 
DMN-Ruminocuccus+-Blautia− component.

Discussion

In this study, we provide the first evidence for 
multivariate associative patterns between the gut 
microbiota and brain network connectivity in 
healthy humans. We used a novel multivariate 
modality integration technique to explain inter- 
individual differences in brain connectivity in four 
canonical networks and the gut microbiota. We see 
our exploratory results as a map that could show 
high potential to guide future research on the rela-
tion of gut–brain interactions in a hypothesis-gen-
erating manner. We have linked ECN connectivity 
to an abundance of Prevotella_9 and Blautia; DMN 
connectivity to Prevotella_9, Blautia, 
Ruminococcus_2, Bifidobacterium, and Bacteroides; 
fronto-parietal attention network connectivity to 
Prevotella_9, Bifidobacterium, Faecalibacterium, 
Christensenellacea_R-7_group, and certain genera 
belonging to Lachnospiracaceae. DMN connectivity 
that has been linked to stress is associated with 
Ruminocuccus_2 and Blautia. The spatial associa-
tions in the components to core hubs of the respec-
tive networks can be seen as a conceptual validation 
of our approach.15,20,38 Furthermore, we observe 
the between-subject variation in functional connec-
tivity in core hubs of the respective networks in 
three of the four components as a link between an 
individual’s connectivity strength and the relative 
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abundance of certain microbiota. These findings 
can be taken as an indication that certain microbial 
genera are associated with the normal expression of 
all four canonical resting state networks and their 
natural variation between healthy subjects.

On the side of the bacterial genera that were 
associated with brain network connectivity, we 
found that inter-individual variation in abundance 
of the Bifidobacterium genus was prominently con-
tributing to two of our four identified components. 
Variation in abundance of Bifidobacteria were asso-
ciated with increased connectivity of the medial 
prefrontal cortex of the DMN and parietal regions 
in the ECN-DMN-Prevotella+-Blautia− and in the 
FPN-Bifido-Prevotella with modulated connectiv-
ity of the core hubs of the fronto-parietal attention 
network. The Bifidobacterium genus is probably 
one of the most noticeable targets in current gut– 
brain axis research.2,39,40 This strong focus is poten-
tially related to a landmark study, which showed 
that germ-free mice have altered HPA-axis func-
tion, and this altered HPA activity was reversed by 
colonization with a Bifidobaterium.1 Bifidobacteria 
are one of the most important and abundant genera 
during development and have been associated with 
decreased levels of inflammation in human 
development.41 Bifidobacterium longum, a strain 
commonly used in probiotic products, influenced 
resting neural activity that correlated with 
enhanced vitality and reduced mental fatigue dur-
ing a social stress induction task.7 The medial pre-
frontal cortex and the DMN have been related to 
autobiographic and episodic memory or prior 
knowledge structures,42 which fits to findings of 
the link between increased Bifidobacteria after 
interventions and elevated verbal episodic 
memory.6 Furthermore, Bagga and colleagues also 
found altered functional connectivity of the DMN 
after probiotic use (including B. longum).6 

Component 3 might therefor partially reflect episo-
dic memory-related modulations in Bifidobacteria 
and DMN connectivity. A probiotics trial with 
Bidfidobacterium longum using electrophysiologi-
cal resting state brain recordings found evidence 
for an association of increased frontal midline 
mobility and improved memory after probiotics 
consumption compared to placebo.43 The authors 
related the brain recordings to attention-related 
brain activity. Moreover, the fact that out of >50 

genera that featured in our analysis, Bifidobacteria 
featured in two of the four components both under-
scores their putative influence in the gut–brain 
interaction and the validity of our integrative 
approach. In summary, we found evidence for a 
relation of Bifidobacteria abundance to attention- 
and potentially memory-related brain network 
activity at rest.

For the DMN-Ruminocuccus+-Blautia− compo-
nent, the spatial patterns of association were similar 
to results showing an alerted state of the DMN after 
social stress induction.19 In data using a similar 
paradigm, Bifidobacterium longum modulated activ-
ity in similar regions that were influenced by social 
stress and also in the hippocampus, a region that is 
part of the DMN.7 This pattern particularly varied 
with abundance in Blautia and Ruminococcus 2. 
Although Bifidobacterium did not covary with this 
component, the Bifidobacterium intake might have 
indirectly affected DMN connectivity in stress, 
potentially via modulation of the abundance of 
Ruminococcus 2 and Blautia. Indeed, the preexisting 
levels of Blautia and Ruminococcae correlated with 
the metabolic outcomes of a Bifidobacterium-target-
ing prebiotic intervention in obese patients.44 

Furthermore, Blautia has been found to be the only 
genus to be enriched in depression-model rats45 and 
both Blautia and Ruminococcae correlated with 
stress-related depression-like behavior in mice.46 In 
summary, variations in Blautia and Ruminococcus 2 
abundance might relate to stress-induced modula-
tion of DMN connectivity.

The association of all brain networks in three 
different components with Prevotella_9 is interest-
ing as this genus has previously been involved in 
psychiatric disorders, cognition, and brain connec-
tivity changes. For example, in autism spectrum 
disorder (ASD), which is characterized by atypical 
brain network organization (including DMN and 
ECN, as in component 1),47 a higher relative abun-
dance of Prevotella (and Bifidobacterium) has been 
linked with a beneficial effect of Microbiota 
Transfer Therapy.48 Accordingly, lower relative 
abundance of Prevotella has been associated with 
psychiatric disorders like ADHD in children,49 

Parkinson’s disease,50 and ASD.51 Furthermore, 
the gut–brain axis may play a role in the disturbed 
executive functioning of ASD (for a review, see13). 
Our findings of a positive correlation of Prevotella 
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with DMN and ECN functioning and also fronto- 
parietal attention network modulations support 
these results. Prevotella dominated enterotype has 
been demonstrated to be associated with an elevated 
functional intra-network connectivity of the ECN.10 

Furthermore, this connectivity mediated reaction 
times in an executive control task, further supporting 
the functional profile of the ECN-DMN-Prevotella+- 
Blautia− and FPN-Bifido-Prevotella to executive 
control and attention. Our study may add more 
facets to this picture by the division between atten-
tion related to Bifidobacterium and Prevotella covar-
iance patterns and executive control with DMN 
association and lower abundance of Blautia. 
Previous work showed a link between gut microbiota 
and resting-state functional connectivity, as assessed 
here.9,52 Interestingly, in one study assessing bivari-
ate relationships, Prevotella and Bacteroides were 
associated with insular connectivity.8 The insula 
has not only been discussed as part of the salience 
network, but also as an important component of the 
general task positive network.53,54 In our case, both 
of the Prevotella and Bacteroides genera were nega-
tively associated with DMN in component 3. As the 
DMN is thought to be anti-correlated with the task 
positive network, our finding is in line with previous 
results.53 Prevotella seem to be associated to healthy 
modulation in brain connectivity related to atten-
tion, cognitive control, episodic memory and a range 
of other psychological functions.

Our design and approach have limitations in the 
interpretation of the results. First, these findings are 
necessarily limited to more common genera. We 
capped our analysis at genera that are at least 
detectable in 30% of our subjects. Genera with 
lower occurrence rates in individuals might have 
unequally strong leverage on the LICA. As a con-
sequence of this methodological choice, we cannot 
exclude an overestimation of the loadings for the 
more common taxa (given the sample size) and we 
cannot assess the rare genera and their association 
with brain network connectivity.

Second, the selection of brain networks was 
motivated by their role in cognition specifically to 
high-level cognitive constructs such as attention 
and cognitive control and their relevance in the 
literature. While we perceive this selection as well 
motivated and we have demonstrated their 
sensitivity,18 it is a subjective pre-selection. We 

might not cover other cognitive processes and asso-
ciated brain networks equally well. Nevertheless, we 
chose a pre-selected networks approach for several 
methodological reasons: (1) we wanted to use 
representations of brain network connectivity that 
have been previously well characterized and under-
stood, both conceptually (i.e. in their psychological 
function) and biologically (i.e. large-scale brain net-
works of temporally synchronized BOLD activa-
tion). (2) A problem with using a correlation 
matrix as input would be that single voxels, or sets 
of potentially scattered voxels might link to gut 
microbiota relative abundance. Cognitive neu-
roscience is far from an understanding of those 
single voxel or scattered correlation patterns and 
understanding those would require reverse infer-
ence, which is a tremendous problem in the field55 

2011). (3) While the whole brain connectivity 
matrix represents neuronal correlations over time, 
it will – despite rigorous denoising – retain spur-
ious or noise correlations. Thus, our approach can 
be viewed as an additional safe-guard against spur-
ious correlations. (4) We focus on a selected set of 
important networks as a certain constraint to limit 
the number of possible interactions/contributions, 
but we do not constrain the type of interactions/ 
contributions in any way. In this way, this method 
is still clearly data driven.

Third, we investigated a very homogenous, 
healthy, and young group of only female partici-
pants. Although this naturally limits the general-
izability of the results, we believe that our data still 
serves an orientating purpose and is therefore valu-
able. In replication attempts, this homogeneity and 
special characteristic of our sample should be con-
sidered. We would like to reiterate that we see a 
strong need to replicate the current results in larger 
and more diverse samples.

Conclusion

In summary, we provided the first evidence for 
multivariate associative patterns between large- 
scale brain network functional connectivity of 
four very well-established brain networks and the 
relative abundance of gut microbiota in a sample of 
healthy female individuals. This link provides a 
map for future research, involving the full complex-
ity of both measures into account. For example, 
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interventions targeting improvement in attention 
(for example in neurodevelopmental disorders) 
could investigate the influence on the bacterial gen-
era associated to the attention networks. Moreover, 
it can provide a roadmap to investigate how the 
effect of probiotic intervention trials can modulate 
brain networks (and associated cognitive functions) 
in relation to the changes in certain genera of the 
gut microbiome. Furthermore, future research 
might investigate the mechanistic nature of our 
multivariate associative patterns and aim to assess 
the generalizability to other healthy samples as well 
as their potential disruption in the diseased brain.

Material and methods

Sample

We analyzed pre-intervention data from a probio-
tics intervention study on 64 healthy female parti-
cipants (mean age = 21.5 (0.45) years).56 In total, 58 
of the 64 participants were included in the analyses. 
Six participants were excluded from the final ana-
lyses, due to high depression scores (N = 1), missing 
feces samples (N = 2), and movement exceeding 4 
mm between acquisitions (n = 3). For more detailed 
characteristic of the samples and exclusion criteria 
as well as the ethical declaration, please see the 
Material and Methods section of Papalini and 
colleagues.56 Briefly, participants with relevant 
medical history of e.g. psychiatric and/or gastroin-
testinal disorder were excluded. Also, use of anti-
biotics and diet like e.g. vegan diet were part of the 
exclusion criteria.

fMRI data acquisition

Participants were screened for compatibility with 
magnetic resonance imaging (MRI). MRI data were 
acquired using a 3 T MAGNETOM Prisma system, 
equipped with a 32-channel head coil. After three 
short task-related fMRI scans (see Papalini et al.), 9 
min of resting state fMRI was acquired. 3D echo 
planar imaging (EPI) scans using a T2*weighted 
gradient echo multi-echo sequence (Poser, 
Versluis et al. 2006) were acquired (voxel size 
3.5 × 3.5 × 3 mm isotropic, TR = 2070 ms, 
TE = 9 ms; 19.25 ms; 29.5 ms; 39.75 ms, 
FoV = 224 mm). The slab positioning and rotation 

(average angle of 14 degrees to AC axis) optimally 
covered both prefrontal and deep brain regions. 
Subjects were instructed to lie still with their eyes 
open and refrain from directed thought. A whole- 
brain high-resolution T1-weighted anatomical scan 
was acquired using a MPRAGE sequence (voxel 
size 1.0 × 1.0 × 1.0 isotropic, TR = 2300 ms, 
TE = 3.03 ms, 192 slices).

MRI data preprocessing: FSL (FMRIB, University 
of Oxford, UK; www.fmrib.ox.ac.uk/fsl;57 was used 
for pre-processing, data-denoising, and generation 
of subject-specific network maps. Pre-processing 
steps included three-dimensional movement correc-
tion, and spatial smoothing using a 5 mm full-width 
at half maximum (FWHM) Gaussian kernel to 
reduce inter-subject variability and a high-pass filter 
(> 0.007 Hz) was applied. All pre-processing steps, 
except temporal filtering, were conducted before 
AROMA data denoising.58,59 Briefly, ICA-AROMA 
is designed to identify motion-related artifacts by 
matching single subject ICA components to four 
robust and standardized features. The data is 
denoised by linear regression of ICA components 
identified as noise by AROMA and subsequently 
the high pass filter was applied. Prior to all group 
analyses, data were normalized to MNI space and re- 
sampled to 2 mm3 resolution using FMRIB’s 
Nonlinear Image Registration Tool (FNIRT).

Generation of subject-specific functional 
connectivity maps

Dual (spatial and temporal) regression was used to 
generate subject-specific spatial maps of well-stu-
died, canonical large-scale brain networks15 from 
the individuals’ data. These canonical large-scale 
brain networks consist of 10 resting state networks 
for which the template can be freely downloaded 
(https://www.fmrib.ox.ac.uk/datasets/brainmap 
+rsns/). We downloaded the 10 well-matched rest-
ing state networks for use as templates in this study. 
The z-maps of these networks are temporally con-
catenated in one 4D file and used as input for the 
dual regression. These maps were used in a linear 
model fit against the individual fMRI data, resulting 
in the subject-specific temporal dynamics. 
Subsequently, these time-course matrices are 
employed in a linear model fit against the subject’s 
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fMRI data set to estimate subject-specific spatial 
maps. From these subject-wise expressions of the 
10 networks, we selected four networks of interest 
(the left and right lateralized fronto-parietal atten-
tion networks, FPN; the executive control network, 
ECN; and the default mode network, DMN), due to 
their importance in the neuroimaging field, their 
comparatively clear functional profile and their 
importance in mental disease or previous micro-
biome research.14,15,18–20 The different spatial maps 
for all participants are combined into a single 4D 
file per target network. In this way, we generated 
four files for the four respective networks of interest 
that contain one spatial z-map per subject that 
indicates for each voxel the connectivity strength 
of the respective network in that individual. These 
four network files were used as inputs to the LICA.

Gut microbiome analysis

Fecal samples were collected by using OMNI- 
gene•GUT kit (DNAGenotek, Ottawa, CA) within 
24 hours after the MRI scan.60 Collected fecal sam-
ples were transported to the laboratory and ali-
quoted into 1.5 mL Eppendorf tubes and stored at 
−80 ℃ for microbiome analysis. DNA was isolated 
from the fecal pellets using the Maxwell® 16 
Instrument (Promega, Leiden, The Netherlands) 
as described previously.61 Briefly, in the 2-step 
PCR protocol the 16S rRNA gene V4 variable 
region was targeted by using 515 F (GTGYCAGC 
MGCCGCGGTAA) and 806 R (GGACTACNVGG 
GTWTCTAAT) primers, and unique barcodes 
were used to identify each sample. Sequencing 
was performed on the Illumina HiSeq PE300 plat-
form by GATC Biotech AG (Konstanz, Germany). 
The sequences were processed using NG-Tax62 

analysis pipeline as described previously.63 NG- 
Tax identified the taxonomy of the samples based 
on 16S sequences using three core elements: (i) 
barcode-primer filtering, (ii) operational taxo-
nomic unit (OTU) picking, in which unique 
sequences with the relative abundance above 0.1% 
were clustered into OTUs based on a sequence 
similarity ≥98.5%, and (iii) taxonomic assignment 
using the SILVA reference database (version 128).64 

This resulted in an Operational Taxonomical Unit 
(OTU) table containing 844 OTUs. We applied a 
prevalence-filtering at the genus level, selecting 

genera present in at least 30% of the samples. 
After this step, the OTU-table containing 644 
OTUs was used for the downstream analyses. The 
gut microbiome composition tables at the phylum 
and genus taxonomic levels were provided by the 
‘phyloseq’ package available in R.65 In sum, the 
composition table is the result of the normalization 
step where the read counts where transformed into 
relative abundance.

Linked analyses

We used the LICA model17 to simultaneous factorize 
the functional network maps (of ECN, FPNs and 
DMN) and the microbiome data of 58 subjects into 
independent sources (or components) of variation. 
In the brain networks, spatial variation was 
explained; while in the microbiome data, variation 
in relative abundance of bacterial genera was 
explained. In brief, LICA is an extension of 
Bayesian ICA66 to multiple input sets, where all 
individual ICA factorizations are linked through a 
shared common mixing matrix that reflect the sub-
ject-wise contribution to each component (Figure 1).

This operation is represented in Figure 1. 
Factorization provides a set of spatial maps (one 
per feature modality and component), a vector of 
feature loadings that reflects the degree to which 
the component ’represents’ the different modalities, 
and a vector that reflects the contribution of the 
individual subject to a given component. All math-
ematical derivations involved in the LICA factor-
ization can be found in the original paper 
describing the original algorithm.17 Further details 
and code implementing each feature extraction 
procedure as well as the LICA factorization are 
publicly available at.67 Given the sample size, we 
forced a 10 components solution. We disregarded 
components estimated with marginal (proportion 
<0.2) contribution of the microbiome or brain net-
works, respectively.

Acknowledgments

We would like to thank Silvia Papalini, Franziska Michels and 
Joost Wegman for their support in data analysis and acquisi-
tion. We are grateful to our participants and to the excellent 
support staff and infrastructure at the Donders Center for 
Cognitive Neuroimaging in Nijmegen.

e2006586-10 N. KOHN ET AL.



Disclosure statement

No potential conflict of interest was reported by the author(s).

Authors’ contributions

NK and EA conceived the study, EA and AAV conceived the 
project and acquired funding, JST conducted the microbiome 
analyses, AL and CB conceived the integratory analyses and 
conducted these, NK conducted processing and analysis of the 
fMRI data and the LICA results, AL, EA, AAV supported and 
supervised LICA results integration, NK and JST wrote the 
first draft of the manuscript, all authors contributed and 
agreed to the final version of the manuscript.

Ethics approval and consent to participate

The study was conducted following the Declaration of Helsinki 
with human subjects and the complete procedure was approved 
by the local Ethics Committee (CMO Arnhem-Nijmegen, 
NL55406.091.15) and registered at the Dutch trial register (pro-
tocol number: NTR5845). Written informed consent was 
obtained from each participant.

Data availability statement

All data, documentation and code will be shared via the 
DondersSharingCollection (https://doi.org/10.34973/3j3h- 
ts61).

References

1. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, 
Kubo C, Koga Y. Postnatal microbial colonization pro-
grams the hypothalamic-pituitary-adrenal system for 
stress response in mice. J Physiol (Lond). 2004;558 
:263–14. doi:10.1113/jphysiol.2004.063388.

2. Cryan JF, Dinan TG. Mind-altering microorganisms: the 
impact of the gut microbiota on brain and behaviour. Nat 
Rev Neurosci. 2012;13:701–712. doi:10.1038/nrn3346.

3. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, 
Bastiaanssen TFS, Boehme M, Codagnone MG, 
Cussotto S, Fulling C, Golubeva AV, et al. The micro-
biota-gut-brain axis. Physiol Rev. 2019;99:1877–2013. 
doi:10.1152/physrev.00018.2018.

4. Fülling C, Dinan TG, Cryan JF. Gut microbe to brain 
signaling: what happens in vagus. Neuron. 
2019;101:998–1002. doi:10.1016/j.neuron.2019.02.008.

5. Liu P, Peng G, Zhang N, Wang B, Luo B. Crosstalk 
between the gut microbiota and the brain: an update 
on neuroimaging findings. Front Neurol. 2019;10:883. 
doi:10.3389/fneur.2019.00883.

6. Bagga D, Aigner CS, Reichert JL, Cecchetto C, 
Fischmeister F, Holzer P, Moissl-Eichinger C, Schöpf 
V. Influence of 4-week multi-strain probiotic adminis-
tration on resting-state functional connectivity in 
healthy volunteers. Eur J Nutr. 2019;58:1821–1827. 
doi:10.1007/s00394-018-1732-z.

7. Wang H, Braun C, Murphy EF, Enck P. Bifidobacterium 
longum 1714TM strain modulates brain activity of 
healthy volunteers during social stress. Am J 
Gastroenterol. 2019;114:1152–1162. doi:10.14309/ajg.00 
00000000000203.

8. Curtis K, Stewart CJ, Robinson M, Molfese DL, Gosnell 
SN, Kosten TR, Petrosino JF, De La Garza R, Salas R. 
Insular resting state functional connectivity is asso-
ciated with gut microbiota diversity. Eur J Neurosci. 
2019;50:2446–2452. doi:10.1111/ejn.14305.

9. Wang YF, Zheng LJ, Liu Y, Ye YB, Luo S, Lu GM, Gong 
D, Zhang LJ. The gut microbiota-inflammation-brain 
axis in end-stage renal disease: perspectives from default 
mode network. Theranostics. 2019;9:8171–8181. 
doi:10.7150/thno.35387.

10. Cai H, Wang C, Qian Y, Zhang S, Zhang C, Zhao W, 
Zhang T, Zhang B, Chen J, Liu S, et al. Large-scale 
functional network connectivity mediate the associa-
tions of gut microbiota with sleep quality and executive 
functions. Hum Brain Mapp. 2021;42:3088–3101. 
doi:10.1002/hbm.25419.

11. Li S, Song J, Ke P, Kong L, Lei B, Zhou J, Huang Y, Li H, 
Li G, Chen J, et al. The gut microbiome is associated 
with brain structure and function in schizophrenia. Sci 
Rep. 2021;11:9743. doi:10.1038/s41598-021-89166-8.

12. Bijsterbosch J, and Beckmann C. An introduction to 
resting state FMRI functional connectivity. UK: 
Oxford University Press; 2017.

13. Roman P, Rueda-Ruzafa L, Cardona D, Cortes- 
Rodríguez A. Gut–brain axis in the executive function 
of austism spectrum disorder. Behav Pharmacol. 
2018;29:654–663. doi:10.1097/FBP.0000000000000428.

14. Smith S, Nichols T, Vidaurre D, Winkler A, Behrens 
T, Glasser M, Ugurbil K, Barch D, Van Essen D, 
Miller K. A positive-negative mode of population 
covariation links brain connectivity, demographics 
and behavior. Nat Neurosci. 2015;18:1565–1567. 
doi:10.1038/nn.4125.

15. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, 
Mackay CE, Filippini N, Watkins KE, Toro R, Laird 
AR, et al. Correspondence of the brain’s functional 
architecture during activation and rest. PNAS. 
2009;106:13040–13045. doi:10.1073/pnas.0905267106.

16. Llera A, Wolfers T, Mulders P, Beckmann CF. Inter- 
individual differences in human brain structure and 
morphology link to variation in demographics and 
behavior. eLife. 2019;8:e44443. doi:10.7554/eLife.44443.

17. Groves AR, Beckmann CF, Smith SM, Woolrich MW. 
Linked independent component analysis for multimo-
dal data fusion. NeuroImage. 2011;54:2198–2217. 
doi:10.1016/j.neuroimage.2010.09.073.

GUT MICROBES e2006586-11

https://doi.org/10.34973/3j3h-ts61
https://doi.org/10.34973/3j3h-ts61
https://doi.org/10.1113/jphysiol.2004.063388
https://doi.org/10.1038/nrn3346
https://doi.org/10.1152/physrev.00018.2018
https://doi.org/10.1016/j.neuron.2019.02.008
https://doi.org/10.3389/fneur.2019.00883
https://doi.org/10.1007/s00394-018-1732-z
https://doi.org/10.14309/ajg.0000000000000203
https://doi.org/10.14309/ajg.0000000000000203
https://doi.org/10.1111/ejn.14305
https://doi.org/10.7150/thno.35387
https://doi.org/10.1002/hbm.25419
https://doi.org/10.1038/s41598-021-89166-8
https://doi.org/10.1097/FBP.0000000000000428
https://doi.org/10.1038/nn.4125
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.7554/eLife.44443
https://doi.org/10.1016/j.neuroimage.2010.09.073


18. Orfanos S, Toygar T, Berthold-Losleben M, Chechko N, 
Durst A, Laoutidis Z, Vocke S, Weidenfeld C, Schneider 
F, and Karges W, et al. Investigating the impact of 
overnight fasting on intrinsic functional connectivity: 
a double-blind fMRI study. Brain Imaging Behav. 
2018;12(4) :1150–1159.

19. Clemens B, Wagels L, Bauchmüller M, Bergs R, Habel 
U, Kohn N. Alerted default mode: functional connec-
tivity changes in the aftermath of social stress. Sci Rep. 
2017;7:1–9. doi:10.1038/srep40180.

20. Hermans EJ, Henckens MJAG, Joëls M, Fernández 
G. Dynamic adaptation of large-scale brain net-
works in response to acute stressors. Trends 
Neurosci. 2014;37:304–314. doi:10.1016/j.tins.201 
4.03.006.

21. Kohn N, Hermans EJ, Fernández G. Cognitive ben-
efit and cost of acute stress is differentially modu-
lated by individual brain state. Soc Cogn Affect 
Neurosci. 2017;12:1179–1187. doi:10.1093/scan/ 
nsx043.

22. Raichle ME. The brain’s default mode network. Annu 
Rev Neurosci. 2015;38:433–447. doi:10.1146/annurev- 
neuro-071013-014030.

23. Buckner RL, Andrews-Hanna JR, Schacter DL. The 
brain’s default network: anatomy, function, and rele-
vance to disease. Ann N Y Acad Sci. 2008;1124:1–38. 
doi:10.1196/annals.1440.011.

24. Andrews-Hanna JR, Smallwood J, Spreng RN. The 
default network and self-generated thought: component 
processes, dynamic control, and clinical relevance. Ann 
N Y Acad Sci. 2014;1316:29–52. doi:10.1111/ 
nyas.12360.

25. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, 
Sonuga-Barke EJS. Default-mode brain dysfunction in 
mental disorders: a systematic review. Neurosci 
Biobehav Rev. 2009;33:279–296. doi:10.1016/j. 
neubiorev.2008.09.002.

26. Gusnard DA, Akbudak E, Shulman GL, Raichle ME. 
Medial prefrontal cortex and self-referential mental 
activity: relation to a default mode of brain function. 
Proc Natl Acad Sci U S A. 2001;98:4259–4264. 
doi:10.1073/pnas.071043098.

27. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, 
Gusnard DA, Shulman GL. A default mode of brain 
function. Proc Natl Acad Sci U S A. 2001;98:676–682. 
doi:10.1073/pnas.98.2.676.

28. Shulman G, Fiez J, and Corbetta M. Common blood 
flow changes across visual tasks: II. Decreases in cere-
bral cortex. J Cogn . 1997;9(5):648–663.

29. Raichle ME, Snyder AZ. A default mode of brain func-
tion: a brief history of an evolving idea. NeuroImage. 
2007;37:1083–1090. doi:10.1016/j.neuroimage.2007. 
02.041.

30. Mevel K, Landeau B, Fouquet M, La Joie R, Villain N, 
Mézenge F, Perrotin A, Eustache F, Desgranges B, 
Chételat G. Age effect on the default mode network, 

inner thoughts, and cognitive abilities. Neurobiol 
Aging. 2013;34:1292–1301. doi:10.1016/j.neurobio 
laging.2012.08.018.

31. Sestieri C, Corbetta M, Romani GL, Shulman GL. 
Episodic memory retrieval, parietal cortex, and the 
default mode network: functional and topographic ana-
lyses. J Neurosci. 2011;31:4407–4420. doi:10.1523/ 
JNEUROSCI.3335-10.2011.

32. Bar M. The proactive brain: using analogies and asso-
ciations to generate predictions. Trends Cogn Sci. 
2007;11:280–289. doi:10.1016/j.tics.2007.05.005.

33. Mason MF, Norton MI, Van Horn JD, Wegner DM, 
Grafton ST, Macrae CN. Wandering Minds: the Default 
Network and Stimulus-Independent Thought. Science. 
2007;315:315. doi:10.1126/science.315.5810.315a.

34. Raichle ME. The restless brain: how intrinsic activity 
organizes brain function. Philosoph Trans Royal Soc B. 
2015;370:20140172–20140172. doi:10.1098/rstb.2014 
.0172.

35. Kohn N, Toygar T, Weidenfeld C, Berthold-Losleben 
M, Chechko N, Orfanos S, Vocke S, Durst A, Laoutidis 
ZG, Karges W, et al. In a sweet mood? Effects of experi-
mental modulation of blood glucose levels on mood- 
induction during fMRI. NeuroImage. 2015;113:246– 
256. doi:10.1016/j.neuroimage.2015.03.024.

36. Petersen SE, Posner MI. The attention system of the 
human brain: 20 years after. Annu Rev Neurosci. 
2012;35:73–89. doi:10.1146/annurev-neuro-062111- 
150525.

37. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, 
Buckner RL. Functional-anatomic fractionation of the 
brain’s default network. Neuron. 2010;65:550–562. 
doi:10.1016/j.neuron.2010.02.005.

38. Menon V. Large-scale brain networks and psycho-
pathology: a unifying triple network model. Trends 
Cogn Sci. 2011;15:483–506. doi:10.1016/j.tics.2011.08 
.003.

39. Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain 
axis: regulation by the microbiome. Neurobio Stress. 
2017;7:124–136. doi:10.1016/j.ynstr.2017.03.001.

40. Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan 
TG, Cryan JF. Feeding the microbiota-gut-brain axis: 
diet, microbiome, and neuropsychiatry. Trans Res. 
2017;179:223–244. doi:10.1016/j.trsl.2016.10.002.

41. de Weerth C. Do bacteria shape our development? 
Crosstalk between intestinal microbiota and HPA axis. 
Neurosci Biobehav Rev. 2017;83:458–471. doi:10.1016/j. 
neubiorev.2017.09.016.

42. Müller NCJ, Dresler M, Janzen G, Beckmann CF, 
Fernández G, Kohn N. Medial prefrontal decoupling 
from the default mode network benefits memory. 
NeuroImage. 2020;210:116543. doi:10.1016/j.neuroima 
ge.2020.116543.

43. Allen AP, Hutch W, Borre YE, Kennedy PJ, Temko 
A, Boylan G, Murphy E, Cryan JF, Dinan TG, Clarke 
G. Bifidobacterium longum 1714 as a translational 

e2006586-12 N. KOHN ET AL.

https://doi.org/10.1038/srep40180
https://doi.org/10.1016/j.tins.2014.03.006
https://doi.org/10.1016/j.tins.2014.03.006
https://doi.org/10.1093/scan/nsx043
https://doi.org/10.1093/scan/nsx043
https://doi.org/10.1146/annurev-neuro-071013-014030
https://doi.org/10.1146/annurev-neuro-071013-014030
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1111/nyas.12360
https://doi.org/10.1111/nyas.12360
https://doi.org/10.1016/j.neubiorev.2008.09.002
https://doi.org/10.1016/j.neubiorev.2008.09.002
https://doi.org/10.1073/pnas.071043098
https://doi.org/10.1073/pnas.98.2.676
https://doi.org/10.1016/j.neuroimage.2007.02.041
https://doi.org/10.1016/j.neuroimage.2007.02.041
https://doi.org/10.1016/j.neurobiolaging.2012.08.018
https://doi.org/10.1016/j.neurobiolaging.2012.08.018
https://doi.org/10.1523/JNEUROSCI.3335-10.2011
https://doi.org/10.1523/JNEUROSCI.3335-10.2011
https://doi.org/10.1016/j.tics.2007.05.005
https://doi.org/10.1126/science.315.5810.315a
https://doi.org/10.1098/rstb.2014.0172
https://doi.org/10.1098/rstb.2014.0172
https://doi.org/10.1016/j.neuroimage.2015.03.024
https://doi.org/10.1146/annurev-neuro-062111-150525
https://doi.org/10.1146/annurev-neuro-062111-150525
https://doi.org/10.1016/j.neuron.2010.02.005
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1016/j.ynstr.2017.03.001
https://doi.org/10.1016/j.trsl.2016.10.002
https://doi.org/10.1016/j.neubiorev.2017.09.016
https://doi.org/10.1016/j.neubiorev.2017.09.016
https://doi.org/10.1016/j.neuroimage.2020.116543
https://doi.org/10.1016/j.neuroimage.2020.116543


psychobiotic: modulation of stress, electrophysiology 
and neurocognition in healthy volunteers. Transl 
Psychiatry. 2016;6:e939–e939. doi:10.1038/tp.2016 
.191.

44. Rodriguez J, Hiel S, Neyrinck AM, Roy TL, Pötgens SA, 
Leyrolle Q, Pachikian BD, Gianfrancesco MA, Cani PD, 
Paquot N, et al. Discovery of the gut microbial signature 
driving the efficacy of prebiotic intervention in obese 
patients. Gut [Internet]. 2020;69(11):1975–1987. 
[accessed 2020 Aug 10]. https://gut.bmj.com/content/ 
early/2020/02/10/gutjnl-2019-319726 .

45. Jianguo L, Xueyang J, Cui W, Changxin W, Xuemei Q. 
Altered gut metabolome contributes to depression-like 
behaviors in rats exposed to chronic unpredictable mild 
stress. Transl Psychiatry. 2019;9:1–14. doi:10.1038/ 
s41398-018-0355-8.

46. Tian T, Xu B, Qin Y, Fan L, Chen J, Zheng P, Gong X, 
Wang H, Bai M, Pu J, et al. Clostridium butyricum miyairi 
588 has preventive effects on chronic social defeat stress- 
induced depressive-like behaviour and modulates micro-
glial activation in mice. Biochem Biophys Res Commun. 
2019;516:430–436. doi:10.1016/j.bbrc.2019.06.053.

47. Abbott AE, Nair A, Keown CL, Datko M, Jahedi A, 
Fishman I, Müller R-A. Patterns of Atypical 
Functional Connectivity and Behavioral Links in 
Autism Differ Between Default, Salience, and 
Executive Networks. Cereb Cortex. 2016;26:4034– 
4045. doi:10.1093/cercor/bhv191.

48. Kang D-W, Adams JB, Coleman DM, Pollard EL, 
Maldonado J, McDonough-Means S, Caporaso JG, 
Krajmalnik-Brown R. Long-term benefit of Microbiota 
Transfer Therapy on autism symptoms and gut micro-
biota. Sci Rep. 2019;9:1–9. doi:10.1038/s41598-018- 
37186-2.

49. Prehn-Kristensen A, Zimmermann A, Tittmann L, Lieb 
W, Schreiber S, Baving L, Fischer A. Reduced micro-
biome alpha diversity in young patients with ADHD. 
PLoS One [Internet]. 2018;13:e0200728. [accessed 2020 
Apr 20]. https://www.ncbi.nlm.nih.gov/pmc/articles/ 
PMC6042771/ .

50. Gerhardt S, Mohajeri MH. Changes of colonic bacterial 
composition in Parkinson’s disease and other neurode-
generative diseases. Nutrients [Internet] 2018;10:708. 
[accessed 2020 Apr 20]. https://www.ncbi.nlm.nih.gov/ 
pmc/articles/PMC6024871/ .

51. Ho LKH, Tong VJW, Syn N, Nagarajan N, Tham EH, 
Tay SK, Shorey S, Tambyah PA, Law ECN. Gut micro-
biota changes in children with autism spectrum disor-
der: a systematic review. Gut Pathog. 2020;12:6. 
doi:10.1186/s13099-020-0346-1.

52. Tengeler AC, Dam SA, Wiesmann M, Naaijen J, van 
Bodegom M, Belzer C, Dederen PJ, Verweij V, Franke 
B, Kozicz T, et al. Gut microbiota from persons with 
attention-deficit/hyperactivity disorder affects the brain 
in mice. Microbiome. 2020;8:44. doi:10.1186/s40168- 
020-00816-x.

53. Di X, Biswal BB. Modulatory interactions between the 
default mode network and task positive networks in 
resting-state. PeerJ [Internet]. 2014;2:e367. [accessed 
2020 Apr 20]. https://www.ncbi.nlm.nih.gov/pmc/arti 
cles/PMC4017816/ .

54. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van 
Essen DC, Raichle ME. The human brain is intrinsically 
organized into dynamic, anticorrelated functional net-
works. Proc Natl Acad Sci U S A. 2005;102:9673–9678. 
doi:10.1073/pnas.0504136102.

55. Poldrack RA. Inferring mental states from neuroimaging 
data: from reverse inference to large-scale decoding. 
Neuron. 2011;72:692–697. doi:10.1016/j.neuron.2011.11.0 
01.

56. Papalini S, Michels F, Kohn N, Wegman J, van 
Hemert S, Roelofs K, Arias-Vasquez A, Aarts E. 
Stress matters: randomized controlled trial on the 
effect of probiotics on neurocognition. Neurobio 
Stress. 2019;10:100141. doi:10.1016/j.ynstr.2018.1 
00141.

57. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich 
MW, Smith SM. FSL. NeuroImage. 2012;62:782–790. 
doi:10.1016/j.neuroimage.2011.09.015.

58. Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar 
JK, Beckmann CF. ICA-AROMA: a robust ICA-based 
strategy for removing motion artifacts from fMRI data. 
Neuroimage. 2015;112:267–277. doi:10.1016/j.neuroi 
mage.2015.02.064.

59. Pruim RHR, Mennes M, Buitelaar JK, Beckmann CF. 
Evaluation of ICA-AROMA and alternative strategies 
for motion artifact removal in resting state fMRI. 
Neuroimage. 2015;112:278–287. doi:10.1016/j.neuroi 
mage.2015.02.063.

60. Szopinska JW, Gresse R, van der Marel S, Boekhorst J, 
Lukovac S, van Swam I, Franke B, Timmerman H, 
Belzer C, Arias Vasquez A. Reliability of a partici 
pant-friendly fecal collec tion method for micr obiome 
analyses: a step towards large sample size investigation. 
BMC Micr obiol. 2018;18:110. doi:10.1186/s12866-018- 
1249-x.

61. Fernández-Calleja JMS, Konstanti P, Swarts HJM, Bou 
wman LMS, Garcia-Camp ayo V, Bill ecke N, Oosting 
A, Smidt H, Keijer J, van Schot horst EM. Non-invasive 
continuous real-time in vivo analysis of microbial hydr 
ogen produ ction shows adaptation to ferm entable 
carbo hydrates in mice. Sci Rep. 2018;8:1–16. 
doi:10.1038/s41598-018-33619-0.

62. Ramiro-Garcia J, Hermes GDA, Giatsis C, Sipkema 
D, Zoetendal EG, Schaap PJ, Smidt H. NG-Tax, a 
highly accurate and validated pipeline for analysis of 
16S rRNA amplicons from complex biomes. 
F1000Res. 2018;5:1791. doi:10.12688/f1000research. 
9227.2.

63. Szopinska-Tokov J, Dam S, Naaijen J, Konstanti P, 
Rommelse N, Belzer C, Buitelaar J, Franke B, Aarts E, 
Arias Vasquez A. Investigating the gut microbiota 

GUT MICROBES e2006586-13

https://doi.org/10.1038/tp.2016.191
https://doi.org/10.1038/tp.2016.191
https://gut.bmj.com/content/early/2020/02/10/gutjnl-2019-319726
https://gut.bmj.com/content/early/2020/02/10/gutjnl-2019-319726
https://doi.org/10.1038/s41398-018-0355-8
https://doi.org/10.1038/s41398-018-0355-8
https://doi.org/10.1016/j.bbrc.2019.06.053
https://doi.org/10.1093/cercor/bhv191
https://doi.org/10.1038/s41598-018-37186-2
https://doi.org/10.1038/s41598-018-37186-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6042771/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6042771/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024871/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024871/
https://doi.org/10.1186/s13099-020-0346-1
https://doi.org/10.1186/s40168-020-00816-x
https://doi.org/10.1186/s40168-020-00816-x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017816/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017816/
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1016/j.neuron.2011.11.001
https://doi.org/10.1016/j.neuron.2011.11.001
https://doi.org/10.1016/j.ynstr.2018.100141
https://doi.org/10.1016/j.ynstr.2018.100141
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.1016/j.neuroimage.2015.02.063
https://doi.org/10.1016/j.neuroimage.2015.02.063
https://doi.org/10.1186/s12866-018-1249-x
https://doi.org/10.1186/s12866-018-1249-x
https://doi.org/10.1038/s41598-018-33619-0
https://doi.org/10.12688/f1000research.9227.2
https://doi.org/10.12688/f1000research.9227.2


composition of individuals with attention-deficit/ 
hyperactivity disorder and association with symptoms. 
Microorganisms. 2020;8:406. doi:10.3390/microorgan 
isms8030406.

64. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, 
Yarza P, Peplies J, Glöckner FO. The SILVA ribo-
somal RNA gene database project: improved data 
processing and web-based tools. Nucleic Acids Res. 
2013;41:D590–6. doi:10.1093/nar/gks1219.

65. McMurdie PJ, Holmes S. Phyloseq: an R package for 
reproducible interactive analysis and graphics of micro-
biome census data. PLOS ONE. 2013;8:e61217. 
doi:10.1371/journal.pone.0061217.

66. Choudrey R. Variational methods for bayesian indepen-
dent component analysis.

67. Llera A. Linked ICA in HCP500 [Internet]. GitHub2019. 
Accessed 20 Apr 2021. https://github.com/allera/Llera_ 
elife_2019_1

e2006586-14 N. KOHN ET AL.

https://doi.org/10.3390/microorganisms8030406
https://doi.org/10.3390/microorganisms8030406
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1371/journal.pone.0061217
https://github.com/allera/Llera_elife_2019_1
https://github.com/allera/Llera_elife_2019_1

	Abstract
	Introduction
	Results
	Joint decomposition of brain networks and microbiome relative abundance

	Discussion
	Conclusion
	Material and methods
	Sample
	fMRI data acquisition
	Generation of subject-specific functional connectivity maps
	Gut microbiome analysis
	Linked analyses

	Acknowledgments
	Disclosure statement
	Authors’ contributions
	Ethics approval and consent to participate
	Data availability statement
	References

